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Abstract. The recent developments in computer and communication
technologies gave rise to Personal Communication Systems. Due to the
nature of the PCS, the bandwidth allocation problem arises, which is
based on the notion of bandwidth-on-demand. We deal with the prob-
lem of how to predict the position of a mobile client. We propose a new
algorithm, called DCP, to discover user mobility patterns from collec-
tions of recorded mobile trajectories and use them for the prediction of
movements and dynamic allocation of resources. The performance of the
proposed algorithm is examined against two baseline algorithms. The
simulation results illustrate that the proposed algorithm achieves recall
that is comparable to that of the baseline algorithms and substantial
improvement in precision. This improvement guarantees very good pre-
dictions for resource allocation with the advantage of very low resource
consumption.

1 Introduction

The recent developments in computer and communication technologies gave rise
to Personal Communication Systems (PCS), which ensure ubiquitous availabil-
ity of services. Unlike ordinary static networks (e.g., public telephone network),
PCS allows the dynamic relocation of mobile terminals. This network mobility
gives rise to some new and important problems. Among them are the location
management and the bandwidth allocation problems. Location management con-
sists of two issues, namely the location and paging procedures. The former allows
the system to keep the user’s location knowledge (exact or approximate) in or-
der to be able to locate him. The paging procedure consists of sending paging
messages in all the locations (cells) where the mobile client could be located.
The bandwidth allocation issues arise due to the nature of the PCS, which is
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M.R. Berthold et al. (Eds.): IDA 2003, LNCS 2810, pp. 319–329, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



320 D. Katsaros et al.

based on the notion of bandwidth-on-demand, that is, allocate network resources
only after there exists a request for them.

The issue of location management has mainly focused on the procedure of
database updating and relatively little (e.g., [6,7,1]) has been done in the area of
location prediction. Location prediction is a dynamic strategy in which the PCS
tries to proactively estimate the position of the mobile client. Location predic-
tion could provide substantial aid in the decision of resource allocation in cells.
Instead of blindly allocating excessive resources in the cell-neighborhood of a mo-
bile terminal, we could selectively allocate resources to the most “probable-to-
move” cells. Thus, we could cut down the resource wastage without introducing
an increase in the call drop ratio.

Related work. Location prediction is addressed in the following works: [6,7,
5,11,1,4,13]. Nevertheless, they exhibit one or some of the following shortcom-
ings: a) They assume the existence of user movement patterns (by only applying
pattern matching techniques), without providing a method to discover them in
the first place [7]. b) They rely on knowledge of the probability distribution of
the mobile’s velocity and/or direction of movement [5,1], which assumes the exis-
tence of a sophisticated and costly equipment, e.g., GPS. c) They are susceptible
in small deviations in client trajectories, which cause significant degradation in
prediction accuracy because they do not distinguish between regular and ran-
dom movements of a mobile [6]. d) They do not exploit the valuable historical
information that in any case is gathered (logged) from the PCS and regards
the daily movements of clients from cell to cell (intercell movements), spanning
large time intervals. Finally, the works described in [4,13,2] address different
problems and their proposed solutions are not applicable in our problem. The
work in [4,2] deal with cache relocation and data relocation, respectively, and
the work in [13] aims at designing a better paging area for each mobile client
for each time region and thus, the focus of the work is the estimation of the
time-varying location probability. The only relevant work to ours is that in [11],
which proposes recording the “cell-to-cell” transition probabilities in order to
make predictive resource reservation. The deficiencies of this method are shown
by the experimental results of our work.

In this work, we deal with the problem of location prediction for efficient
resource allocation. Our contributions are:

– We identify the importance of exploiting historical movement data in the
context of predictive resource allocation.

– We develop a new clustering algorithm for discovering regularities in move-
ments of mobile clients to address the large volumes of historical data.

– The design of the proposed algorithm considers the important factor of ran-
domness in the mobile trajectories, which can result in noise within trajec-
tories themselves or to outliers (trajectories that do not follow any regulari-
ties). This is addressed by the used distance measure and by the method of
representing the clusters.

– The performance of the proposed algorithm is examined against two baseline
algorithms, based on simulation. The first of them (EXH) allocates resources
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to every neighboring cell and the second one (TM) performs allocation based
on cell-to-cell transition probabilities. The simulation results illustrate that
the proposed algorithm achieves recall that is comparable to that of the
baseline algorithms and substantial improvement in precision (40% over EXH
and 25% over TM). This improvement guarantees very good predictions for
resource allocation with the advantage of very low resource consumption.

The rest of this article is organized as follows: Section 2 describes the network
model assumed in the present study. In Section 3 we give the problem and present
its solution in Section 4. Finally, in Section 5 we present the experimental results
and in Section 6 we conclude this paper.

2 Preliminaries

In the present work, we consider a wireless PCS (see Figure 1) with architecture
similar to those used in EIA/TIA IS-41 and GSM standards [9]. The PCS serves
a geographical area, called the coverage area, where mobile users or terminals
(MU) or (MT) can move. The coverage area served by the PCS is partitioned
into a number of non-overlapping regions, called cells. At the heart of the PCS
lies a fixed backbone (wireline) network. A number of fixed hosts are connected
to this network. Each cell is served by one base station (BS), which is connected
to the fixed network and it is equipped with wireless transmission and receiving
capability.
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Fig. 1. A typical architecture for a PCS.

Following the settings in [13,4] where each mobile client can report its tra-
jectories to the fixed network, we collect for each user trajectories of the form
T = 〈(id1, t1), . . . , (idk, tk)〉. The idi represents the ID of the cell that the client
entered at time ti (1 ≤ i ≤ k). The characteristic of this sequence is that for
every i (1 ≤ i ≤ k − 1) the idi and idi+1 correspond to neighboring cells. Fol-
lowing related work on session formation, each such trajectory T is divided into
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subsequences based on a threshold for the difference ti+1 − ti (i.e., when a client
stays in a cell for a sufficiently long time).

The procedure of trajectory recording ends up with a host of the fixed net-
work collecting (logging) the movements T of individual mobile clients within
the coverage area. Let these trajectories be called User Actual Paths (UAP).
UAPs are an invaluable source of information, because the “movement of people
consists of random movement and regular movement and the majority of mobile
users has some regular daily (hourly, weekly, . . .) movement patterns and follow
these patterns more or less every day” [7]. In this work, we focus on discov-
ering patterns from multiple users, because it better fits the needs of resource
allocation problem.

3 Problem Formulation

Let D be a collection of logged user actual paths (UAPs), each one of the form
U = 〈c1, . . . , cn〉, where ci is the ID of the i-th cell in the two dimensional
grid of the coverage area U . The discovery of patterns in clients’ movement
can be attained by organizing the logged UAPs according to their in-between
similarity. The similarity considers the network topology [7]. Such a procedure
identifies groups of similar UAPs. These groups represent a kind of aggregation
of large numbers of UAPs into a set of much less patterns, which correspond to
the expected regularities which will be called user mobility patterns (UMPs).

Having a set of discovered UMPs, let a client that up to the current time point
has visited cells described in UAP C = 〈c1, . . . , ct〉. According to the similarity
of UAP C with the discovered UMPs, the movement of the client can correspond
to one (or possibly more) discovered regularity. Based on this correspondence,
the mobile system can predict the forthcoming movements of the client.

In summary, what is required first is a scheme for the organization of similar
UAPs into UMPs. Due to the large sizes of logged UAP collections and the
possibility of the existence of noise and outliers, the paradigm of data mining
will be followed for this purpose. Second, based on the discovery scheme, we need
a method for the dynamic prediction of forthcoming clients’ movements and the
allocation of resources.

4 Dynamic Clustering-Based Prediction of Mobile-Client
Movements

Let A = 〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉 be two cell sequences. To measure
their similarity we are based on the well known metric of edit distance. However,
to reflect the geometry of the cell grid, we use weighted edit distance measures [7],
considering that it suffices to limit the effect of temporal deviation from a specific
cell only within the cells around it. We extend [7] so that, for a cell c, we examine
all the cells with a city-block distance from c, denoted as CB1, less than or equal
1 Given a cell c1 with coordinates (x1, y1) and c2 with (x2, y2), CB(c1, c2) = max{|x1−

x2|, |y1 − y2|}.
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to td. Henceforth, for two UAPs A and B, the weighted edit distance is denoted
as de(A, B). The selection of td is value is discussed in Section 5.

The UAPs and the aforementioned weighted edit distance form a metric space
which, however, may not be Euclidean. Although several clustering algorithms
have been proposed for Euclidean spaces (e.g., [3] and the references therein),
we have to focus on algorithms that can be used for general metric spaces.
Hierarchical agglomerative algorithms belong to the latter category, because they
are not based on coordinates of an Euclidean space. Plain hierarchical clustering
uses one medoid object for each cluster. Other approaches extended this case
and represent a cluster with more objects, e.g., [8] which represents clusters by
a subset of distant objects within them (this approach was also adopted in [3,
10]).

For a cluster c, let c.rep denote the set of representative UAPs. Given two
clusters c and c′, their distance d(c, c′) is defined as

d(c, c′) = min
∀u∈c.rep,v∈c′.rep

{de(u, v)}

A general scheme of hierarchical algorithm to cluster UAPs is given Figure 2.
For an efficient implementation of HierCluster, we use a heap to maintain the
distances between the clusters. Following the approach of [3,10], we sample the
initial collection of UAPs, to be able to efficiently process, with the clustering
algorithm, the selected sample of UAPs in main memory. The merging of rep-
resentative points can be done in several ways. Based on [3], when merging two
clusters c and c′ into a new cluster n, we initially set n.rep = c.rep ∪ c′.rep.
If |n|.rep ≥ r, then the subset of the r most distant members of n.rep can be
found.2 The aforementioned approach is denoted as FU (selects the Farthest
UAPs). Although FU captures the shape of a cluster, it may be sensitive to
outliers (i.e., UAPs that do not to belong to clusters and tend to form isolated
small neighborhoods), because they can become representatives (since projection
cannot be applied) and impact the correct cluster detection.

Following the approach of [10] when merging two clusters, if |n|.rep ≥ r,
then the medoid representative can be found and then the procedure selects the
r−1 nearest neighbors of it. Thus, the medoid and its nearest neighbors form the
n.rep set. We denote this method as NN. Its objective is to reduce the sensitivity
of the clustering algorithm against the outliers, since it reduces the probability
of outliers to become representatives.

The result of HierCluster is the set of UMPs, each one consisting of a
group of representatives. Given a mobile client that currently follows a UAP,
the purpose of prediction is to first find the UMPs that best match the client’s
current UAP. Then, based on the matched UMPs, the most probable next move-
ments are predicted, and resource allocation is applied for them. Let A be a
client’s UAP (its recently crossed cells), where A = 〈a1, . . . , ak〉. A is examined

2 The shrinking and projections (towards the center) of the selected subset of repre-
sentatives can be applied for Euclidean spaces (they use the coordinates), thus not
for the problem examined herein.
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Algorithm HierCluster
Input:The collection D of UAPs

The number k of required UMPs
The max number r of repr.

Output:The discovered UMPs
1. Preprocess(D)
2. while c > k {
3. extract heap root with two clusters c, c′

for which d(c, c′) ≤ minx,y �=c,c′{d(x, y)}
4. merge c and c′ into a new cluster n
5. merge c.rep and c′.rep to form n.rep
6. update the heap
7. c = c − 1
8. }
9. return the set of discovered clusters
end of HierCluster

Procedure Preprocess
1. foreach u ∈ D {
2. form a cu cluster
3. set cu.rep = {u}
4. build the heap
5. }
6. set c = |D|
end of Preprocess

Fig. 2. The clustering algorithm.

against each UMPs B to find those with distance dm(A, B) < tm. In such a case
we denote that B is matched against A. The calculation of dm must take into
account that a UAP A can be part (i.e., subsequence) of a UMP B. The solution
of this problem, which is based on dynamic programming, can be found in [12].
Therefore, assuming that B = 〈b1, . . . , bj , . . . bn〉, the remaining cells in the part
〈bj , . . . , bn〉 of B can be used for the prediction of the next movements of the
client.

The number of predictions that can be made from each matched UMP is set
as a parameter. Assume that the remaining part of a matched UMP consists
of p cells 〈bj , . . . , bn〉 (i.e., n − j = p). We can use up to a maximum number
m (m ≤ p) cells from this part, by maintaining the order of their appearance,
i.e., cells bj , bj+1, bj+m−1 can be predicted as the next movements of the client.
The aforementioned cells are denoted as the predicted trajectory of the client.
Evidently, one may expect that cell bj has larger probability of correct prediction
than bj+1, bj+1 than bj+2 and so on. For the tuning of m it has to be considered
that the smaller m is the more accurate predictions are made. However, the total
number of correct predictions is going to be smaller. The experimental results
in Section 5 elaborate further on this issue.

Finally, it has to be noticed that the current UAP of a mobile client can be
matched by one or more UMPs (i.e., representatives) in each cluster. Thus, one
may select the best matched UMP (with the minimum dm) or all the matched
UMPs. We have examined both options and we choose the latter one, because we
found that it leads to better performance, since the number of correct predictions
increases without significant increase in the total number of predictions made
(that corresponds to resource consumption).
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Symbol Definition Default
m max length of predicted trajectory 2
r max number of representatives 20
td cut-off CB distance for de 2
L average length of UAPs 5
c corruption factor 0.4
o outlier percentage 30%

Fig. 3. Symbol table.

5 Performance Study

This section presents the empirical evaluation of the proposed method (DCP),
which is compared against TM-k and EXH. TM-k makes predictions based on the
cell-to-cell transition matrix, where k denotes the number of the most probable-
to-visit cells. As described, EXH is the method that allocates resources to every
neighboring cell. We first describe the simulation model for the mobile system
considered. Next, we give the results for the sensitivity of DCP, by comparing
it with TM-k and EXH. Finally, we examine the efficiency of the prediction
procedure of DCP with respect to execution time.

To simulate the mobile computing system, we assumed a square-shaped mesh
network consisting of 225 cells. To generate UAPs, we first formed a number of
UMPs whose length is uniformly distributed with mean equal to L and max
equal to L + 3. Each UMP is taken as a random walk over the mesh network.
We had two types of UAPs, those following a pattern (i.e., a UMP) and those
not. The latter are called outliers, and their ratio to the number of UAPs that
follow a UMP is denoted as o. The formers are formed as follows: First, a UMP is
selected at random. Then, with a corruption ratio c, we intervene random paths
through the nodes of the selected UMP. The total number of the nodes in these
random paths are equal to c times the size of the UMP. The default number of
generated UAPs is 100,000. From this set of UAPs we form the train and an
evaluation data set. The sampling for the clustering algorithm is done according
to the results in [3,10]. The performance measures we used are the following:
a) recall , which represents the number of correctly predicted cells divided by
the total number of requests and b) precision, which represents the number
of correctly predicted cells divided by the total number of predictions made.
Figure 3 summarizes the symbols used henceforth, and, for each one, gives the
default value used throughout the performance evaluation.

We saw that the DCP has some parameters, namely the cluster-merging
method, the number m of maximum predictions made at each time, and the
number r of representatives used for clusters, which require tuning. Similar tun-
ing for the k is required also for the TM-k algorithm. We performed extensive
experiments in order to select appropriate values for these parameters. Due to
the limited space we do not present here the experimental results for the tuning
of the algorithms.
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5.1 Sensitivity Experiments

In this series of experiments, we examine the sensitivity of DCP with respect to
the pattern length L, the percentage c of corruption, and the ratio o of outliers.
DCP is compared with TM-2 and EXH.

Initially we examined the impact of L. In the left part of Figure 4 it can be
clearly observed that, for very small L values (i.e., 2), the recall of all methods is
reduced significantly. Evidently, the first cell-visit in a UAP may not be predicted
by any method. Therefore, when L = 2, there is not enough room for correct
predictions (even for EXH). With increasing L, recall is increased. EXH clearly
attains the best recall in all cases.

However, it has to be considered that EXH is, in fact, an upper-bound for
the recall of any prediction scheme, because it is not dynamic and bases its
prediction on all possible forthcoming cells visits (EXH may miss only the first
visit in each UAP). Based on this fact, the dynamic methods, i.e., DCP and
TM-2, achieve only around 10% smaller recall than EXH. The recall of DCP
and TM-2 are comparable with each other. However, the good performance of
DCP is not to the cost of resource consumption.
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Fig. 4. (Left) Recall vs L and (Right) Precision vs L.

This is shown in the right part of Figure 4, which illustrates precision. Clearly,
EXH has the lowest precision (around 0.1), since it allocates every possible cell.
This indicates the ineffectiveness of EXH in realistic cases, due to its high re-
source consumption. TM-2 is second best, but significantly outperformed by
DCP in all cases. Since L is the only factor that affects EXH (for the reasons
explained earlier), we do not further examine this method, because it achieves
constant recall (80%) and precision (1%) with respect to all the following factors.
This helps for a more clear comparison between the two dynamic methods, i.e.,
DCP and TM-2.

Next, we examined the impact of corruption in the data set, measured
through parameter c. The results are illustrated in Figure 5 (c is given as a
percentage). Focusing on recall (left part of Figure 5), both methods are not af-
fected significantly by increasing c, and their recall is comparable. The precision
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of DCP (right part of Figure 5) for very low c values is very high, reaching 90%
for the case of no corruption. However, with increasing c, the precision of DCP
reduces, since the clustering, performed by it, is affected. However, for c larger
than 40% the reduction is less significant.
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Fig. 5. Comparison of DCP and TM-2 w.r.t. c: (Left) Recall. (Right) Precision.

This is explained from the fact that before this value, DCP performs almost
unhindered matchings of UAPs against patterns, reaching the aforementioned
very high values of precision. However, these cases does not correspond to re-
alistic ones, because the absence of corruption is not probable3. But for larger
values of c, DCP manages to maintain a good value of precision (around 50%)
without being affected by further increase in c. Evidently, DCP outperforms
TM-2, which is less affected by c but does not attain precision larger than 35%.
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Fig. 6. Comparison of DCP and TM-2 w.r.t. o: (Left) Recall. (Right) Precision.

Finally, we examined the impact of outliers in the data set. The results are
illustrated in Figure 6 with respect to the outlier percentage o. The recall (left
part of Figure 6) of both methods is not affected significantly by increasing o,
3 This is the reason why throughout the rest experiments we do not use c smaller than

40%.
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where DCP and TM-k attain comparable recall values. The precision of both
methods (right part of Figure 6.b) is also not affected significantly. For DCP this
indicates that the filtering used by its clustering procedure is effective in reducing
the impact of outliers (TM-k does not use clustering, thus is not directly affected
by outliers). However, DCP compares favorably with TM-2 in all cases.

5.2 Execution Time

For DCP, the on-line computation of predicted trajectories is performed each
time a client moves to a new cell. For this reason, we examined the execution time
required for this procedure. Results are depicted in Figure 7 (time is measured
in ms) with respect to the average UAP length L. More precisely, the depicted
times correspond to the application of prediction procedure at each cell, where
the UMPs have been pre-computed. As shown, execution time increases with
increasing L, since for larger UAPs the computation of dm distance requires
more steps. However, in all cases, the prediction requires only few ms. Assuming
that a client that reaches a cell may stay in it for a period that is much larger
than few ms, the prediction time is a negligible overhead.
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Fig. 7. Execution time (in ms) per cell of the prediction procedure of DCP.

6 Conclusions

We considered the problem of predictive resource allocation in cellular mobile
environments. We proposed a new algorithm called DCP, to discover user mo-
bility patterns from collections of recorded mobile trajectories and to use them
for the prediction of movements and dynamic allocation of resources.

The design of the proposed algorithm considers the important factor of ran-
domness in the mobile trajectories, which can result in noise within trajectories
themselves or to outliers (trajectories that do not follow any regularities).

Using simulation, the performance of DCP was compared against that of
EXH and TM. Our experiments showed that for a variety of trajectory length,
noise and outliers, DCP achieves an very good tradeoff between prediction recall
and precision.
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