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The Hamiltonian formulation oN=3 systems is considered in general. The most
general solution of the Jacobi equationfif is proposed. The form of the solution

is shown to be valid also in the neighborhood of some irregular points. Compatible
Poisson structures and corresponding bi-Hamiltonian systems are also discussed.
Hamiltonian structures, the classification of irregular points and the corresponding
reduced first order differential equations of several examples are give2003
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I. INTRODUCTION

The Hamiltonian formulation of a system of dynamical equations is important not only in
mathematics but also in physics and other branches of natural sciences. They in general describe
conserved systems. Among all possible odd dimensional cases, the three dimensional dynamical
systems have a unique position. The Jacobi equation in this case reduces to a single scalar
equation for three components of the Poisson struciufBue to this propertyN=3 dynamical
systems attracted much research to derive new Hamiltonian sy&téhdore recently? a large
class of solutions of the Jacobi equationi was given. Poisson structures, in all dimensions,
were also considered in Ref. 3. In this work, we consider a general solution of the Jacobi equation
in R3. We find the compatible Poisson structures and give the corresponding bi-Hamiltonian
systems. We give all explicit examples in a special section and Table | at the end.

Let us give necessary information about the Poisson structure®3inA matrix J
=(J;), 1,J=1,2,3, defines a Poisson structurelinif it is skew-symmetricJ;;= —J;;, and its
entries satisfy the Jacobi equation

g, Jik4 31 5, Ik + 3k g, 31 =0, (1)

wherei,j,k=1,2,3. Here we use the summation convention, meaning that repeated indices are
summed up. Let us introduce the following notations. For malrput J;,=u, J3;=v, Joz=W.
Then the Jacobi equatidd) takes the form

Ud1v —vdiU+Wdou—UdoW+ v daW—Wdzv =0. (2

It can also be rewritten as
v u w
2 2 2 _
usd,—+w=<d,—+v<d;—=0. 3
Tu 2y TV, ©

[We assume that none of the functiamsv andw vanish. If any one of these functions vanishes
then Eq.(2) becomes trivial for the remaining two variables; see Remark 1.

We consider the general solution of the Jacobi equaBpand show that it has the following
form:

J=puelkg v, (4)
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where . and¥ are arbitrary differentiable functions &f , i=1,2,3 ande'¥ is the Levi—Civita
symbol. We also consider special solutions given by

udv —vdu=0, wd,u—ud,w=0, whichimplies vdsw—wdzv=0. (5

Such Poisson structures appear in many examples. We show that this special class of solutions
belongs to the general forfd). We introduce these special solutions to study the irregular points

of the Poisson structures. All the irregular points of the Poisson structure ndagjiven in the
examples, we know so far, come from this special form. Hence they are also irregular points of
the form(4) we give.

Il. THE GENERAL SOLUTION
Assuming thauu#0, let p= v/u and y= w/u; then Eq.(2) can be written as
d1p—dax+ pdzx—xd3p=0. (6)
This equation can be put in a more suitable form by writing it as
(d1=x33)p—(d2—pd3) x=0. (7
Introducing differential operato®,; andD, defined by
Di1=0d1—xd3, D2=d,—pd3, (8
one can write Eq(7) as
D1p—D2x=0. 9
Lemma 1: Let Eq. (9) be satisfied. Then there are new coordingtes x; such that
D1=dx, and Dy=dx, (10
Proof: If Eq. (9) is satisfied, it is easy to show that the opera@gsandD, commute, i.e.,
D;°oD,—D,D;=0.

Hence, by the Frobenius theordsee Ref. 4, p. 40there exist coordinates; ,X,,X3 such that the
equalities(10) hold. O
The coordinatex; ,x,,X5 are described by the following lemma.
Lemma 2: Let be a common invariant function of,0and D,, i.e,,

D1{=D»{=0, (1)
then the coordinates;xx,,x3 of Lemma 1 are given by
X1=X1, X2=Xz, X3={(. (12
Moreover from (11) we get

914 924
== == 13
X=o.00 P o (13
Theorem 1: All Poisson structures ik, except at some irregular points, take the form (4),
i.e., Jij=u € I {. Here u and { are some differentiable functions it?
Proof: Using (13), the entries of matrix, in the coordinates;,x,,X3, can be written as
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U= udsd,
U= pdad, (14)
W= pud{{.

Thus matrixJ has the form(4) (V={¢). O

Remark 1:So far we assumed that# 0. If u=0 then the Jacobi equation becomes quite
simpler,v d3; W—wdz v =0, which has the simple solution=v &(x1,X,), where¢ is an arbitrary
differentiable ofx; andx,. This class is also covered by the general soluténby letting W
independent ok, .

A well known example of a dynamical system with a Poisson structure of the (#ris the
Euler equations.

Example 1:Consider the Euler equatioriRef. 4, pp. 397-398

X1 X2X3,
I5l3

-l B

Xp=———XaXq, (15
I3l
il P

3= I I X1X21

wherelq,l,,I3e R are some(nonvanishing real constants. This system admits a Hamiltonian
representation of the forr@d). The matrixJ can be defined in terms of functiobh = — %(x§+x§
+x3) andu=1, so

U:_X3,
v=—Xa, (16)
W:_Xl,

andH= x3/21; + x3/2l , + x3/2l 5.

Recently, a large set of solutions of the Jacobi equaBsatisfying(5) was given in Ref. 1.
For all such solutions the Darboux transformation and Casimir functionals were obtained; see Ref.
1.

Definition 1: For every domait) € R® let 1,(Q) be the set of all solutions of (5) defined(n
with u(x), v(x), and w(x) being C(Q).

Following Ref. 1 we have as follows.

Proposition 1: Letn(Xq,X2,X3), #i(X;), #i(X;), 1=1,2,3,be arbitrary differentiable functions
defined inQ). Then the functions

u(x) = 7(X1,X2,X3) P1(X1) ra(X2) Ph3(X3),
v(X) = 7(X1,X2,X3) h1(X1) Pa(X2) r3(X3), 17
W(X) = 7(X1,X2,X3) P1(X1) h2(X2) h3(Xa),
define a solution of Eq. (5) belonging kg(()).
Definition 2: For every domaif) € R3, let 1,(Q) be the set of all solutions of (5) defined in

Q) where one of the functiongx), v(x), and w(x) is zero and the others are not identically zero
in Q.
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Following Ref. 1 we have Proposition 2.
Proposition 2: Lety(x4,X5,X3),&i(X;), 1=1,2,3,be arbitrary differentiable functions defined
in Q. Then the functions

u(x)=0, v(X)=n7(X1,X2,X3)2(X2), W(X)=1(X1,X2,X3)&1(X1) (18

define a solution of Eq. (1) belonging kg(2), u=0. Similar solutions can be given in the case
v=0 and the case w 0.

Remark 2All of the Poisson structures described in Ref. 1 have the f@mFor the Poisson
structure J, given by (17), assumey, #,, and i3 to be nonvanishing and defing
= 7(X1,X2,X3) ¥1(X1) r2(X2) ¥3(X3) and

X1 ¢y JXZ &2 JX3 &3
V=] —dx;+ | —dx,+ | —dXg;
g Y 7 gy O
thenJ has form(4). For the Poisson structuk given by (18), define u= 7(X1,X,,X3) and¥
=[71&1(x1) + [385(%2); thend has form(4).
Let us give two examples of systems that admit a Hamiltonian representation described by the
Proposition 1 and Proposition 2.
Example 2:Consider the Lotka—\Voltera systéin,
X1=—abcxXz—bCcugXs+ XXy + CrXyq,
XZZ - azb CXoX3— a.bC/.L0X2+ X1Xo, (19)
5(3: - abCX2X3_ abCVOX3+ bX1X3 y

wherea,b,c,uq,voe R are constants.
The matrixJ is given by

U=CX1 X5,
v=—bcxxs, (20)
W= —X5X3,

andH=abx; +X,—axz+ vgIn Xo— g ln X3.
Example 3:Consider the Lorenz systém

1
X1 EXZ,
Xo= —X1X3, (21)
2 1X3
5(3:X1X2.
The matrixJ is given by
u= %,
v=0, (22
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andH=x3+x3. Many other examples are given in Sec. Ill.

In the derivation of the general solution, Theorem 1, we assumed that one of the components
of matrix J is different from zero. In addition our derivation is valid only in a neighborhood of a
regular point of) (matrix J#0 at this poin}. If pe R® is an irregular point where(p)=v(p)
=w(p)=0 itis not clear whether our solution is valid in a neighborhood of such a point. Here we
shall show that the Poisson structures giver(dypreserve their form in the neighborhood of the
following irregular points.

Lemma 3: The solution of the equation (1) defined in Proposition 1 and Proposition 2 and
written in the form (4) preserve their form in the neighborhood of the irregular points, lines and
planes inR* defined below

(a) Irregular points. Let p=(pi,p2,p3) be such thate;(p1)= ¢2(p2) = #3(p3)=0 and
gi(p;))#0,i=1,2,3;then p is an irregular point where the general form (4) is preserved

(b) Irregular lines or irregular planes. Let g (p1,p»,ps) € R® be such thatp(p;,X,,x3)=0

[7(X1,P2,X3) =0 or 7(X1,X2,p3)=0] and #;(p;) #0, i=1,2,3; then x=p; (X,=p, or
X3=p3) is an irregular plane, where the general form (4) is preserved. Letpy, X,

=p2 be such thatp(py,p2,%3) =0 [ 7(P1,X2,p3) =0 or 7(X1,p2,p3)=0] and ;(p;) #0,
i=1,2,3then x=p1, Xo=P2 (X;=pP1,X3=P3 OF X,=P,,X3=P3) IS an irregular line, where
the general form (4) is preserved

Proof: The solution given in Proposition 1 and Proposition 2 solves the following equations
(without any division:

U(?ll) —v&1u= 0,
—ud,w+wd,u=0, (23
U(?3W_W&3U =0.

The general forn(4), given in Remark 2, is also preserved at such points since we can define
= 1(X1,X2,X3) r1(X1) ra(X2) #r3(X3) and

X1y fXZ b2 f"'é’ 3
V=] —dx;+ | —dx+ | ——dxs,
gt Yy 7 Yy O
or if one of the components af is zero, assumei=0, we defineu= 7(Xy,X,,X3) and ¥
= [ 1€ (Xq) + [3E(X2). O

Example 4:For the Euler system considered in Example 1 the Poisson structure, given by
(16), has irregular poinp=(0,0,0). The irregular poinp=(0,0,0) satisfies the conditions of
Lemma 3, the function® = — 3(x2+x3+x3), x=1 in terms of which the Poisson structure is
given, are well defined in a neighborhood w#f (0,0,0).

lll. BI-HAMILTONIAN SYSTEM

In general the Darboux theorem states ftts&e Ref. % locally, all Poisson structures can be
reduced to the standard orja Poisson structure with constant entriefhe above theorem,
Theorem 1, resembles the Darboux theoremNer3. All Poisson structures, at least locally, can
be cast into the fornt4). This result is important because the Darboux theorem is not suitable for
obtaining multi-Hamiltonian systems it®, but we will show that our theorem is effective for this
purpose. Writing the Poisson structure in the fofM allows us to construct bi-Hamiltonian
representations of a given Hamiltonian system.

Definition 3: Two Hamiltonian matrices J andalte compatible, if the sum+JJ defines also
a Poisson structure

The compatible Poisson structures can be used to construct bi-Hamiltonian equations.
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Definition 4: A Hamiltonian equation is said to be bi-Hamiltonian if it admits two Hamil-
tonian representations with compatible Poisson structures

dx ~
—=JVH=JVH, (24)
dt
where J and Jare compatible

Lemma 4: Let Poisson structures J andhave the form (4), so'J=puée*9, ¥ and J'
=7€e*9, V. Then J and Jare compatible if and only if there exists a differentiable function
®(¥,¥) such that

95D

R=ry o (25

provided thatdy, ®= ®/JV¥ #0 and 5 D= Jb/dW¥ #0.
This suggests that all Poisson structurediihhave compatible pairs, because the condition

(25) is not so restrictive on the Poisson matrideandJ. Such compatible Poisson structures can
be used to construct bi-Hamiltonian systems.

Lemma 5: Let J be given by (4) and(¥ ,X,,X3) is any differentiable function; then the
Hamiltonian equation

dx
a=JVH=—,uV\If><VH, (26)
is bi-Hamiltonian with the second structure given byvith entries
T(x) =7 39 (V¥ (X1XoX3),H(X1,X2,X3)),
?}'(X):_TLazg(’\l’(xlXZXS)!H(Xl=X21X3))1 (27)

W(x) =7 d19(¥ (X1X2X3),H(X1,X2,X3)),

and H=h(W¥ (X;X,X3),H(Xq ,X2,X3)), q’=g(‘l’(x1,x2;X3),H(X1,X2,x3)), = p (dg®/ay®).
Provided that there exist differentiable functiobgWV,¥), h(W¥,H), and g(W¥,H) satisfying the
following equation:

————— (28)

Where<I>1= (7\1,(1)|(\I;’g) s (1)2: (9q,<l>|~(q,’g) .
Proof: By Lemma 4,J and J are compatible and it can be shown by a straightforward
calculation that the equalitfbeing a bi-Hamiltonian system

JVH=JVH, (29
or
TVUXVH=1V¥UXVH (30)
is guaranteed by28). Hence the system

dx,
H = M63T52H - 52\P33H,
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dx,
H == M(93\I,(”71H + l‘?l\I’agH,
dxs
E:Maz\yﬁlH_al\PD"zH, (31)
is bi-Hamiltonian. O

Remark 3:.The Hamiltonian functiorH is a conserved quantity of the system. It is clear from
the expressiort31) that the functior’ is another conserved quantity of the system. Hence for a
given Hamiltonian system there is a duality betwé¢rand ¥. Such a duality arises naturally

because a simple solution of the equati@8) is V=H, H=v andu=—u. Thus we have a
hierarchy of Hamiltonians that start with a Casimir of the second structure and terminates with a
Casimir of the first structure. Such systems are equivalent to the quasi-bi-Hamiltonian systems of
lower dimension with nondegenerate Poisson struct(ses Ref. 5, pp. 185-220

Remark 4:Using Lemma 5 we can construct infinitely many compatible Hamiltonian repre-
sentations by choosing functiods, g, h satisfying(28). If we fix functions® andg, then Eq.
(28) became linear first order partial differential equationshofFor instance, taking=¥H and
= — w, which fixes®, we obtainh=InH. Thus we a obtain second Hamiltonian representation

with J given by W =WwH andH=InH.

IV. EXAMPLES

Let us give examples of Hamiltonian systems. For each Hamiltonian system we give the
HamiltonianH and functions¥ and u in terms of which the corresponding Poisson structure may
be written, using4). FunctionsH andWV are first integrals of the system so one can use them to
reduce the system to a first order ordinary differential equation. We give the reduced equation for
the examples. We also give irregular points for the Poisson structures. For all examples except
Example 7 the form of the Poisson structieis preserved in a neighborhood of irregular points
(function ¥ and u are well definegd For Example 7 the form of the Poisson struct(4eis not
preserved; the functio is not defined in a neighborhood of irregular points but the Hamiltonian
function is also not defined at the irregular points. Hence this system does not have a Hamiltonian
formulation in the neighborhood of such points. Examples 6—12 satisfy the special case given in
Proposition 1 and Proposition 2. Please see Ref. 1 for the examples and related references.

Example 6:For the Euler system considered in Example 1 we gave a Poisson structure in
terms of functions¥,u and the Hamiltonian. The reduced equations are

ity )\t
X1_<Cl+|3<lz—ll>x3) ’
Lo(l3—1,) L\
Xz:(cﬁliui—l;xg) ’ 32
a1y 1’2( 1a(13=14) 2)1’2
Xs‘( Fm1 ) S s e

The Poisson structure is given ¥6). It has an irregular poinp=(0,0,0) (the origin.
Example 7:The Lotka—Voltera system considered in Example 2 has the matgiven by
V=—Inx;—bInx,+clnxs, w=X;X,X3 and the HamiltonianH=abx;+Xx,—axz+ vglnx,
_Moln X3.
The reduced equations can be obtained using equalities

_In Xl_b |n X2+C|n X3:Cl,
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abX1+X2_aX3+ VolnXZ_[.LolnX3:CZ. (33)

The Poisson structure is given Hg0). It has irregular lines given by;=0 and x;=0, i,]
=1,2,3,j #i (coordinate lines Both'W andH are not defined at these points. So, the system does
not have a Hamiltonian formulation at these points.
Example 8:The Lorentz system considered in Example 3 has the madtrgiven by ¥
=4(x3—x3), u=1 and the Hamiltoniam =x3+x3.
The reduced equations are
X;=(C1—x3)"2,
X,=(Cy—x5)"2, (34

X3=(Cq— Xs)llz(cz_ X§)1’2-

The Poisson structure is given 82). It has no irregular points.
Example 9:Consider Kermac—Mackendric syst&r?,

X1= —TIX1Xs,
Xo=TX1Xy—aXy, (35
X3=aXy,
wherer,ae R are constants.
The matrix J is given by W =x;+X,+X3, u=X;X, and the Hamiltonian isH=rx;

+alnx.
The reduced equations are

a
X2:C1+ Fln Xl_Xl,
a
X3:C2_ Fln Xl, (36)

Xlz —I’Xl

a
Ci+ Fln X1—Xq |-

The Poisson structure is given by
U=X;Xz,
U =X1Xg, 37
W= X1X5.

It has irregular planeg;=0 andx,=0 (coordinate plangs
Example 10:Consider the May—Leonard systém,

X1=—X; X3 %,
Xo=—X1 X3 %, (38

X3=—X; X5 *.
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The matrix J is given by W= [1/(1-a)?] (x5~ *—x1~ %), =1 and the Hamiltonian i

=x}"*—x3"%, a<O.

The reduced equations are
X2:(C1+Xi_a)1/(1_a)-
X3:(C2+Xifa)1/(l—a)'
X, = _(Cl+Xi*a)a/(l*a)(cz_i_Xi*a)al(lfa).

The Poisson structurg is given by

u=0,
X5 ¢
[ y
a—1
X1
w= )
a—1

It has an irregular linex; =0, x,=0 (coordinate ling
Example 11:Consider the Maxvel—Bloch systefn,

5(1:X2,
Xo=X1X3,
)-(3: _X1X2 .

(39

(40)

(41)

The matrixJ is given byW = — (1/2v) (x5+x3), =1 and the Hamiltonian il = 3a(x5+Xx3)

— (1) (x3+X3), v#0.
The reduced equations are

av 12
X1= C1+ 702_)(3 y
X,=(Cp—x3)"2,
12
, av
X3=—(C1+7C2—X3> (Co—x3)™

The Poisson structure is given by

-1
U= —=Xg,
) 3
-1
v="—Xy,
v 2
w=0.

It has an irregular linex,=0, x3=0 (coordinate ling

Example 12:Consider systems that are obtained from the Lorenz system,

(42

(43
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x=o(x=-y),
y=—y+rx—xz, (44)
z=—Dbz+xy.

Following Ref. 12, for an appropriate subset of parameters by recalling we have the following.
(i) Lorentz(1) system:
%= oxel

Xzlee(lilr)t(r —X367 2()‘1), (45)

)'(3: X1X2e(o'7 l)t.
The matrixJ is given byW = — (r/4g) x3e1 ™= Ix2elo "Dt — 1x2e(1=30)t "\, =1 and the

Hamiltonian isH=x2—20x.
The reduced equations are

X, =(Cy+20%3)"?,

12
r
XZZ(CZ_;(Cl"_ZUXg)eZ(l(T)t_xgez(lzg)t> y

(46)
r 1/2
5(3=(C1+20'x3)1/2( Co— —(Cy+20xg)e?(m N —xge?(120)t | gli=o)t,
The Poisson structure is given by
u= %Xse(l—BU)t,
U= %Xze((ril)t, (47)
r
— 1-o)t
w= X .
20 T
It has an irregular poink;=0, x,=0, x3=0 (the origin.
(i)  Lorentz(3) system:
Xlz O'X2e(0_ l)t,
).(2: _X1X3eig-t, (48)

X3 =X %€ L.
The matrixJ is given by W = —ix%e™ '+ (0/2) xzel? V!, n=1 and the Hamiltonian is
H=x5+X3.
The reduced equations are
X = (C1€"+ 2056l )12
X,=(Co—x5)2, (49
)'(3: (Clem+ 20_X3e(207 1)t)l/2( C2 _ X%) lIZef o-t_

The Poisson structure is given by
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u= 2gelo- Dt
v=0, (50)

w=— 3x,e .

It has no irregular points.
(i) Lorentz(5) system: ,

X1:X2,

)-(2: er_ X1X3e7t, (51)

)'(3=X1X267t.

The matrixJ is given byW = ixfe '—ix;, u=1 and the Hamiltonian i$1 = —rx2+x3
+x3.
The reduced equations are

Xl: (Clet+ 2X3€t)1/2,
Xp=(Cp+rC e+ 2rxzel—x3)¥?, (52

X3=(Ce'+2x5e") YA C,+rC e'+ 2rxget— x3) Y% .

The Poisson structure is given by
1
2
v=0, (53

It has no irregular points.
Example 13:Consider systems that are obtained from the Rabinovich sy$étem,

X=—vXx+hy+yz

y=hx—v,y—xz, (54)

Z=—v3z+Xxy.

Following Ref. 12, for an appropriate subset of parameters by recalling we have the following.

(i) Rabinovich (1) system:

Xl = hX2 + X2X3e_ 2Vt,

5(2: th—X1X3efz"t, (55)
X3: X1X5.

2

272", u=1 and the Hamiltonian i#=x2

The matrixJ is given by W = 2x2— 1x5— ix2e~
+X5—4hxg.
The reduced equations are
x=(Cy+xGe 2"+ 2hxg) ",

2

X,=(C,—x3e~ 2"+ 2hxg) Y2, (56)

%=(Cy+x58 2"+ 2hxg)YA(C,— x3e 21+ 2hxg) Y2
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The Poisson structure is given by
u= ixze 2",
V=X, (57
W=—3X,.
It has an irregular point, =0, x,=0, X3=0 (the origin.
(i)  Rabinovich (2) system:
X, =hxo+ X%z,
Xo=hx;— X%z~ ™, (58)

5(3:X1X2e7 Vt.
The matrixJ is given by ¥ = ixie "'+ ix3e ™ "'— thxg, u=1 and the Hamiltonian i#f
2 2 2
=X{—X5— 2X3.
The reduced equations are
X =(C1e"+Cy+ x5+ 2hxge™) 12,

X,=(C,e"'— C,— x5+ 2hxze™) ¥,

(59
X3=(C1"+Cp 3G+ 2hxe”) % C e~ C,— X5+ 2hxge™) Ve,
The Poisson structure is given by
u=— zh,
v=ixe ", (60)
w= ix,e ",
It has no irregular points.
(i)  Rabinovich (3) system:
X1 =XoX5€"3',
)'(2: —X1X367 Ve't, (61)

5(3=X1X26("372")t.
The matrixJ is given by W= ix3e("s 2"+ Ix2e 73t =1 and the Hamiltonian i
=X2+X3.
The reduced equations are
X =(Cr=x5)"2

Xg= (C2e7 vat _ X597 2(v— V3)t) 1/2,

(62)
)'(2=(Cl—x§)1’2(C2e’ vat _ x%e’z(”* VS)t) 12g(vz—20)t
The Poisson structure is given by
u= 3xze "3,
v= 3x,e(rs7 2 (63

w=0.
It has an irregular linex,=0, x3=0 (coordinate ling
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(iv)  Rabinovich (4) system:
5(1 = theVlt + X2X3evlt,

XZ = the_ vit— X1X3e_ Vlt, (64)

5(3 = X1X267 Vlt.
The matrixJ is given byW = — x2e~"'— ix2e"1'+ hxze"t!, u=1 and the Hamiltonian is
H=x5+(h—xs)%
The reduced equations are
Xlz(clevt_(cz_ (h + Xs))e(vl+ v)t)l/Z'
X,=(Co— (h—x3)%)"?, (65
Xa=(C1e"~(C,~ (h+x3))e1" MY PAC,— (h—x3)2) e 1.
The Poisson structure is given by
u=he",
v="—3xe"1, (66)
w=—ix,e "
It has no irregular points.
(v)  Rabinovich (5) system:
5(1 = hXZe_ vt + X2X3e_ Vzt,

XZ =h Xle”zt - X1X3eV2t, (67)
5(3 = X1X267 Vzt.

The matrixJ is given by W = 3x%e’2!+ ix5e ™ "2'—hxze"?, =1 and the Hamiltonian is

H=x%—(h+x3)%
The reduced equations are
%=(C1+ (h+x3)%)"2

X;=(Cpe"? = (Cy+ (h—x3))e?"2) 1?2 (68)
%3=(Cy+ (h+x3)?)YACp— (Cy + (h—x3))e?"2) Voo™ 72!,

The Poisson structure is given by

u=—he",
v=3Xxe "2, (69
w= 3x,e"2.,

It has no irregular points.
(vi)  Rabinovich (6) system:
X1:X2X3E(V1_2V3)t,
5(2: _X1X387 Vlt, (70)
X=X %€ "1,

The matrixJ is given byW = — ix%e ™ "1t— x2e(*17272t ;=1 and the Hamiltonian i#f
2, .2
=X5+X3.
The reduced equations are
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X = (Clev1t+ X%ez(vl_ vz)t)l/Z,
Xg=(Co—x5)"2, (72)
5(22 _ (Clevlt_'_XgeZ(vl* vz)t)l/Z( Cz _ X%) l/2e7 vqt )

The Poisson structure is given by
u=0,
v=— %Xze(”l*z"z)t, (72)

w=— 3xe ",
It has an irregular linex; =0, x,=0 (coordinate ling
(vii) Rabinovich (7) system:
).(l = X2X367 V2t’
XZZ _X1X3e(V2_2V3)t, (73)
).(3 = X1X267 V2t.

The matrixJ is given by ¥ = ix%e(r27273)t+ 1x2e =72t =1 and the Hamiltonian i
=x2—x3.
The reduced equations are
Xo= (Clevzt_ XieZ(sz V3)t)l/2,

X3=(Cy+x3)*2, (74)
5(12(Cle"Zt—X%ez(”f"3)t)l/2(C2+ Xi)l/267 vztl
The Poisson structure is given by
u=0,
v=hroe™, 75
w= 3x,e"2 2",
It has an irregular linex,=0, x3=0 (coordinate ling
Example 14:Consider systems that are obtained from the RTW sysfem,
X=yx+ 8y +z—2y?,
y=yy— ox+2xy, (76)

z=—2z(x+1),

for an appropriate subset of parameters by recalling. Following Ref 12 we have the fol-
lowing.
(i) RTW (1) system:
Xl = 5)(2 + X3e_ A 2X§,

Xo=— X+ 2% X, (77)
X3= —X1X3,
wheredis an arbitrary constant. The matidxs given by = %(xi—x§+x3e“), n=1and
the Hamiltonian isH = x3(2x,— 6).
The reduced equations are
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C,+ &% 2\1/2
x1=(Cl—x3e“+( 2 3 ) ,
3
C,+ X3
Xp=—7—,
2X3

Co+ %3

2\ 1/2
X3.
2X3 ) s

5(3: - ( Cl_X3et+(

The Poisson structure is given by

V=X,
W=X;.
It has no irregular points.
(i)  RTW(2) system:
%=+ xge - 2x%e
Xo=— 0%+ 2% %€ ",
X3=—X1Xa€ !,

(79

(79

(80)

where 6 is an arbitrary constant. The matrid is given by ¥=— (8/2) (x3+x3)

—X3%,e !, u=1 and the Hamiltonian i#l =x2+ x5+ x.
The reduced equations are

S F) 2\1/2
Xl:<C2_X3_(Clet_§C2+ §X3 ) y
., 0 1)
X2:Cle - §C2+ §X3,

2\1/2
) xze ..

. )
x3=<C2—x3—(C1e‘—§C2+ 2%
The Poisson structure is given by
u=—x.e" "
v=—0X—Xze ",
W= — Xy .
It has an irregular poink;=0, x,=0, x3=0 (the origin.
(i) RTW(3) system:
%=(g—2x)e ",

5(2 = 2X1X267t,

)'(3 = 2X1X367 t .

(81)

(82

(83

The matrixJ is given by¥ = (x—x5+x3)e"!, =1 and the Hamiltonian i#l = x,x3.

The reduced equations are

Cg 1/2
X1: y

C
Xo=—o,
2 X3

2\1/2

oo t 2 —t

Xz=—2 Cle—x3—7 X3 .
3

The Poisson structure is given by

(84)
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u=et,
v=2x%,e"", (85)

W= lee_t.

It has no irregular points.
(iv) RTW(4) system:
j(l: )(3e*(7Jr 2Qt_ 2Xge7t,
Xo=2%%,€", (86)
).(3 = 2X1X3eyt,
wherey is an arbitrary constant. The matrikis given by W = (x5 —x3)e"+xze~ (772),

=1 and the Hamiltonian i#l = x,X5.
The reduced equations are

g 1/2
— Ny @ 2(y+ 1)t
X1 (Cle X3€ +?3
Co
X2:x_3’ (87)
2\1/2
Xg= —2<C1e‘7t—x3e‘2(7+1)t+ ;_; xge”.
3
The Poisson structure is given by
u:e*(2+7)t,
v=2%e", (88)
w=2x,e".
It has no irregular points.
(v)  RTW(5) system:
K= X+ xg— 26582,
Xo=— 0%+ 2X X8~ 2, (89)

X3: - 2X1X3e_ 2t,

where & is a nonvanishing constant. The matdxis given by W= (5e2/2) (xi—x%)
+ (8/2) X3, =1 and the Hamiltonian il =x2+ x5+ (2/8) X,Xs.
The reduced equations are

C—Cie?- 26\ V2

X1= CleZt+X§+e2t 5 y

§X2+62t
C,—C,e?'—2x3
Xg=— g, (©0)
§X2+(€'2t
C,—C,e2—2x3\ 12
o of g en S 28
§X2+92I
C,—C e2t_2X2 1/2
+2| Cret+xi+et =2 T T2 e
=X,+e?

2
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TABLE I. Examples of Hamiltonian systems given in the text. In each example we give a Hamiltdréeaud a Poisson
structureJ [J is given in terms ofu, ¥ by Eq. (4)].

Poisson matrix Hamiltonian
System v s
2
xR X
Euler _1 1 L2
T 2, 2, 2,
58 X5
Lotka—\Voltera In X1XoX3 a(bx—X3)+¥o+In—
X1 X3
Lorenz (%= 1 -+
Kermac—Mackendric X1 X+ X3 X1Xo aln x;+rxz
May—Leonard ! (& a—xtme 1 o yl-a
(1—6()2 2 1 1 3
Maxvel-Bloch L2 n 1 1
axvel-bloc - Z(XngXa) 260G+X5)— ;(x3+X§)
r e(a—l)t e(1—3a)t
Lor.(1) _(; X§+Xg)_4 6 1 Xo—20%g
Lor.(3) — gty g X7t 1 K+
Lor® e -3 d ~nd
Rab(y) R 1 G-
Rab() e et 1 $6-26
Rab(3) Allxge(ug—zm + %Xge’ Vit 1 X% +X§
Rab(4) — e hlerit 4 hxgett 1 Xe+(h—xg)?
Rab(5) %Xfe”Z‘Jr zllxge’ vol—hyget 1 X—(h+xg)?
Rab(®) e 1 ek
Rab(7) %X%e(vz—zlg)t + lexge— vot 1 X%*X%
RTW.(1) 30¢—8+xse7Y) 1 X3(2—9)
RTW.(2) 5. [0 o 1 s
: *QX% 5% XX € 1HX X3
RTW.(3) (C—x5+xg)e 1 XoX3
RTW.(4) (C—xd)e"+xge” (121 1 XoXa
- s X+ x5+ gx X,
RTW.(5) > (x§7x§)+§x3 1 1T X 5XXs

The Poisson structure is given by

u=e 2+ '}’)t’
v=2x,e", (91
w=2x,e".

It has no irregular points.
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V. CONCLUSION

We considered the Jacobi equation for the ddse3. We have found the most general Poisson
structured in the neighborhood of regular points. This form is quite suitable for the study of the
multi-Hamiltonian structure of the system. We found all possible compatible Poisson structures
and corresponding bi-Hamiltonian systems. We studied our solution in the neighborhood of the
irregular points of the Poisson structure and showed that it keeps its form. As an application of our
results we gave several examples which were reported &atfiers bi-Hamiltonian systems. In
these examples we give the Casimirs, components of the Poisson matrix, the reduced equations
and irregular points. Among all examples that we observed, only the Lotka—Voltera system has a
special position. Our solution is not valid in the neighborhood of irregular points for this system.
On the other hand the Hamiltonian function is not defined at such points as well. Hence the
Lotka—Voltera equation does not have the Hamiltonian formulation in the neighborhood of such
points.
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