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New heuristic for the dynamic layout problem
E Erel1*, JB Ghosh2 and JT Simon3

1Faculty of Business Administration, Bilkent University, Turkey; 2Marshall School of Business, University of
Southern California, USA; and 3School of Business, State University of New York at Geneseo, USA

The dynamic layout problem addresses the situation where the traffic among the various units within a facility changes
over time. Its objective is to determine a layout for each period in a planning horizon such that the total of the flow and
the relocation costs is minimized. The problem is computationally very hard and has begun to receive attention only
recently. In this paper, we present a new heuristic scheme, based on the idea of viable layouts, which is easy to
operationalize. A limited computational study shows that, depending upon how it is implemented, this scheme can be
reasonably fast and can yield results that are competitive with those from other available solution methods.
Journal of the Operational Research Society (2003) 54, 1275–1282. doi:10.1057/palgrave.jors.2601646
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Introduction

Inter-departmental flows account for a significant amount of

the cost and the complexity of running a manufacturing/

service facility. The basic facility layout problem aims to

address this by recommending locations for the various

departments such that the resulting flow cost and complexity

are minimized. Traditionally, however, this problem has

been treated as static in the sense that the flows have been

assumed to be invariant over time (we thus call it the static

layout problem or the SLP). In today’s volatile markets,

product life cycles are shrinking, inducing rapid changes in

the product mix and volume requirements on a manufactur-

ing facility; volatility and seasonality impose similar changes

on a service facility as well. This, in turn, introduces changes

in the flow pattern, making an optimal layout for one period

less-than-optimal for another. In order to be able to

effectively cope with these changes, one needs to be flexible

and willing to relocate some of the departments in a manner

that is feasible. Unfortunately, relocation is disruptive and

can entail a high cost. The basic dynamic layout problem

(DLP) attempts to redress this situation by prescribing a

layout for each period in a given planning horizon such that

the overall flow and relocation cost is minimized. Variations

of the problem incorporate, among others, budgetary

constraints, nervousness issues arising out of frequent layout

changes and planning over a rolling horizon.

The basic SLP maps naturally to the well-known

quadratic assignment problem (QAP), which is computation-

ally very difficult (NP-hard). It has also received substantial

coverage in the research literature over an extended period of

time.1 Attention to the DLP, in contrast, has come relatively

recently and the literature on it to date remains rather sparse.

Rosenblatt2 has been the first to frame the basic problem

and sketch out a solution scheme based on dynamic

programming. Subsequently, Balakrishnan et al3 have

considered a variation involving budget constraints; they

have turned to network programming for solution. Urban4

has proposed a steepest-descent, pairwise-exchange heuristic

for the basic problem. Lacksonen and Enscore5 have

attempted to solve the DLP by extending the existing

solution procedures for the SLP (that is, in effect, the QAP).

Conway and Venkataramanan6 represent an early effort to

apply a generic heuristic (a genetic algorithm or GA in their

case) to the problem’s resolution. More recently, Balakrish-

nan and Cheng7 through their own GA and Baykasoglu and

Gindy8 through a simulated annealing algorithm (SA) have

kept up the thrust in this direction. Balakrishnan and

Cheng9 provide an excellent review of the past work on the

DLP.

In this paper, we focus on the solution of the basic DLP

along the lines of Rosenblatt2 and Balakrishnan et al.3

Following their approach, we plan to arrive at the optimal

sequence of layouts by implicitly enumerating over a subset

of all possible layouts. Given all possible layouts, the DLP

can be viewed as a shortest path problem (SP) on a multi-

stage, directed, acyclic network with costs on both nodes and

arcs. Each stage corresponds to a time period in the planning

horizon, the nodes at any stage represent all possible layouts

and the arcs between the nodes in two consecutive stages

signify the moves from one layout in one period to possibly

another in the next; the node cost is the flow cost of the

associated layout in the given time period and the arc cost is

the relocation cost between two successive layouts. The

above SP can be solved exactly via dynamic2 or network3

programming. The trouble is that the number of nodes at a
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given stage (equal to the number of all possible layouts) is

exponentially large. For all practical purposes then, one is

forced to work only with a subset of all possible layouts,

which one hopes is manageable in size. The generation of

this subset is clearly crucial to the effective solution of the

DLP. It must not be very big and should be obtainable in a

short time; it should also contain layouts that are likely to be

present in an optimal solution to the DLP. Previous

suggestions include using random layouts or the k best

layouts from each period. We propose a new scheme here in

which we consider viable layouts that are optimal or quasi-

optimal (in terms of the flow cost) with respect to a single

period or multiple periods; the idea is somewhat similar to,

but much broader than, that used by Urban4 in a different

approach.

In what follows, we first define the problem formally. We

then describe the various parts of our solution methodology.

The implementation details and the results of a limited

computational study are reported next; the results validate

that the proposed method can be quite effective for solving

the DLP. Finally, we conclude with a few closing remarks.

Problem definition

Suppose that we have a facility with N locations where N

departments are to be placed, that the planning horizon

consists of T periods, and further that the data related to the

flow and relocation costs are available for each period in this

horizon. Let st be the layout chosen for period t; st can be

visualized as an ordered list of the indexes of the

departments placed in locations 1 through N. Also, let C f

(st) be the flow cost for layout st in period t and C r(st�1,st)
be the relocation cost due to the movement from layout st�1
in period t�1 to layout st in period t. In the basic DLP, our
objective is to find a layout sequence {s1*,y, sT*}, which
will minimize

P
1ptpT C

fðstÞ þ
P

2ptpT C
rðst�1; stÞ

The above formulation is quite general. We narrow it

down a bit for our purposes. First, we assume that any

department fits into any location; this subsumes the case of

equal-sized departments assumed in much of the literature.

Then, letting fklt be the volume of the total flow between

departments k and l in period t, dij be the symmetric distance

between locations i and j and st(i) be the index of the

department in location i in period t, we assume that the flow

cost for layout st during period t is given by CfðstÞ ¼P
1pipN�1

P
iþ 1pjpN fstðiÞstðjÞtdij (taking, without loss of

generality, the cost of unit flow over unit distance to be

unity). Similarly, letting mk be the constant cost of moving

department k to a new location in any period t and dt(i) be
an indicator variable which is equal to 1 if st�1(i)ast(i) and
0 otherwise, we assume that the relocation cost of moving

from layout st�1 in period t�1 to layout st in period t is

given by Crðst�1; stÞ ¼
P

1pipN mstðiÞdtðiÞ. Finally, we

assume that the facility is rectangular and the locations are

delineated by equally spaced rows and columns (that are unit

distance apart), and also that the distances are measured on

the rectilinear scale; thus, if ri and ci are, respectively, the row

and column indexes of location i, the distance between

locations i and j is given by dij¼ |ri�rj|þ |ci�cj|.
We should note at this point that all of the assumptions

stated above are not really necessary for the application of

the proposed solution methodology. We have made them in

order to be consistent with the past work and for the

consequent ease in performing the computational compar-

isons.

Proposed methodology

In line with earlier work,2,3 the proposed scheme includes

two main phases: the first phase where a viable set of layouts

is identified, and the second where we implicitly enumerate

over this set to solve the SP mentioned before. A third

phase, seeking local improvement of the solution obtained in

the second phase, is also included.

Phase 1: selecting the viable layouts

By a viable layout, we mean a layout that is likely to appear

in the optimal solution to the DLP. As such, we consider

layouts that perform the best (in terms of flow cost) with

respect to the flow data from a single period or a

combination of the flow data from two or more successive

periods. In order to obtain these layouts, we first combine

the flow data from the T periods using a weighting scheme

and then solve the SLP (or, synonymously, the QAP) for the

combined data either exactly or approximately to get the k

best layouts. The set of layouts thus obtained is augmented

with layouts that are isomorphic to (that is, layouts that have

the same inter-departmental distances as) the ones in the set

(provided such layouts exist) and the augmented set is

screened for multiple occurrences of the same layout. The set

that we finally get is our viable set, O. This is the set that is
passed on to the second phase for the solution of the

associated SP problem.

There are thus three steps involved in the generation of O:
(1) creating a set of weight vectors; (2) combining the T-

period flow data using the weight vectors and solving the

SLP with the combined data for each weight vector to

obtain the k best solutions; (3) augmenting the layouts just

obtained if possible and screening the resulting set for

multiple occurrences.

First Step: Let W be a positive integer. We create the T-

period weights {w1,y,wT} such that wt, 1ptpT, is 0 or a

positive integer and
P

1ptpT wt¼W. We also ensure that,

for any s, t, u such that 1ps, t, upT and sotou, wtXwu if
ws4wt, and symmetrically, wspwt if wtowu. The rationale is
that for sot, if the weight assigned to t is less than that

assigned to s, then the periods beyond t should have even
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lesser weight. This is essentially an exercise in partitioning

the integer W into T parts such that the parts (weights) are

non-increasing on both directions from the period(s) with

the maximum weight in the T periods. For example, let

W¼ 5 and T¼ 5; in this case, any one of {5, 0, 0, 0, 0}, {0, 1,

3, 1, 0} and {0, 0, 0, 1, 4} will be considered a legitimate

weight vector while {0, 2, 1, 2, 0} will not. LetY be the set of

the weight vectors. The size of Y dictates the number of

SLPs to solve in the next step. Thus, while it should be

sufficiently large, it should not be too large. The size of Y is

equal to the number of acceptable partitions of W into T

parts. This number grows exponentially as a function of W

and T. Thus, W along with T determines the size of Y. In
practice, T is likely to be quite small (viz, p10). We

recommend usingW¼ aT, where a is a parameter under user
control and suitably small. We have found using aA{0.5, 1,
2} sufficient for our purposes.

Second Step: OnceY is determined, for each weight vector

{w1,y,wT} in Y, we create an instance of the SLP with

fkl¼
P
lptpT wt fklt for all k, l such that 1pkpN�1,

kþ 1plpN. Any instance can be solved using a variety of

QAP solvers such as the branch and bound algorithm of

Burkard and Derigs,10 the GRASP of Resende et al11 and

the GA of Ahuja et al12 (the first is an exact algorithm

whereas the latter two are approximate ones). The idea is to

obtain the k best solutions in each case. There are a number

of parameters under user control. First, one has to decide

whether to solve a QAP exactly or approximately. The

choice is rather limited here; exact solutions become

prohibitively expensive (time-wise) for N415. Secondly,

the task of deriving the k best solutions exactly is even more

onerous. The approximate algorithms are practical in terms

of computational times; the two that we have cited are also

of proven quality and can provide the k best solutions

without any additional effort. The second parameter has to

do with whether to use a single solution or the k best

solutions. While more solutions provide diversity, they also

increase the size of the set O used in the second phase. The

third and final parameter deals with the intensity with which

to search for an optimal solution to a QAP. If time is a

concern, the number of node evaluations in the branch and

bound algorithm or the number of iterations in the GRASP

or the GA can be limited. After we have solved the SLP for

each weight vector in Y according to whatever parameters

we have chosen for solving it, we get a set F of layouts. Note

that a given layout may occur more than once in F.
Third Step: A rectangular layout with a row–column

configuration has associated with it three other layouts that

are images of the original layout or of each other. In that

sense, they are isomorphic (they have identical interdepart-

mental distances and thus identical flow costs in every time

period). Let {1, 2, 3|4, 5, 6} be a 2� 3 layout with the vertical

bar separating the rows. {3, 2, 1|6, 5, 4}, {4, 5, 6|1, 2, 3} and

{6, 5, 4|3, 2, 1} are its isomorphic layouts. For each layout in

F, we add the three layouts that are isomorphic to it. We then

screen the expanded set for multiple occurrences, retaining

only one occurrence. This yields our viable set of layouts, O.

Phase 2: solving the SP over O

Given O, the DLP can be cast as an SP on a network (as

described before). The SP can be solved either via dynamic2

or network3 programming. This is something that a user has

to decide. We have, however, chosen to use a dynamic

programming formulation (DP) which relates directly to the

network representation.

Let t, 1ptpT, represent a stage, the layout st in O
represent a state at stage t, and gt(st) be the minimum

cumulative cost (flow and relocation combined) up to stage t

if st is the layout of choice at that stage. The DP recursions

are as follows:

For t¼ 1:

g1ðs1Þ ¼ Cfðs1Þ for all s1 2 O:

For t¼ 2,y,T:

gtðstÞ ¼ CfðstÞ þ min
st�12O

fgt�1ðst�1Þ þ Crðst�1; stÞg

for all st 2 O:

The optimal value of the total cost can be found from

minsT2O fgT ðsT Þg and the optimal layout sequence can be

constructed through backtracking. The complexity of DP is

O(T|O|2).

Phase 3: improving upon the DP solutions

Having solved the DP, we can resort to the third phase by

picking the k best solutions from Phase 2 and further

subjecting each of these solutions to a local improvement

procedure. This procedure can be run until a local minimum

is reached or a fixed number of iterations has been made.

One can conveniently use the same neighbourhood structure

as that used by Baykasoglu and Gindy8 for their SA, where a

neighbour is obtained by interchanging the locations of two

departments within the layout for a given time period.

We have chosen to pursue a simple neighbourhood search

scheme. At any iteration, a time period is selected at random,

as are two locations. The departments belonging to these

locations in the incumbent solution are interchanged to

obtain the neighbouring solution. If the neighbouring

solution has a total cost lower than the incumbent, it

replaces the incumbent. Regardless of what happens, a new

iteration is started at this point. We determine the maximum

number of iterations as a multiple of the neighbourhood size,

which is given by 1/2 
T 
N 
 (N�1). We have found using a

small multiple (specifically 10) to be sufficient.

One last thing to remember is that the DLP is a planning

problem and thus that the solution time should not be a

E Erel et al—Dynamic layout problem 1277



major concern in a practice. This makes it possible for a user

to experiment with the various parameters until a combina-

tion is found that is acceptable in terms of both solution

quality and time. The computational study that we report

next intends to provide the user some insights that may be

useful in carrying out the above task.

Computational study

To test the efficacy of our approach by itself and in

comparison to others, we have adopted the test problems

furnished by Balakrishnan and Cheng7 (who have also

provided the generation details) and used subsequently by

Baykasoglu and Gindy.8 This set consists of six combina-

tions of N and T (N¼ 6, 15, 30 and T¼ 5, 10); each

combination has eight problem instances, leading to 48

instances in all. For N¼ 6 a 2� 3 layout, for N¼ 15 a 3� 5

layout and for N¼ 30 a 5� 6 layout are assumed.

A few words on the implementation of the proposed

solution scheme are now in order. In Phase 1, we have used

two values of W, W¼ 5 and 10, for the generation of the

weight vectors. To keep the experiment manageable, we have

settled for the single (k¼ 1) best solution to the SLP

corresponding to a given weight vector (instead of various

possible k41 best solutions). We have also exercised the

option to invoke or not invoke the improvement phase. For

N¼ 6, we have used the Burkard–Derigs10 branch and

bound algorithm (the FORTRAN code for which is

available in the public domain) to solve the SLP; the

algorithm has been run to optimality. Depending upon the

value of W and whether or not we have invoked the

improvement phase, we thus have four implementations

here: DP_5, DP_5I, DP_10 and DP_10I. For N¼ 15 and 30,

we have similarly used the Resende–Pardalos–Li11 GRASP

(the FORTRAN code for which is also available in the

public domain); the algorithm has been run for 10 iterations

(short mode/S) and 100 iterations (long mode/L). Depending

upon the value ofW, the number of GRASP iterations used

and whether or not the improvement phase is invoked, we

now have eight implementations: DP_5S, DP_5SI, DP_5L,

DP_5LI, DP_10S, DP_10SI, DP_10L and DP_10LI. As

noted before, we use the DP in Phase 2.

For performance evaluation purposes, note that the

optimal solution values are available for all of the 16

N¼ 6 instances and thus that absolute performance of an

implementation can be measured. However, this is not true

for the 32 N¼ 15 and 30 instances; one has to rely here on

relative performance only. Fortunately, direct comparisons

are possible with the Conway–Venkataramanan6 GA

(GA_CV), the Balakrishnan–Cheng7 GA (GA_BC) and the

Baykasoglu–Gindy8 SA; these also represent the most recent

computational work on the DLP.

As for the two GAs, neither the run time information nor

the code has been available to us. At any rate, based on our

own experimentation and those of others,7,8 it appears that

the GAs are generally not competitive. The SA due to

Baykasoglu and Gindy8 (SA_BG) on the other hand,

appears to be quite competitive (for the larger problem

instances in particular) and the FORTRAN code has been

readily available to us (as part of the Baykasoglu–Gindy

paper). However, in an independent experimentation, we

have not been able to replicate the reported performance of

SA_BG for the larger half of the problem set (N¼ 15/T¼ 10

and N¼ 30).

Baykasoglu and Gindy8 have set the parameters of

SA_BG as follows: The initial temperature is determined as

Tin¼ (fmin�fmax)/ln Pc, where fmin and fmax are, respectively,
the lower and higher bounds on the total cost for a given

DLP instance (estimated from trial runs), and Pc is the

acceptance probability at the beginning of SA. Pc is set to

0.95. The length of a temperature regime LMC is set equal to

N 
T. The rate of cooling is set to a ¼ ½lnPc= lnPf �1=ðelmax�1Þ,
where elmax is the maximum number of iterations and Pf is

the final acceptance probability. Pf is set to 1� 10�15. The

final temperature can be calculated as Tf ¼ Tinaelmax . Tf can
also be determined as Tf¼ (fmin–fmax)/ln Pf ; if these two Tf
values are not close to each other, then elmax is reselected and

and a is recomputed until they are so.

We have chosen to run SA on our own. After considering

several parameter selection alternatives along the lines of

Baykasoglu and Gindy,8 we have settled for two implemen-

tations. In SA_EG1, we use a fixed parameter set: initial

temperature Tin¼ 5000, rate of cooling a¼ 0.998, and

maximum number of iterations elmax¼ 5000 (all other

parameters are set as in Baykasoglu–Gindy8). In SA_EG2,

Tin and elmax are obtained as in Baykasoglu–Gindy8 (with

a¼ 0.998 and final temperature Tf¼ 1). In both implementa-

tions, five replications are made and the best solutions are

noted.

We have coded all algorithms in FORTRAN. All runs

have been made on an Ultra Enterprise server operating

under Solaris 7 at 250MHz. Both solution times and values

have been recorded. The summary appears in Tables 1–3.

Table 1 shows the results for N¼ 6 (T¼ 5, 10). In each

instance, the optimal solution value as well as the solution

values from DP_10, DP_10I, DP_5, DP_5I, GA_CV,

GA_BC, SA_BG, SA_EG1 and SA_EG2 are given (in bold

face whenever optimal). The mean CPU times are also noted

for each block of eight instances with the same T. (Note that

the CPU times are not available for GA_CV and GA_BC

and that the CPU times for SA_BG come from a different

platform.) For T¼ 5, SA_EG2 is clearly the best in terms of

solution quality, finding the optimal solutions in all eight

cases. For T¼ 10, DP_10 and DP_10I are the best, finding

the optimal solutions in six out of eight cases. The DP

algorithms are more than an order of magnitude faster in

terms of solution time. The difference between the DP

solutions themselves is, on an average, less than 0.015% of

the optimal. The average gap for DP_10 and DP_10I is
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0.016% of the optimal, which is the overall best. The

improvement phase for the DP implementations has not

done anything for T¼ 10; for T¼ 5, the average improve-

ment has been 0.039%. For N¼ 6, among the DP

implementations, DP_10I is the algorithm of our choice.

Table 2 is structured similar to Table 1 and shows the

results for N¼ 15 (T¼ 5, 10). We now have DP_10L,

DP_10LI, DP_5L, DP_5LI, DP_10S, DP_10SI, DP_5S and

DP_5SI for the DP-based methods. No provably optimal

solution being available, we use in each instance the best

heuristic solution as our point of reference. GA_CV and

GA_BC are clearly out of the reckoning, with the better of

the two having gaps from 4.857 to 10.168% of the best

solution. For T¼ 5, SA_EG1 is the clear winner, finding the

best solution in all eight cases. DP_10SI is the best DP

implementation, with an average CPU time an order of

magnitude faster than the SA algorithms and an average gap

of 1.102% of the best. For T¼ 10, the results reported in

Baykasoglu and Gindy8 for SA_BG are the best for all eight

cases. DP_10SI is once again is the DP implementation of

choice (based on solution quality and time); its average CPU

time is approximately 5 times faster than that of SA_BG and

its average gap is 3.034% of the best. Overall, the average

difference between the various DP solutions is less than

0.644% of the best. On an average, the improvement phase

reduces the DP solution values by a percentage in the range

from 0.094 to 0.301.

Table 3 records the results for N¼ 30 (T¼ 5, 10). The

SA_BG results are the best for both T¼ 5 (finding the best

solution in five out of eight cases) and T¼ 10 (finding the

best solution in seven out of eight cases). As before,

DP_10SI is the DP implementation of our choice (based

on solution quality and time). For T¼ 5 and 10, its average

gap from the best are 1.229 and 2.810%, respectively; the

average CPU time is more than an order of magnitude faster

than that of SA_BG for T¼ 5 and 2.75 times for T¼ 10.

Now, the average difference between the various DP

solutions is less than 0.571% of the best. The improvement

phase reduces the DP solution values by an average

percentage in the range from 0.154 to 0.293.

In sum, our DP implementations have proved to be

competitive. It appears that using a long GRASP run (100

iterations) does not provide a remarkable advantage over

using a short one (10 iterations). The choice ofW, however,

seems to make a more significant difference (W¼ 10 being

preferred over W¼ 5). The improvement phase appears to

be of limited value. Considering solution quality and time,

DP_10I and DP_10SI are the DP implementations of our

choice for the test bed. However, if time is of concern, one

may settle for DP_5SI. On an average, for N¼ 15 and 30, it

produces solutions within 1.378–3.350% of the best solu-

tions and is 12.18–54.84 times faster than SA_BG.

Conclusion

In this paper, we have revisited the basic form of the DLP

and proposed a new solution scheme based on an extension

of the early approaches to solving the problem. The

proposed scheme is reasonably flexible in that the user can

manipulate certain parameters to obtain a desirable balance

between solution speed and accuracy. (The exercise of

selecting the parameters is quite simple.) Computational

results show that this scheme is competitive with the other

available solution methods.

Table 1 Results for N¼ 6

DP solutions GA solutions SA solutions

T Instance Optimal solution DP_10 DP_10I DP_5 DP_5I GA_CV GA_BC SA_BG SA_EG_1 SA_EG_2

5 1 106 419 106 419 106419 106 419 106 419 108 976 106419 107 249 106 419 106419

2 104 834 104 834 104834 104 834 104 834 105 170 104834 105 170 104 834 104834

3 104 320 104 320 104320 104 320 104 320 104 520 104320 104 800 104 520 104320
4 106 399 106 509 106509 106 885 106 515 106 719 106515 106 515 106 399 106399

5 105 628 105 628 105628 105 737 105 737 105 628 105628 106 282 105 737 105628

6 103 985 103 985 103985 104 053 104 053 105 606 104053 103 985 103 985 103985

7 106 439 106 447 106447 106 447 106 447 106 439 106978 106 447 106 439 106439
8 103 771 103 771 103771 104 185 104 185 104 485 103771 103 771 103 771 103771

Mean CPU seconds o1 o1 o1 o1 NA NA 40 55 52

10 1 214 313 214 313 214313 214 313 214 313 218 407 214397 215 200 214 313 214313

2 212 134 212 134 212134 212 138 212 138 215 623 212138 214 713 212 134 213015
3 207 987 207 987 207987 208 246 208 060 211 028 208453 208 351 207 987 208351
4 212 530 212 741 212741 213 117 212 747 217 493 212953 213 331 212 747 212747
5 210 906 211 022 211022 211 022 211 022 215 363 211575 213 812 211 076 211072
6 209 932 209 932 209932 210 000 210 000 215 564 210801 211 213 210 000 209932

7 214 252 214 252 214252 214 252 214 252 220 529 215685 215 630 214 823 214438
8 212 588 212 588 212588 213 002 213 002 216 291 214657 214 513 212 588 212588

Mean CPU seconds o1 o1 o1 o1 NA NA 152 215 206
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Table 2 Results for N¼ 15

DP solutions GA solutions SA solutions

T Instance Best solution DP_10L DP_10LI DP_5L DP_5LI DP_10S DP_10SI DP_5S DP_5SI GA_CV GA_BC SA_BG SA_EG_1 SA_EG_2

5 1 481 378 484 054 483 568 484 972 482 123 484 369 483 708 484 369 483 708 504 759 511 854 484 695 481 378 481 792
2 478 816 489 322 489 322 491 102 488 840 487 274 485 702 489 819 488 382 514 718 507 694 486 141 478 816 488 592
3 487 886 491 310 491 310 493 632 493 632 491 790 491 790 493 224 492 597 516 063 518 461 496 617 487 886 492 536
4 481 628 487 884 487 275 489 929 489 480 487 956 486 851 489 698 489 698 508 532 514 242 490 869 481 628 485 862
5 484 177 491 617 491 346 494 040 494 040 491 178 491 178 493 097 491 738 515 599 512 834 491 501 484 177 489 946
6 482 321 490 205 489 847 490 782 490 782 490 305 489 947 492 275 492 202 509 384 513 763 491 098 482 321 488 452
7 485 384 490 544 490 051 491 984 490 251 490 161 489 583 492 430 489 155 512 508 512 722 491 350 485 384 487 576
8 489 072 494 994 493 577 496 841 496 672 494 954 494 534 496 990 496 473 514 839 521 116 496 465 489 072 493 030

Mean CPU seconds 111 119 20 28 14 22 2 10 NA NA 273 1635 946

10 1 950 910 986 811 984 344 991 093 988 322 986 592 983 070 995 319 991 801 105 5536 104 7596 950 910 982 298 984 013
2 947 673 985 154 984 779 987 453 985 147 984 601 983 826 988 396 985 360 106 1940 103 7580 947 673 973 179 983 550
3 968 027 989 081 988 635 993 799 993 318 990 218 990 153 992 824 990 794 107 3603 105 6185 968 027 985 364 988 465
4 950 701 979 139 976 456 983 208 982 632 978 726 977 548 982 270 982 112 106 0034 102 6789 950 701 974 994 980 045
5 948 470 986 029 983 846 989 680 985 966 984 975 983 053 987 963 982 893 106 4692 103 3591 948 470 975 498 982 191
6 948 630 976 917 974 436 979 297 978 683 976 610 975 290 981 406 979 731 106 6370 102 8606 948 630 968 323 973 199
7 965 844 985 535 982 790 992 897 989 272 987 019 986 325 992 807 988 870 106 6617 104 3823 965 844 977 410 985 270
8 956 170 990 844 990 372 992 962 988 959 990 247 988 584 993 902 990 376 106 8216 104 8853 956 170 985 041 989 520

Mean CPU seconds 712 724 55 67 206 218 7 19 NA NA 1042 6470 3867
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Table 3 Results for N¼ 30

DP solutions GA solutions SA solutions

T Instance Best solution DP_10L DP_10LI DP_5L DP_5LI DP_10S DP_10SI DP_5S DP_5SI GA_CV GA_BC SA_BG SA_EG_1 SA_EG_2

5 1 562 405 581 805 579 741 583 082 581 942 581 805 579 741 582 858 581 369 632 737 611 794 562 405 583 081 583 227
2 569 251 574 657 570 915 576 592 571 563 575 004 570 906 576 106 572 511 647 585 611 873 569 251 573 965 574 116
3 564 464 581 030 581 030 581 691 580 549 581 170 577 402 581 262 580 186 642 295 611 664 564 464 580 102 577 787
4 552 684 571 730 569 874 575 024 574 070 571 749 569 596 574 110 573 001 634 626 611 766 552 684 572 139 573 446
5 559 596 561 079 561 079 561 424 561 424 561 078 561 078 562 857 562 857 639 693 604 564 559 596 563 503 565 735
6 567 154 567 202 567 154 570 435 570 435 568 554 568 554 570 356 570 356 637 620 606 010 592 515 574 805 570 905
7 568 196 572 262 568 196 573 878 571 254 572 706 571 580 572 797 569 145 640 482 607 134 582 409 573 361 571 499
8 575 273 575 445 575 445 576 091 576 091 575 273 575 273 576 149 576 149 635 776 620 183 578 549 581 614 581 966

Mean CPU seconds 1324 1499 222 397 131 306 23 182 NA NA 3258 21710 10691

10 1 1 122 154 1 174 773 1 171 853 1 180 120 1 171 413 1 172 434 1 171 178 1 181 743 1 180 087 1 362 513 1 228 411 1 122 154 1 175 756 1 174 815
2 1 120 182 1 175 323 1 169 138 1 179 022 1 174 421 1 175 551 1 170 747 1 177 212 1 170 810 1 379 640 1 231 978 1 120 182 1 173 015 1 177 743
3 1 125 346 1 174 023 1 174 023 1 175 920 1 170 019 1 175 240 1 165 525 1 176 997 1 173 529 1 365 024 1 231 829 1 125 346 1 166 295 1 171 932
4 1 120 217 1 155 879 1 152 684 1 157 918 1 156 016 1 155 998 1 153 981 1 158 507 1 156 517 1 367 130 1 227 413 1 120 217 1 154 196 1 154 945
5 1 128 136 1 128 136 1 128 136 1 131 518 1 131 518 1 129 143 1 128 784 1 132 926 1 132 926 1 356 860 1 215 256 1 158 323 1 141 738 1 140 116
6 1 111 344 1 144 030 1 143 824 1 147 517 1 147 517 1 144 539 1 144 092 1 149 893 1 149 893 1 372 513 1 221 356 1 111 344 1 158 322 1 158 227
7 1 128 744 1 143 814 1 142 494 1 147 016 1 145 934 1 143 788 1 143 183 1 147 041 1 146 987 1 382 799 1 212 273 1 128 744 1 157 505 1 163 761
8 1 136 157 1 168 142 1 167 900 1 170 929 1 170 929 1 167 163 1 167 163 1 171 658 1 171 428 1 383 610 1 245 423 1 136 157 1 179 888 1 177 565

Mean CPU seconds 7008 7358 595 945 1477 1827 63 413 NA NA 5031 87200 46152
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Finally, we note that it is possible to apply the solution

framework to other variations of the DLP. Budget con-

straints on single-period relocation costs can be considered

simply by prohibiting certain state transitions in the DP. A

budget constraint on the overall relocation cost can also be

accommodated by augmenting the state description with the

accumulated relocation cost; an alternative will be to solve the

second phase problem by network programming.3 Certain

nervousness issues such as the unwillingness to have frequent

layout changes (for example, moving to a new layout before

the current one has been in place for at least two periods) can

similarly be handled by augmenting the state description in

the DP. Planning over a rolling horizon calls for augmenting

the state-space possibly with additional layouts (called for by

the new flow data) and adding an extra stage to the DP.
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Addendum
After this paper had been accepted, we learned that the computational
results reported by Baykasoglu and Gindy in their paper (Baykasoglu
A and Gindy NNZ (2001). A simulated annealing algorithm for
dynamic layout problem8) were in error. The correct result given in an
Erratum (Baykasoglu A and Gindy NNZ (2004) Erratum to A
simulated annealing algorithm for dynamic layout problem. Comp
Opns Res 31: 313–315) show that the algorithms proposed by us in this
paper vastly out perform the simulated annealing algorithm of
Baykasoglu and Gindy.
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