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The Hamiltonian formulation ofN53 systems is considered in general. The most
general solution of the Jacobi equation inR3 is proposed. The form of the solution
is shown to be valid also in the neighborhood of some irregular points. Compatible
Poisson structures and corresponding bi-Hamiltonian systems are also discussed.
Hamiltonian structures, the classification of irregular points and the corresponding
reduced first order differential equations of several examples are given. ©2003
American Institute of Physics.@DOI: 10.1063/1.1619204#

I. INTRODUCTION

The Hamiltonian formulation of a system of dynamical equations is important not only in
mathematics but also in physics and other branches of natural sciences. They in general describe
conserved systems. Among all possible odd dimensional cases, the three dimensional dynamical
systems have a unique position. The Jacobi equation in this case reduces to a single scalar
equation for three components of the Poisson structureJ. Due to this propertyN53 dynamical
systems attracted much research to derive new Hamiltonian systems.6–12 More recently1,2 a large
class of solutions of the Jacobi equation inR3 was given. Poisson structures, in all dimensions,
were also considered in Ref. 3. In this work, we consider a general solution of the Jacobi equation
in R3. We find the compatible Poisson structures and give the corresponding bi-Hamiltonian
systems. We give all explicit examples in a special section and Table I at the end.

Let us give necessary information about the Poisson structures inR3. A matrix J
5(Ji j ), i , j 51,2,3, defines a Poisson structure inR3 if it is skew-symmetric,Ji j 52Jji , and its
entries satisfy the Jacobi equation

Jli ] l Jjk1Jl j ] l Jki1Jlk] l Ji j 50, ~1!

where i , j ,k51,2,3. Here we use the summation convention, meaning that repeated indices are
summed up. Let us introduce the following notations. For matrixJ put J125u, J315v, J235w.
Then the Jacobi equation~1! takes the form

u]1v2v]1u1w]2u2u]2w1v]3w2w]3v50. ~2!

It can also be rewritten as

u2]1

v
u

1w2]2

u

w
1v2]3

w

v
50. ~3!

@We assume that none of the functionsu, v andw vanish. If any one of these functions vanishes
then Eq.~2! becomes trivial for the remaining two variables; see Remark 1.#

We consider the general solution of the Jacobi equation~3! and show that it has the following
form:

Ji j 5me i jk]kC, ~4!

a!Electronic mail: zhelt@fen.bilkent.edu.tr
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wherem andC are arbitrary differentiable functions ofxi , i 51,2,3 ande i jk is the Levi–Civita
symbol. We also consider special solutions given by

u]1v2v]1u50, w]2u2u]2w50, which implies v]3w2w]3v50. ~5!

Such Poisson structures appear in many examples. We show that this special class of solutions
belongs to the general form~4!. We introduce these special solutions to study the irregular points
of the Poisson structures. All the irregular points of the Poisson structure matrixJ given in the
examples,1 we know so far, come from this special form. Hence they are also irregular points of
the form ~4! we give.

II. THE GENERAL SOLUTION

Assuming thatuÞ0, let r5 v/u andx5 w/u; then Eq.~2! can be written as

]1r2]2x1r]3x2x]3r50. ~6!

This equation can be put in a more suitable form by writing it as

~]12x]3!r2~]22r]3!x50. ~7!

Introducing differential operatorsD1 andD2 defined by

D15]12x]3 , D25]22r]3 , ~8!

one can write Eq.~7! as

D1r2D2x50. ~9!

Lemma 1: Let Eq. (9) be satisfied. Then there are new coordinates x1̄ ,x̄2 ,x̄3 such that

D15] x̄1
and D25] x̄2

. ~10!

Proof: If Eq. ~9! is satisfied, it is easy to show that the operatorsD1 andD2 commute, i.e.,

D1+D22D2+D150.

Hence, by the Frobenius theorem~see Ref. 4, p. 40! there exist coordinatesx̄1 ,x̄2 ,x̄3 such that the
equalities~10! hold. h

The coordinatesx̄1 ,x̄2 ,x̄3 are described by the following lemma.
Lemma 2: Letz be a common invariant function of D1 and D2 , i.e.,

D1z5D2z50, ~11!

then the coordinates x1̄ ,x̄2 ,x̄3 of Lemma 1 are given by

x̄15x1 , x̄25x2 , x̄35z. ~12!

Moreover from (11) we get

x5
]1z

]3z
, r5

]2z

]3z
. ~13!

Theorem 1: All Poisson structures inR3, except at some irregular points, take the form (4),
i.e., Ji j 5m e i jk ]k z. Here m and z are some differentiable functions inR3

Proof: Using ~13!, the entries of matrixJ, in the coordinatesx̄1 ,x̄2 ,x̄3 , can be written as
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u5m]3z,

v5m]2z, ~14!

w5m]1z.

Thus matrixJ has the form~4! (C5z). h

Remark 1:So far we assumed thatuÞ0. If u50 then the Jacobi equation becomes quite
simpler,v]3 w2w]3 v50, which has the simple solutionw5v j(x1 ,x2), wherej is an arbitrary
differentiable ofx1 and x2 . This class is also covered by the general solution~4! by letting C
independent ofx3 .

A well known example of a dynamical system with a Poisson structure of the form~4! is the
Euler equations.

Example 1:Consider the Euler equations~Ref. 4, pp. 397–398!,

ẋ15
I 22I 3

I 2I 3
x2x3 ,

ẋ25
I 32I 1

I 3I 1
x3x1 , ~15!

ẋ35
I 12I 2

I 1I 2
x1x2 ,

where I 1 ,I 2 ,I 3PR are some~nonvanishing! real constants. This system admits a Hamiltonian
representation of the form~4!. The matrixJ can be defined in terms of functionC52 1

2(x1
21x2

2

1x3
2) andm51, so

u52x3 ,

v52x2 , ~16!

w52x1 ,

andH5 x1
2/2I 1 1 x2

2/2I 2 1 x3
2/2I 3 .

Recently, a large set of solutions of the Jacobi equation~3! satisfying~5! was given in Ref. 1.
For all such solutions the Darboux transformation and Casimir functionals were obtained; see Ref.
1.

Definition 1: For every domainVPR3 let Ia(V) be the set of all solutions of (5) defined inV
with u(x), v(x), and w(x) being C1(V).

Following Ref. 1 we have as follows.
Proposition 1: Leth(x1 ,x2 ,x3),c i(xi),f i(xi), i 51,2,3,be arbitrary differentiable functions

defined inV. Then the functions

u~x!5h~x1 ,x2 ,x3!c1~x1!c2~x2!f3~x3!,

v~x!5h~x1 ,x2 ,x3!c1~x1!f2~x2!c3~x3!, ~17!

w~x!5h~x1 ,x2 ,x3!f1~x1!c2~x2!c3~x3!,

define a solution of Eq. (5) belonging toIa(V).
Definition 2: For every domainVPR3, let Ib(V) be the set of all solutions of (5) defined in

V where one of the functions u(x), v(x), and w(x) is zero and the others are not identically zero
in V.
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Following Ref. 1 we have Proposition 2.
Proposition 2: Leth(x1 ,x2 ,x3),j i(xi), i 51,2,3,be arbitrary differentiable functions defined

in V. Then the functions

u~x!50, v~x!5h~x1 ,x2 ,x3!j2~x2!, w~x!5h~x1 ,x2 ,x3!j1~x1! ~18!

define a solution of Eq. (1) belonging toIb(V), u50. Similar solutions can be given in the case
v50 and the case w50.

Remark 2:All of the Poisson structures described in Ref. 1 have the form~4!. For the Poisson
structure J, given by ~17!, assumec1 , c2 , and c3 to be nonvanishing and definem
5h(x1 ,x2 ,x3)c1(x1)c2(x2)c3(x3) and

C5Ex1 f1

c1
dx11Ex2 f2

c2
dx21Ex3 f3

c3
dx3 ;

then J has form~4!. For the Poisson structureJ, given by ~18!, definem5h(x1 ,x2 ,x3) andC
5*x1j1(x1)1*x3j2(x2); thenJ has form~4!.

Let us give two examples of systems that admit a Hamiltonian representation described by the
Proposition 1 and Proposition 2.

Example 2:Consider the Lotka–Voltera system,8,9

ẋ152abcx1x32bcm0x11cx1x21cnx1 ,

ẋ252a2bcx2x32abcm0x21x1x2 , ~19!

ẋ352abcx2x32abcn0x31bx1x3 ,

wherea,b,c,m0 ,n0PR are constants.
The matrixJ is given by

u5cx1x2 ,

v52bcx1x3 , ~20!

w52x2x3 ,

andH5abx11x22ax31n0 ln x22m0 ln x3.
Example 3:Consider the Lorenz system8

ẋ15
1

2
x2 ,

ẋ252x1x3 , ~21!

ẋ35x1x2 .

The matrixJ is given by

u5 1
4 ,

v50, ~22!

w52 1
2 x1 ,
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andH5x2
21x3

2. Many other examples are given in Sec. III.
In the derivation of the general solution, Theorem 1, we assumed that one of the components

of matrix J is different from zero. In addition our derivation is valid only in a neighborhood of a
regular point ofJ ~matrix JÞ0 at this point!. If pPR3 is an irregular point whereu(p)5v(p)
5w(p)50 it is not clear whether our solution is valid in a neighborhood of such a point. Here we
shall show that the Poisson structures given by~4! preserve their form in the neighborhood of the
following irregular points.

Lemma 3: The solution of the equation (1) defined in Proposition 1 and Proposition 2 and
written in the form (4) preserve their form in the neighborhood of the irregular points, lines and
planes inR3 defined below

(a) Irregular points. Let p5(p1 ,p2 ,p3) be such thatf1(p1)5f2(p2)5f3(p3)50 and
c i(pi)Þ0, i 51,2,3; then p is an irregular point where the general form (4) is preserved.

(b) Irregular lines or irregular planes. Let p5(p1 ,p2 ,p3)PR3 be such thath(p1 ,x2 ,x3)50
@h(x1 ,p2 ,x3)50 or h(x1 ,x2 ,p3)50] and c i(pi)Þ0, i 51,2,3; then x15p1 (x25p2 or
x35p3) is an irregular plane, where the general form (4) is preserved. Let x15p1 , x2

5p2 be such thath(p1 ,p2 ,x3)50 @h(p1 ,x2 ,p3)50 or h(x1 ,p2 ,p3)50] and c i(pi)Þ0,
i 51,2,3 then x15p1 , x25p2 (x15p1 ,x35p3 or x25p2 ,x35p3) is an irregular line, where
the general form (4) is preserved.

Proof: The solution given in Proposition 1 and Proposition 2 solves the following equations
~without any division!:

u]1v2v]1u50,

2u]2w1w]2u50, ~23!

v]3w2w]3v50.

The general form~4!, given in Remark 2, is also preserved at such points since we can define
m5h(x1 ,x2 ,x3)c1(x1)c2(x2)c3(x3) and

C5Ex1 f1

c1
dx11Ex2 f2

c2
dx21Ex3 f3

c3
dx3 ,

or if one of the components ofJ is zero, assumeu50, we definem5h(x1 ,x2 ,x3) and C
5*x1j1(x1)1*x3j2(x2). h

Example 4:For the Euler system considered in Example 1 the Poisson structure, given by
~16!, has irregular pointp5(0,0,0). The irregular pointp5(0,0,0) satisfies the conditions of
Lemma 3, the functionsC52 1

2(x1
21x2

21x3
2), m51 in terms of which the Poisson structure is

given, are well defined in a neighborhood ofp5(0,0,0).

III. BI-HAMILTONIAN SYSTEM

In general the Darboux theorem states that~see Ref. 4!, locally, all Poisson structures can be
reduced to the standard one~a Poisson structure with constant entries!. The above theorem,
Theorem 1, resembles the Darboux theorem forN53. All Poisson structures, at least locally, can
be cast into the form~4!. This result is important because the Darboux theorem is not suitable for
obtaining multi-Hamiltonian systems inR3, but we will show that our theorem is effective for this
purpose. Writing the Poisson structure in the form~4! allows us to construct bi-Hamiltonian
representations of a given Hamiltonian system.

Definition 3: Two Hamiltonian matrices J and J˜ are compatible, if the sum J1 J̃ defines also
a Poisson structure.

The compatible Poisson structures can be used to construct bi-Hamiltonian equations.
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Definition 4: A Hamiltonian equation is said to be bi-Hamiltonian if it admits two Hamil-
tonian representations with compatible Poisson structures,

dx

dt
5J¹H5 J̃¹H̃, ~24!

where J and J˜ are compatible.
Lemma 4: Let Poisson structures J and J˜ have the form (4), so Ji j 5me i jk]kC and J̃i j

5m̃e i jk]kC̃. Then J and J˜ are compatible if and only if there exists a differentiable function

F(C,C̃) such that

m̃5m
]C̃F

]CF
, ~25!

provided that]C F[ ]F/]C Þ0 and ]C̃ F[ ]F/]C̃ Þ0.
This suggests that all Poisson structures inR3 have compatible pairs, because the condition

~25! is not so restrictive on the Poisson matricesJ andJ̃. Such compatible Poisson structures can
be used to construct bi-Hamiltonian systems.

Lemma 5: Let J be given by (4) and H(x1 ,x2 ,x3) is any differentiable function; then the
Hamiltonian equation,

dx

dt
5J¹H52m ¹C3¹H, ~26!

is bi-Hamiltonian with the second structure given by J˜ with entries

ũ~x!5m̃ ]3g„C~x1x2x3!,H~x1 ,x2 ,x3!…,

ṽ~x!52m̃ ]2g„C~x1x2x3!,H~x1 ,x2 ,x3!…, ~27!

w̃~x!5m̃ ]1g„C~x1x2x3!,H~x1 ,x2 ,x3!…,

and H̃5h„C(x1x2x3),H(x1 ,x2 ,x3)…, C̃5g„C(x1 ,x2 ,x3),H(x1 ,x2 ,x3)…, m̃5m (]C̃F/]CF).

Provided that there exist differentiable functionsF(C,C̃), h(C,H), and g(C,H) satisfying the
following equation:

]g

]C

]h

]H
2

]g

]H

]h

]C
5

F1~C,g!

F2~C,g!
, ~28!

whereF15]CFu(C,g) , F25]C̃Fu(C,g) .
Proof: By Lemma 4,J and J̃ are compatible and it can be shown by a straightforward

calculation that the equality~being a bi-Hamiltonian system!,

J̃¹H̃5J¹H, ~29!

or

m̃ ¹ C̃Ã¹H̃5m ¹ CÃ¹ H ~30!

is guaranteed by~28!. Hence the system

dx1

dt
5m]3C]2H2]2C]3H,
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dx2

dt
52m]3C]1H1]1C]3H,

dx3

dt
5m]2C]1H2]1C]2H, ~31!

is bi-Hamiltonian. h

Remark 3:The Hamiltonian functionH is a conserved quantity of the system. It is clear from
the expression~31! that the functionC is another conserved quantity of the system. Hence for a
given Hamiltonian system there is a duality betweenH and C. Such a duality arises naturally

because a simple solution of the equation~28! is C̃5H, H̃5C and m̃52m. Thus we have a
hierarchy of Hamiltonians that start with a Casimir of the second structure and terminates with a
Casimir of the first structure. Such systems are equivalent to the quasi-bi-Hamiltonian systems of
lower dimension with nondegenerate Poisson structures~see Ref. 5, pp. 185–220!.

Remark 4:Using Lemma 5 we can construct infinitely many compatible Hamiltonian repre-
sentations by choosing functionsF, g, h satisfying~28!. If we fix functionsF and g, then Eq.
~28! became linear first order partial differential equations forh. For instance, takingg5CH and
m̃52m, which fixesF, we obtainh5 ln H. Thus we a obtain second Hamiltonian representation

with J̃ given byC̃5CH and H̃5 ln H.

IV. EXAMPLES

Let us give examples of Hamiltonian systems. For each Hamiltonian system we give the
HamiltonianH and functionsC andm in terms of which the corresponding Poisson structure may
be written, using~4!. FunctionsH andC are first integrals of the system so one can use them to
reduce the system to a first order ordinary differential equation. We give the reduced equation for
the examples. We also give irregular points for the Poisson structures. For all examples except
Example 7 the form of the Poisson structure~4! is preserved in a neighborhood of irregular points
~function C andm are well defined!. For Example 7 the form of the Poisson structure~4! is not
preserved; the functionC is not defined in a neighborhood of irregular points but the Hamiltonian
function is also not defined at the irregular points. Hence this system does not have a Hamiltonian
formulation in the neighborhood of such points. Examples 6–12 satisfy the special case given in
Proposition 1 and Proposition 2. Please see Ref. 1 for the examples and related references.

Example 6:For the Euler system considered in Example 1 we gave a Poisson structure in
terms of functionsC,m and the Hamiltonian. The reduced equations are

x15S C11
I 1~ I 32I 2!

I 3~ I 22I 1!
x3

2D 1/2

,

x25S C21
I 2~ I 32I 1!

I 3~ I 12I 2!
x3

2D 1/2

, ~32!

ẋ35S C11
I 1~ I 32I 2!

I 3~ I 22I 1!
x3

2D 1/2S C21
I 2~ I 32I 1!

I 3~ I 12I 2!
x3

2D 1/2

.

The Poisson structure is given by~16!. It has an irregular pointp5(0,0,0) ~the origin!.
Example 7:The Lotka–Voltera system considered in Example 2 has the matrixJ given by

C52 ln x12b ln x21c ln x3, m5x1x2x3 and the Hamiltonian H5abx11x22ax31n0 ln x2

2m0 ln x3.
The reduced equations can be obtained using equalities

2 ln x12b ln x21c ln x35C1 ,
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abx11x22ax31n0 ln x22m0 ln x35C2 . ~33!

The Poisson structure is given by~20!. It has irregular lines given byxi50 and xj50, i , j
51,2,3, j Þ i ~coordinate lines!. BothC andH are not defined at these points. So, the system does
not have a Hamiltonian formulation at these points.

Example 8:The Lorentz system considered in Example 3 has the matrixJ given by C
5 1

4(x32x1
2), m51 and the HamiltonianH5x1

21x3
2.

The reduced equations are

x15~C12x3!1/2,

x25~C22x3
2!1/2, ~34!

ẋ35~C12x3!1/2~C22x3
2!1/2.

The Poisson structure is given by~22!. It has no irregular points.
Example 9:Consider Kermac–Mackendric system,8,10

ẋ152rx1x2 ,

ẋ25rx1x22ax2 , ~35!

ẋ35ax2 ,

wherer ,aPR are constants.
The matrix J is given by C5x11x21x3 , m5x1x2 and the Hamiltonian isH5rx3

1a ln x1.
The reduced equations are

x25C11
a

r
ln x12x1 ,

x35C22
a

r
ln x1 , ~36!

ẋ152rx1S C11
a

r
ln x12x1D .

The Poisson structure is given by

u5x1x2 ,

v5x1x2 , ~37!

w5x1x2 .

It has irregular planesx150 andx250 ~coordinate planes!.
Example 10:Consider the May–Leonard system,8

ẋ152x2
2ax3

2a ,

ẋ252x1
2ax3

2a , ~38!

ẋ352x1
2ax2

2a .
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The matrix J is given by C5 @1/(12a)2# (x2
12a2x1

12a), m51 and the Hamiltonian isH
5x1

12a2x3
12a , a,0.

The reduced equations are

x25~C11x1
12a!1/~12a!,

x35~C21x1
12a!1/~12a!, ~39!

ẋ152~C11x1
12a!a/~12a!~C21x1

12a!a/~12a!.

The Poisson structureJ is given by

u50,

v5
x2

2a

a21
, ~40!

w5
x1

2a

a21
.

It has an irregular linex150, x250 ~coordinate line!.
Example 11:Consider the Maxvel–Bloch system,8

ẋ15x2 ,

ẋ25x1x3 , ~41!

ẋ352x1x2 .

The matrixJ is given byC52 (1/2y) (x2
21x3

2), m51 and the Hamiltonian isH5 1
2a(x2

21x3
2)

2 (1/y) (x31x1
2), yÞ0.

The reduced equations are

x15S C11
av
2

C22x3D 1/2

,

x25~C22x3
2!1/2, ~42!

ẋ352S C11
av
2

C22x3D 1/2

~C22x3
2!1/2.

The Poisson structure is given by

u5
21

y
x3 ,

v5
21

y
x2 , ~43!

w50.

It has an irregular linex250, x350 ~coordinate line!.
Example 12:Consider systems that are obtained from the Lorenz system,13
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ẋ5s~x2y!,

ẏ52y1rx2xz, ~44!

ż52bz1xy.

Following Ref. 12, for an appropriate subset of parameters by recalling we have the following.

~i! Lorentz„1… system:

ẋ15sx2e
(s21)t,

ẋ25x1e
(12s)t~r2x3e

22st!, ~45!

ẋ35x1x2e
(s21)t.

The matrixJ is given byC52 (r /4s) x1
2e(12s)t2 1

4x2
2e(s21)t2 1

4x3
2e(123s)t, m51 and the

Hamiltonian isH5x1
222sx3 .

The reduced equations are
x15~C112sx3!

1/2,

x25S C22
r

s
~C112sx3!e2(12s)t2x3

2e2(122s)tD 1/2

, ~46!

ẋ35~C112sx3!
1/2S C22

r

s
~C112sx3!e2(12s)t2x3

2e2(122s)tD 1/2

e(12s)t.

The Poisson structure is given by

u5 1
2 x3e(123s)t,

v5 1
2 x2e(s21)t, ~47!

w52
r

2s
x1e

(12s)t.

It has an irregular pointx150, x250, x350 ~the origin!.
~ii ! Lorentz„3… system:

ẋ15sx2e
(s21)t,

ẋ252x1x3e
2st, ~48!

ẋ35x1x2e
2st.

The matrixJ is given byC52 1
4x1

2e2st1(s/2) x3e(s21)t, m51 and the Hamiltonian is
H5x2

21x3
2.

The reduced equations are

x15~C1e
st12sx3e

(2s21)t!1/2,

x25~C22x3
2!1/2, ~49!

ẋ35~C1e
st12sx3e

(2s21)t!1/2~C22x3
2!1/2e2st.

The Poisson structure is given by
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u5 1
2 se(s21)t,

v50, ~50!

w52 1
2 x1e2st.

It has no irregular points.
~iii ! Lorentz„5… system:

ẋ15x2,

ẋ25rx12x1x3e
2t, ~51!

ẋ35x1x2e
2t.

The matrixJ is given byC5 1
4x1

2e2t2 1
2x3 , m51 and the Hamiltonian isH52rx1

21x2
2

1x3
2.

The reduced equations are

x15~C1et12x3et!1/2,

x25~C21rC1et12rx3et2x3
2!1/2, ~52!

ẋ35~C1et12x3et!1/2~C21rC1et12rx3et2x3
2!1/2e2t.

The Poisson structure is given by

u5 1
2 ,

v50, ~53!

w52 1
2 x1e2t0.

It has no irregular points.

Example 13:Consider systems that are obtained from the Rabinovich system,14

ẋ52n1x1hy1yz,

ẏ5hx2n2y2xz, ~54!

ż52n3z1xy.

Following Ref. 12, for an appropriate subset of parameters by recalling we have the following.

~i! Rabinovich „1… system:
ẋ15hx21x2x3e

22nt,

ẋ25hx12x1x3e
22nt, ~55!

ẋ35x1x2.

The matrixJ is given byC5 1
8x1

22 1
8x2

22 1
4x3

2e22nt, m51 and the Hamiltonian isH5x1
2

1x2
224hx3 .

The reduced equations are

x15~C11x3
2e22nt12hx3!

1/2,

x25~C22x3
2e22nt12hx3!1/2, ~56!

ẋ35~C11x3
2e22nt12hx3!

1/2~C22x3
2e22nt12hx3!1/2.
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The Poisson structure is given by

u5 1
2 x3e22nt,

v5 1
4 x2 , ~57!

w52 1
4 x1.

It has an irregular pointx150, x250, x350 ~the origin!.

~ii ! Rabinovich „2… system:

ẋ15hx21x2x3e
2nt,

ẋ25hx12x1x3e
2nt, ~58!

ẋ35x1x2e
2nt.

The matrixJ is given byC5 1
8x1

2e2nt1 1
8x2

2e2nt2 1
2hx3 , m51 and the Hamiltonian isH

5x1
22x2

222x3
2.

The reduced equations are

x15~C1e
nt1C21x3

212hx3e
nt!1/2,

x25~C1ent2C22x3
212hx3ent!1/2, ~59!

ẋ35~C1e
nt1C21x3

212hx3e
nt!1/2~C1ent2C22x3

212hx3ent!1/2e2nt.

The Poisson structure is given by

u52 1
2 h,

v5 1
4 x2e2nt, ~60!

w5 1
4 x1e

2nt.

It has no irregular points.
~iii ! Rabinovich „3… system:

ẋ15x2x3e
n3t,

ẋ252x1x3e
2n3t, ~61!

ẋ35x1x2e
(n322n)t.

The matrix J is given by C5 1
4x2

2e(n322n)t1 1
4x3

2e2n3t, m51 and the Hamiltonian isH
5x1

21x2
2.

The reduced equations are

x15~C12x2
2!1/2,

x35~C2e2n3t2x3
2e22(n2n3)t!1/2, ~62!

ẋ25~C12x2
2!1/2~C2e2n3t2x3

2e22(n2n3)t!1/2e(n322n)t.

The Poisson structure is given by

u5 1
2 x3e2n3t,

v5 1
2 x2e(n322n)t, ~63!

w50.
It has an irregular linex250, x350 ~coordinate line!.
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~iv! Rabinovich „4… system:
ẋ15hx2e

n1t1x2x3e
n1t,

ẋ25hx1e
2n1t2x1x3e

2n1t, ~64!

ẋ35x1x2e
2n1t.

The matrixJ is given byC52 1
4x1

2e2nt2 1
4x2

2en1t1hx3en1t, m51 and the Hamiltonian is
H5x2

21(h2x3)2.
The reduced equations are

x15~C1e
nt2„C22~h1x3!…e(n11n)t!1/2,

x25„C22~h2x3!2
…

1/2, ~65!

ẋ35~C1e
nt2„C22~h1x3!…e(n11n)t!1/2

„C22~h2x3!2
…

1/2e2n1t.

The Poisson structure is given by

u5hen1t,

v52 1
2 x2en1t, ~66!

w52 1
2 x1e

2nt.

It has no irregular points.
~v! Rabinovich „5… system:

ẋ15hx2e
2n2t1x2x3e

2n2t,

ẋ25hx1e
n2t2x1x3e

n2t, ~67!

ẋ35x1x2e
2n2t.

The matrixJ is given byC5 1
4x1

2en2t1 1
4x2

2e2n2t2hx3en2t, m51 and the Hamiltonian is
H5x1

22(h1x3)2.
The reduced equations are

x15„C11~h1x3!2
…

1/2,

x25~C2en2t2„C11~h2x3!…e2n2t!1/2, ~68!

ẋ35„C11~h1x3!2
…

1/2~C22„C11~h2x3!…e2n2t!1/2e2n2t.

The Poisson structure is given by

u52hen2t,

v5 1
2 x2e2n2t, ~69!

w5 1
2 x1e

n2t.

It has no irregular points.
~vi! Rabinovich „6… system:

ẋ15x2x3e
(n122n3)t,

ẋ252x1x3e
2n1t, ~70!

ẋ35x1x2e
2n1t.

The matrixJ is given byC52 1
4x1

2e2n1t2 1
4x2

2e(n122n2)t, m51 and the Hamiltonian isH
5x2

21x3
2.

The reduced equations are
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x15~C1e
n1t1x2

2e2(n12n2)t!1/2,

x35~C22x2
2!1/2, ~71!

ẋ252~C1e
n1t1x2

2e2(n12n2)t!1/2~C22x2
2!1/2e2n1t.

The Poisson structure is given by
u50,

v52 1
2 x2e(n122n2)t, ~72!

w52 1
2 x1e

2n1t.

It has an irregular linex150, x250 ~coordinate line!.
~vii ! Rabinovich „7… system:

ẋ15x2x3e
2n2t,

ẋ252x1x3e
(n222n3)t, ~73!

ẋ35x1x2e
2n2t.

The matrixJ is given byC5 1
4x1

2e(n222n3)t1 1
4x2

2e2n2t, m51 and the Hamiltonian isH
5x1

22x3
2.

The reduced equations are

x25~C1e
n2t2x1

2e2(n22n3)t!1/2,

x35~C21x1
2!1/2, ~74!

ẋ15~C1e
n2t2x1

2e2(n22n3)t!1/2~C21x1
2!1/2e2n2t.

The Poisson structure is given by
u50,

v5 1
2 x2en2t, ~75!

w5 1
2 x1e

n222n3t.

It has an irregular linex250, x350 ~coordinate line!.
Example 14:Consider systems that are obtained from the RTW system,14

ẋ5gx1dy1z22y2,

ẏ5gy2dx12xy, ~76!

ż522z~x11!,

for an appropriate subset of parameters by recalling. Following Ref 12 we have the fol-
lowing.

~i! RTW „1… system:
ẋ15dx21x3e

22t22x2
2,

ẋ252dx112x1x2, ~77!

ẋ352x1x3,

whered is an arbitrary constant. The matrixJ is given byC5 1
2(x1

22x2
21x3e2t), m51 and

the Hamiltonian isH5x3(2x22d).
The reduced equations are
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x15SC12x3e
2t1SC21dx3

2x3
D2D1/2

,

x25
C21dx3

2x3
,

ẋ352S C12x3e2t1S C21dx3

2x3
D 2D 1/2

x3 . ~78!

The Poisson structure is given by

u5
1

2
e22t,

v5x2, ~79!

w5x1.
It has no irregular points.

~ii ! RTW „2… system:
ẋ15dx21x3e

2t22x2
2e2t,

ẋ252dx112x1x2e
2t, ~80!

ẋ352x1x3e
2t,

where d is an arbitrary constant. The matrixJ is given by C52 (d/2) (x1
21x2

2)
2x3x2e2t, m51 and the Hamiltonian isH5x1

21x2
21x3 .

The reduced equations are

x15SC22x32SC1e
t2

d

2
C21

d

2
x3D2D1/2

,

x25C1et2
d

2
C21

d

2
x3 , ~81!

ẋ35SC22x32SC1e
t2

d

2
C21

d

2
x3D2D1/2

x3e2t.

The Poisson structure is given by
u52x2e2t,

v52dx22x3e2t, ~82!

w52dx1.
It has an irregular pointx150, x250, x350 ~the origin!.

~iii ! RTW „3… system:
ẋ15~x322x2!e

2t,

ẋ252x1x2e
2t, ~83!

ẋ3522x1x3e
2t.

The matrixJ is given byC5(x1
22x2

21x3)e2t, m51 and the Hamiltonian isH5x2x3 .
The reduced equations are

x15SC1e
t2x32

C2
2

x3
2 D1/2

,

x25
C2

x3
, ~84!

ẋ3522SC1e
t2x32

C2
2

x3
2 D1/2

x3e2t.

The Poisson structure is given by

5702 J. Math. Phys., Vol. 44, No. 12, December 2003 Ay, Gürses, and Zheltukhin



u5e2t,

v52x2e2t, ~85!

w52x1e
2t.

It has no irregular points.
~iv! RTW „4… system:

ẋ15x3e
2(g12)t22x2

2egt,

ẋ252x1x2e
gt, ~86!

ẋ3522x1x3e
gt,

whereg is an arbitrary constant. The matrixJ is given byC5(x1
22x2

2)egt1x3e2(g12)t,
m51 and the Hamiltonian isH5x2x3 .

The reduced equations are

x15SC1e
2gt2x3e

22(g11)t1
C2

2

x3
2 D1/2

,

x25
C2

x3
, ~87!

ẋ3522SC1e
2gt2x3e

22(g11)t1
C2

2

x3
2 D1/2

x3egt.

The Poisson structure is given by
u5e2(21g)t,

v52x2e
gt, ~88!

w52x1e
gt.

It has no irregular points.
~v! RTW „5… system:

ẋ15dx21x322x2
2e22t,

ẋ252dx112x1x2e
22t, ~89!

ẋ3522x1x3e
22t,

where d is a nonvanishing constant. The matrixJ is given by C5 (de22t/2) (x1
22x2

2)
1 (d/2) x3 , m51 and the Hamiltonian isH5x1

21x2
21 (2/d) x2x3 .

The reduced equations are

x15SC1e
2t1x2

21e2t
C22C1e

2t22x2
2

d

2
x21e2t D1/2

,

x35
C22C1e2t22x2

2

d

2
x21e2t

, ~90!

ẋ252dSC1e
2t1x2

21e2t
C22C1e

2t22x2
2

d

2
x21e2t D1/2

12S C1e2t1x2
21e2t

C22C1e2t22x2
2

d

2
x21e2t D 1/2

x2e22t.
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The Poisson structure is given by

u5e2(21g)t,

v52x2egt, ~91!

w52x1egt.
It has no irregular points.

TABLE I. Examples of Hamiltonian systems given in the text. In each example we give a HamiltonianH and a Poisson
structureJ @J is given in terms ofm, C by Eq. ~4!#.

Poisson matrix Hamiltonian

System C m

Euler 2
1
2~x1

21x2
21x3

2! 1
x1

2

2I1
1

x2
2

2I2
1

x3
2

2I3

Lotka–Voltera ln
x3

cx2
bc

x1

x1x2x3 a~bx12x3!1x21ln
x2

n

x3
m

Lorenz 1
4~x32x1

2! 1 x2
21x3

2

Kermac–Mackendric x11x21x3 x1x2 a ln x11rx3

May–Leonard
1

~12a!2 ~x2
12a2x1

12a! 1 x1
12a2x3

12a

Maxvel–Bloch 2
1

2y
~x2

21x3
2! 1 1

2a~x2
21x3

2!2
1

y
~x31x1

2!

Lor.~1! 2S r

s
x1

21x2
2D e(s21)t

4
2x3

2
e(123s)t

4
1 x1

222sx3

Lor.~3! 2
1
4x1

2e2st1
s

2
x3e

(s21)t 1 x2
21x3

2

Lor.~5! 1
4x1

2e2t2
1
2x3

1 2rx1
21x2

21x3
2

Rab.~1! 1
8x1

22
1
8x2

22
1
4x3

2e22nt 1 x1
21x2

224hx3

Rab.~2! 1
8x1

2e2nt1
1
8x2

2e2nt2
1
2hx3

1 x1
22x2

222x3
2

Rab.~3! 1
4x2

2e(n322n)t1
1
4x3

2e2n3t 1 x1
21x2

2

Rab.~4! 2
1
4x1

2e2nt2
1
4x2

2en1t1hx3e
n1t 1 x2

21~h2x3!
2

Rab.~5! 1
4x1

2en2t1
1
4x2

2e2n2t2hx3e
n2t 1 x1

22~h1x3!
2

Rab.~6! 2
1
4x1

2e2n1t2
1
4x2

2e(n122n2)t 1 x2
21x3

2

Rab.~7! 1
4x1

2e(n222n3)t1
1
4x2

2e2n2t 1 x1
22x3

2

RTW.~1! 1
2~x1

22x2
21x3e

2t! 1 x3~2x22d!

RTW.~2! 2
d

2
x1

22Sd2x2
21x3x2De2t 1 x1

21x2
21x3

RTW.~3! ~x1
22x2

21x3!e
2t 1 x2x3

RTW.~4! ~x1
22x2

2!egt1x3e
2(g12)t 1 x2x3

RTW.~5!
de22t

2
~x1

22x2
2!1

d

2
x3

1 x1
21x2

21
2

d
x2x3
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V. CONCLUSION

We considered the Jacobi equation for the caseN53. We have found the most general Poisson
structureJ in the neighborhood of regular points. This form is quite suitable for the study of the
multi-Hamiltonian structure of the system. We found all possible compatible Poisson structures
and corresponding bi-Hamiltonian systems. We studied our solution in the neighborhood of the
irregular points of the Poisson structure and showed that it keeps its form. As an application of our
results we gave several examples which were reported earlier8–15 as bi-Hamiltonian systems. In
these examples we give the Casimirs, components of the Poisson matrix, the reduced equations
and irregular points. Among all examples that we observed, only the Lotka–Voltera system has a
special position. Our solution is not valid in the neighborhood of irregular points for this system.
On the other hand the Hamiltonian function is not defined at such points as well. Hence the
Lotka–Voltera equation does not have the Hamiltonian formulation in the neighborhood of such
points.
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