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Abstract
We compare the smooth and deformation equivalence of actions of finite groups on
K 3-surfaces by holomorphic and antiholomorphic transformations. We prove that
the number of deformation classes is finite and, in a number of cases, establish the
expected coincidence of the two equivalence relations. More precisely, in these cases
we show that an action is determined by the induced action in the homology. On the
other hand, we construct two examples to show first that, in general, the homologi-
cal type of an action does not even determine its topological type, and second that
K 3-surfaces X and X̄ with the same Klein action do not need to be equivariantly
deformation equivalent even if the induced action on H2,0(X) is real, that is, reduces
to multiplication by ±1.
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1. Introduction

1.1. Questions
In this paper, we study equivariant deformations of complex K 3-surfaces with sym-
metry groups, where by a symmetry we mean either a holomorphic or an antiholomor-
phic transformation of the surface. Although the automorphism group of a particular
K 3-surface may be infinite, we confine ourselves to finite group actions and address
the following two questions (see Sections 1.4 – 1.6 for precise definitions):
finiteness: whether the number of actions, counted up to equivariant deformation and

isomorphism, is finite, and
quasi-simplicity: whether the differential topology of an action determines it up to

the above equivalence.
The response to the second question, as it is posed, is obviously in the negative. For
example, given an action on a surface X , the same action on the complex conjugate
surface X̄ is diffeomorphic to the original one but often not deformation equivalent to
it. Thus, we pose this question in a somewhat weaker form:
weak quasi-simplicity: does the differential topology of an action determine it up to

equivariant deformation and (anti-) isomorphism?
To our knowledge, these questions have never been posed explicitly, and, moreover,
despite numerous related partial results, they both have remained open.

One may notice a certain ambiguity in the statements of the above questions, es-
pecially in what concerns quasi-simplicity: we do not specify whether we consider
diffeomorphic actions on true K 3-surfaces or, more generally, diffeomorphic actions
on surfaces diffeomorphic to a K 3-surface. Fortunately, a surface diffeomorphic to a
K 3-surface is a K 3-surface (see [FM2]), and the two versions turn out to be equiva-
lent. Thus, we confine ourselves to true K 3-surfaces and respond to both the finiteness
and (to a great extent) weak quasi-simplicity questions (Section 1.7).

1.2. A brief retrospective of the method
Following the founding work by I. Piatetski-Shapiro and I. Shafarevich [PS], we base
our study on the global Torelli theorem. When combined with Vik. Kulikov’s theorem
on surjectivity of the period map [Ku], this fundamental result essentially reduces the
finiteness and quasi-simplicity questions to certain arithmetic problems. It is this ap-
proach that was used by V. Nikulin in [Ni2] and [Ni3], where he established (partially
implicitly) the finiteness and quasi-simplicity results for polarized K 3-surfaces with
symplectic actions of finite abelian groups and for those with real structures. (Partial
preliminary results, based on the injectivity of the period map, are found in [Ni1] for
symplectic actions and in [K] for real structures.) In [DIK], we extended these results
to real Enriques surfaces (which can be regarded as K 3-surfaces with certain actions
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of Z2 × Z2). In fact, [Ni2], [Ni3], and [DIK] give a complete deformation classifica-
tion of the respective surfaces. It was while studying real Enriques surfaces that we
got interested in the above questions and obtained our first results in this direction.

In all cases above, one starts by using the global Torelli theorem to show that the
deformation class of a surface is determined by the induced action in its 2-homology
and thus to reduce the problem to a (sometimes quite elaborate) study of the induced
action. One of our principal results (Theorem 1.7.2) extends this statement to a wide
class of actions, thus making it possible to complete the classification in many cases.
(For example, G. Xiao’s paper [X] seems very promising in classifying K 3-surfaces
with symplectic finite group actions; eventually it reduces the study of the induced
actions to the study of certain definite sublattices in the homology of the orbit space,
which is also a K 3-surface in this case.) On the other hand, in Proposition 6.1.1 we
construct an example of an action of a relatively simple group (the dihedral group of
order 6) whose deformation and topological types cannot be read from the homology.
The study of such actions would require new tools that would let one enumerate the
walls in the period space that do matter.

1.3. Related results
One can find a certain similarity between our finiteness results and the finiteness in
the theory of moduli of complex structures on 4-manifolds, which states (see [FM1]
and [F]) that the moduli space of Kählerian complex structures on a given underly-
ing differentiable compact 4-manifold has finitely many components. (By Kählerian
we mean a complex structure admitting a Kähler metric. In the case of surfaces,
this is a purely topological restriction: the complex structures on a given compact
4-manifold X are Kählerian if and only if the first Betti number b1(X; Q) is even.)
Moreover, the moduli space is connected as soon as there is a Kählerian representa-
tive of Kodaira dimension at most zero (as is the case for K 3-surfaces and complex
2-tori); for Kodaira dimension one, there are at most two deformation classes, which
are represented by X and X̄ (see [FM1]). Examples of general type surfaces X not
deformation equivalent to X̄ are found in [KK] and [C].

The principal result of our paper can be regarded as an equivariant version of the
above statements for K 3-surfaces. The finiteness theorem (Theorem 1.7.1) is closely
related to a series of results from the theory of algebraic groups that go back to
C. Jordan [J]. The original Jordan theorem states that SL(n,Z) contains but a fi-
nite number of conjugacy classes of finite subgroups. A. Borel and Harish-Chandra
(see [BH] and [Bo]) generalized this statement to any arithmetic subgroup of an al-
gebraic group; further recent generalizations are due to V. Platonov [P]. Note that,
together with the global Torelli theorem, these Jordan-type theorems (applied to the 2-
cohomology lattice of a K 3-surface) imply that the number of different finite groups
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acting faithfully on K 3-surfaces is finite. A complete classification of finite groups
acting symplectically (i.e., identically on holomorphic forms) on K 3-surfaces is found
in Sh. Mukai [M] (see also Sh. Kondō [Ko1] and G. Xiao [X]; the abelian groups were
first classified by Nikulin [Ni3]; unlike Mukai, who listed only the groups, Nikulin
gave a description of the homological actions (cf. Section 1.2) and their moduli spaces
and showed that the latter are connected). A sharp bound on the order of a group acting
holomorphically on a K 3-surface is given by Kondō [Ko2]; it is based on Nikulin’s
bound on the restriction of the induced action to the group of transcendental cycles.
Here, as in the study of the components of the moduli space, the crucial starting point
is a thorough analysis of the transcendental part of the action over Q (cf. almost geo-
metric actions in Section 2.6); it was originated in [Ni3].

Among other related finiteness results found in the literature, we would like to
mention a theorem by Piatetski-Shapiro and Shafarevich [PS] stating that the auto-
morphism group of an algebraic K 3-surface is finitely generated, our [DIK] gener-
alization of this theorem to all K 3-surfaces, and H. Sterk’s [St] finiteness results on
the classes of irreducible curves on an algebraic K 3-surface. Note that all these re-
sults deal with individual surfaces rather than with their deformation classes. They
are related to the finiteness of the number of conjugacy classes of finite subgroups in
the group of Klein automorphisms of a given variety. As a special case, one can ask
whether the number of conjugacy classes of real structures on a given variety is finite.
For the latter question, the key tool is the Borel-Serre [BS] finiteness theorem for Ga-
lois cohomology of finite groups; as an immediate consequence, it implies finiteness
of the number of conjugacy classes of real structures on an abelian variety. In [DIK]
we extended this statement to all surfaces of Kodaira dimension at least 1 and to all
minimal Kähler surfaces. Remarkably, finiteness of the number of conjugacy classes
of real structures on a given rational surface is still an open question.

Unlike finiteness, the quasi-simplicity question does not make much sense for
individual varieties. In the past it was mainly studied for deformation equivalence
of real structures: Given a deformation family of complex varieties, is a real variety
within this family determined up to equivariant deformation by the topology of the
real structure? The first nontrivial result in this direction, concerning real cubic sur-
faces in P3, was discovered by F. Klein and L. Schläfli (see, e.g., the survey [DK1]).
At present, the answer is known for curves (essentially due to F. Klein and G. Wei-
chold; see, e.g., the survey [N]), complex tori (essentially due to A. Comessatti [Co1],
[Co2]), rational surfaces (A. Degtyarev and V. Kharlamov [DK2]), ruled surfaces (J.-
Y. Welschinger [W]), K 3-surfaces (essentially due to Nikulin [Ni2]), Enriques sur-
faces (see [DIK]), hyperelliptic surfaces (F. Catanese and P. Frediani [CF]), and some
sporadic surfaces of general type (e.g., so-called Bogomolov-Miayoka-Yau surfaces;
see Kharlamov and Kulikov [KK]).
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Note that, for the above classes of special surfaces, topological invariants that de-
termine the deformation class are known. Together with quasi-simplicity, this implies
finiteness (as the invariants take values in finite sets). Finiteness also holds for vari-
eties of general type (in any dimension); as for such varieties, the Hilbert scheme is
quasi-projective.

1.4. Terminology conventions
Unless stated otherwise, all complex varieties are supposed to be nonsingular, and
differentiable manifolds are C∞. A real variety (X, conj) is a complex variety X
equipped with an antiholomorphic involution conj. In spite of the fact that we work
with antiholomorphic transformations as well, we reserve the term isomorphism for
biholomorphic maps, using anti-isomorphism for bi-antiholomorphic ones.

When working with period spaces, it is convenient to equip a K 3-surface X with
the fundamental class γX of a Kähler structure on X . We call γX a polarization of
X . Strictly speaking, since we do not assume that γX is ample (nor even that X is
algebraic or γX is an integral class), it would probably be more appropriate to invent
a different term (quasi-polarization, K -polarization, Kählerization, . . . ). However, as
in this paper it does not lead to confusion, we decided to avoid awkward language and
use a familiar term in a slightly more general sense.

1.5. Augmented groups and Klein actions
An augmented group is a finite group G supplied with a homomorphism κ: G →

{±1}. (We do not exclude the case when κ is trivial.) Denote the kernel of κ by G0.
A Klein action of a group G on a complex variety X is a group action of G on X
by both holomorphic and antiholomorphic maps. Assigning +1 (resp., −1) to an ele-
ment of G acting holomorphically (resp., antiholomorphically), one obtains a natural
augmentation κ: G → {±1}. An action is called holomorphic (resp., properly Klein)
if κ = 1 (resp., if κ 6= 1).

Replacing the complex structure J on a complex variety X with its conjugate
(−J ), one obtains another complex variety, commonly denoted by X̄ , with the same
underlying differentiable manifold. An automorphism of X is as well an automor-
phism of X̄ ; it can also be regarded as an antiholomorphic bijection between X and X̄ .
Thus, a Klein G-action on X can as well be regarded as a Klein action on X̄ , with the
same augmentation κ: G → {±1} and the same subgroup G0. These two actions are
obviously diffeomorphic, but they do not need to be isomorphic.

A Klein action of a group G on a complex variety X gives rise to the in-
duced action G → Aut H∗(X), g 7→ g∗, in the cohomology ring of X . Since we
deal with K 3-surfaces, which are simply connected, and since all elements of G
are orientation-preserving in this dimension, the induced action reduces essentially



SYMMETRIC K 3-SURFACES 7

to the action on the group H2(X), regarded as a lattice via the intersection index
form. For our purpose, it is more convenient to work with the twisted induced action
θX : G → Aut H2(X), g 7→ κ(g)g∗. The latter, considered up to conjugation by lat-
tice automorphisms, is called the homological type of the original Klein action on X .
Clearly, it is a topological invariant.

1.6. Smooth deformations
A (smooth) family, or deformation, of complex varieties is a proper submersion
p: X → S with differentiable, not necessarily compact or complex, manifolds X ,
S supplied with a fiberwise integrable complex structure on the bundle Ker dp. The
varieties Xs = p−1(s), s ∈ S, are called members of the family. Given a group G,
a family p: X → S is called G-equivariant if it is supplied with a smooth fiberwise
G-action that restricts to a Klein action on each fiber.

Two complex varieties X , Y supplied with Klein actions of a group G are called
equivariantly deformation equivalent if there is a chain X = X0, X1, . . . , Xk = Y
of complex varieties X i with Klein actions of G such that for each i = 0, . . . , k − 1
the varieties X i and X i+1 are G-isomorphic to members of a G-equivariant smooth
family. (By a G-isomorphism we mean a biholomorphic map φ such that φg = gφ
for any g ∈ G.)

Clearly, the equivariant deformation equivalence is an equivalence relation, G-
equivariantly deformation equivalent varieties are G-diffeomorphic, and the homo-
logical type of a G-action is a deformation invariant.

1.7. The principal results
Let X be a K 3-surface with a Klein action of a finite group G. Then G0 acts on the
subspace H2,0(X) ∼= C, which gives rise to a natural representation ρ: G0

→ C∗. If
G is finite, the image of ρ belongs to the unit circle S1

⊂ C∗. We refer to ρ as the
fundamental representation associated with the original Klein action. It is a deforma-
tion but, in general, not a topological invariant of the action. A typical example is the
same Klein action on X̄ ; its associated fundamental representation is the conjugate
ρ̄: g 7→ ρg ∈ C∗.

As shown below (Proposition 4.3.1), in the case of finite group actions on a K 3-
surface X , the twisted induced action θX determines the subgroup G0 and “almost”
determines the fundamental representation ρ: G0

→ S1: from θX , one can recover a
pair ρ, ρ̄ of complex conjugate fundamental representations.

THEOREM 1.7.1 (Finiteness theorem)
The number of equivariant deformation classes of K 3-surfaces with faithful Klein
actions of finite groups is finite.
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THEOREM 1.7.2 (Quasi-simplicity theorem)
Let X and Y be two K 3-surfaces with finite group G Klein actions of the same homo-
logical type. Assume that either
(1) the action is holomorphic, or
(2) the associated fundamental representation ρ is real; that is, ρ = ρ̄.
Then either X or X̄ is G-equivariantly deformation equivalent to Y . If the associate
fundamental representation is trivial, then X and X̄ are G-equivariantly deformation
equivalent.

Remark. If ρ is nonreal, the deformation classes of X and X̄ are distinguished by the
fundamental representation (ρ and ρ̄). In Proposition 6.4.1 we give an example when
X and X̄ are not deformation equivalent even though ρ is real.

Remark. In Proposition 6.1.1 we discuss another example, that of a properly Klein
action of the dihedral group D3 whose deformation class is not determined by its
homological type and associated fundamental representation. However, the actions
constructed differ by their topology. Thus, they do not constitute a counterexample to
quasi-simplicity of K 3-surfaces (in its weaker form), and the problem still remains
open.

Note that this phenomenon is somewhat unusual and unexpected for K 3-surfaces
since in all examples known before, such as (real) K 3-surfaces, (real) Enriques sur-
faces, and K 3-surfaces with an involution, the deformation class (and hence the topo-
logical type of the action) can be read from the induced action on the homology.
However, all these examples are covered by Theorem 1.7.2.

A real variety (X, conj) with a real (i.e., commuting with conj) holomorphic G0-
action can be regarded as a complex variety with a Klein action of the extended
group G = G0

× Z2, the Z2-factor being generated by conj. Note that if X is a K 3-
surface with a real holomorphic G0-action, the associated fundamental representation
ρ: G0

→ C∗ is real.

COROLLARY 1.7.3
Let X and Y be two real K 3-surfaces with real holomorphic G0-actions, so that the
extended Klein actions of G = G0

× Z2 have the same homological type. Then X
and Y are G-equivariantly deformation equivalent.

The methods used in the paper can as well be applied to the study of finite group Klein
actions on 2-dimensional complex tori. (The corresponding version of the global
Torelli theorem was first discovered by Piatetski-Shapiro and Shafarevich [PS] and
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then corrected by T. Shioda [S].) The analogs of Theorem 1.7.1 and 1.7.2 for 2-tori
are Theorems A.1.1 (finiteness) and A.1.2 (quasi-simplicity) proved in Appendix A.
For holomorphic actions preserving a point, this is a known result; it is contained in
the classification of finite group actions on 2-tori by A. Fujiki [Fu], where a complete
description of the moduli spaces is also given. (The results for holomorphic actions
on Jacobians go back to F. Enriques and F. Severi [ES1] and, on general abelian
surfaces, back to G. Bagnera and M. de Franchis [BF].) We give a short proof not
using the classification, extend the results to nonlinear Klein actions, and compare the
complex conjugated actions. As a straightforward consequence, we obtain analogous
results for hyperelliptic surfaces. A number of tools used in Appendix A are close to
those used by Fujuki in his study of the relation between symplectic actions and root
systems.

Note that Theorem A.1.2 is stronger than its counterpart Theorem 1.7.2 for K 3-
surfaces; one does not need any additional assumption on the action. On the other
hand, we show that, in quite a number of cases, a 2-torus X is not equivariantly defor-
mation equivalent to X̄ (see Section A.4).

Together, Theorems 1.7.1, 1.7.2, A.1.1, and A.1.2 give finiteness and quasi-
simplicity results for K 3-surfaces, Enriques surfaces, 2-tori, and hyperelliptic sur-
faces, that is, for all Kähler surfaces of Kodaira dimension zero.

Among other results not directly related to the proofs, worth mentioning is The-
orem 5.2.1, which compares the homological types of Klein actions on a singular
K 3-surface and on close nonsingular ones. There is also a generalization that applies
to any surface provided that the singularities are simple.

1.8. Idea of the proof
As already mentioned, our study is based on the global Torelli theorem. As is known,
in order to obtain a good period space, one should mark the K 3-surfaces, that is, fix
isomorphisms H2(X) → L = 2E8 ⊕ 3U (see Section 1.10 for the notation). Tech-
nically, it is more convenient to deal with the period space K�0 of marked polarized
K 3-surfaces, which, in turn, is a sphere bundle over the period space Per0 of marked
Einstein K 3-surfaces (see Section 4.1 for details). According to Kulikov [Ku], one has
Per0 = Per r1, where Per is a contractible homogeneous space (the space of positive
definite 3-subspaces in L ⊗ R) and 1 is the set of the subspaces orthogonal to roots
of L .

Now we fix a finite group G and an action θ : G → Aut L . This gives rise to the
equivariant period spaces K�G

0 and PerG
0 = PerG r1 of marked K 3-surfaces with

the given homological type of Klein G-action. Note that we are interested only in geo-
metric actions, that is, those for which the spaces PerG

0 or K�G
0 are nonempty. Given

a K 3-surface, its markings compatible with θ differ by elements of the group AutG L
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of the automorphisms of L commuting with G. Thus, the finiteness and the (weak)
quasi-simplicity problems reduce essentially to the study of the set of connected com-
ponents of the orbit space MG

= PerG
0 /AutG L . In fact, the desired result (connect-

edness or finiteness of the number of connected components) can be obtained with
a smaller group A ⊂ AutG L , depending on the nature of the action. (A description
of such “underfactorized” moduli spaces is given in Sections 4.4.2 – 4.4.7.) Further-
more, the quotient space PerG

0 /A can be replaced with a subspace Int0 r 1, where
0 is an appropriate convex (hence connected) fundamental domain of the action of A
on PerG , and it remains to enumerate the walls in Int0, that is, the strata of 1∩ Int0
of codimension 1.

1.9. Contents of the paper
In Section 2 we give the basic definitions and cite some known results on lattices and
group actions on them. In Section 2.6 we introduce the notion of almost geometric
actions. This notion can be regarded as the “Z-independent” (i.e., defined over R)
part of the necessary condition for an action to be realizable by a K 3-surface. We
study the invariant subspaces of an almost-geometric action and show, in particular,
that such an action determines the augmentation of the group and, up to complex
conjugation, the associated fundamental representation.

In Section 3 we introduce and study geometric actions, which we define in arith-
metical terms. The main goals of this section are Theorems 3.1.2 and 3.1.3, which
establish certain connectedness and finiteness properties of appropriate fundamen-
tal domains of groups of automorphisms of the lattice preserving a given geometric
action.

In Section 4 we introduce the equivariant period and moduli spaces and show that
an action on the lattice is geometric (in the sense of Section 3) if and only if it is re-
alizable by a K 3-surface. We give a detailed description of certain “underfactorized”
moduli spaces and use it to prove the main results.

Section 5 deals with equivariant degenerations of K 3-surfaces: we discuss the
behavior of the twisted induced action along the walls of the period space.

In Section 6 we discuss two examples to show that, in general, the deformation
type of a Klein action is not determined by its homological type and associated fun-
damental representation.

In Appendix A we treat the case of 2-tori.

1.10. Common notation
We freely use the notation Zn and Dn for the cyclic group of order n and dihedral
group of order 2n, respectively. We use An , Dn , E6, E7, and E8 for the even nega-
tive definite lattices generated by the root systems of the same name, and U for the
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hyperbolic plane (indefinite unimodular even lattice of rank 2). All other nonstandard
symbols are explained in the text.

2. Actions on lattices

2.1. Lattices
An (integral) lattice is a free abelian group L of finite rank supplied with a symmetric
bilinear form b: L ⊗ L → Z. We usually abbreviate b(v,w) = v ·w and b(v, v) = v2.
For any ring3 ⊃ Z we use the same notation b (as well as v ·w and v2) for the linear
extension (v ⊗ λ)⊗ (w ⊗ µ) 7→ (v · w)λµ of b to L ⊗3. A lattice L is called even
if v2

= 0 mod 2 for all v ∈ L; otherwise, L is called odd. Let L∨
= Hom(L ,Z)

be the dual abelian group. The lattice L is called nondegenerate (unimodular) if the
correlation homomorphism L → L∨, v 7→ b(v, · ), is a monomorphism (resp., iso-
morphism). The cokernel of the correlation homomorphism is called the discriminant
group of L and denoted by discr L . The group discr L is finite (trivial) if and only if
L is nondegenerate (resp., unimodular).

The assignment (x mod L , y mod L) 7→ (x · y) mod Z, x, y ∈ L∨, is a well-
defined bilinear form b: discr L ⊗ discr L → Q/Z. If L is even, there is also a
quadratic extension q: discr L → Q/2Z of b given by x mod L 7→ x2 mod 2Z.

Given a lattice L , we denote by σ+L and σ−L its inertia indexes and by σ L =

σ+L −σ−L its signature. We call a nondegenerate lattice L elliptic (resp., hyperbolic)
if σ+L = 0 (resp., if σ+L = 1). The terminology is not quite standard; we change
the sign of the forms, and we treat a positive definite lattice of rank 1 as hyperbolic.
This is caused by the fact that our lattices are related (explicitly or implicitly) to the
Neron-Severi groups of complex surfaces.

A sublattice M ⊂ L is called primitive if the quotient L/M is torsion-free. Given
a sublattice M ⊂ L , we denote by M̂ its primitive hull in L , that is, the minimal
primitive sublattice containing M : M̂= {v ∈ L | kv ∈ M for some k ∈ Z, k 6= 0}.

An element v ∈ L of square (−2) is called a root.∗ A root system is a lattice
generated (over Z) by roots. Recall that any elliptic root system decomposes, uniquely
up to the order of the summands, into an orthogonal sum of irreducible elliptic root
systems, that is, those of type An , Dn , E6, E7, or E8.

2.2. Automorphisms
An isometry (dilation) of a lattice L is an automorphism a: L → L preserving the
form (resp., multiplying the form by a fixed number 6= 0). All isometries of L con-
stitute a group; we denote it by Aut L . If L is nondegenerate, there is a natural repre-

∗Traditionally, the roots are the elements of square (−2) or (−1). We exclude the case of square (−1) as we
consider only even lattices.
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sentation Aut L → Aut discr L . Denote its kernel Aut0 L . It is a finite-index normal
subgroup of Aut L consisting of the “universally extensible” automorphisms. More
precisely, an automorphism a of L belongs to Aut0 L if and only if a extends to any
suplattice L ′

⊃ L identically on L⊥.
Given a vector v ∈ L , v2

6= 0, denote by sv the reflection against the hyperplane
orthogonal to v, that is, the isometry of L ⊗ R defined by x 7→ x − ((x · v)/v2)v. If
sv(L) ⊂ L (which is always the case when v2

= ±1 or ±2), we use the same notation
for the induced automorphism of L . The subgroup W (L) ⊂ Aut L generated by the
reflections against the hyperplanes orthogonal to roots of L is called the Weil group
of L . Clearly, W (L) is a normal subgroup of Aut L and W (L) ⊂ Aut0 L .

We recall a few facts on automorphisms of root systems; details can be found,
for example, in [Bou]. Let R be an elliptic root system. The hyperplanes orthogo-
nal to roots in R divide the space R ⊗ R into several connected components called
cameras of R, and the Weil group W (R) acts transitively on the set of cameras.
For each camera C of R, there is a canonical semidirect product decomposition
Aut R = W (R) o SC , where SC ⊂ O(R ⊗ R) is the group of symmetries of C . (As
an abstract group, SC can be identified with the group of symmetries of the Dynkin
diagram of R.) In particular, if an element g ∈ Aut R preserves C , one has g ∈ SC .
More generally, if g preserves a face C ′

⊂ C , then in the decomposition g = sw,
s ∈ SC , the element w belongs to the Weil group of the root system generated by the
roots of R orthogonal to C ′.

2.3. Actions
Let G be a group. A G-action on a lattice L is a representation θ : G → Aut L . In
what follows we always assume that G is finite. Given a ring 3 ⊃ Z, we use the
same notation θ for the extension g 7→ θg ⊗ id3 of the action to L ⊗ 3. Denote
by AutG(L ⊗ 3) the group of G-equivariant 3-isometries of L ⊗ 3, that is, the
centralizer of θG in Aut(L ⊗ 3), and let WG(L) = W (L) ∩ AutG L and Aut0G L =

Aut0 L ∩ AutG L .
A submodule M ⊂ L ⊗ 3 is called G-invariant if θg(M) ⊂ M for any g ∈ G;

it is galled G-characteristic if a(M) ⊂ M for any a ∈ AutG(L ⊗3).
Let K ⊂ C be a field. For an irreducible K-linear representation ξ of G, we denote

by Lξ (K) the ξ -isotypic subspace of L ⊗ K, that is, the maximal invariant subspace
of L ⊗K that is a sum of irreducible representations isomorphic to ξ . Given a subfield
k ⊂ K, denote by Lξ (k) the minimal k-subspace of L ⊗ k such that Lξ (k) ⊗k K ⊃

Lξ (K), and for a subring O ⊂ k, O 3 1, let Lξ (O) = Lξ (k) ∩ (L ⊗ O). Clearly,
Lξ (k) is the space of an isotypic k-representation of G, and Lξ (O) is G-invariant and
G-characteristic. If k is an algebraic number field and O is an order in k, then Lξ (O)
is a finitely generated abelian group and Lξ (k) = Lξ (O)⊗O k.
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We use the shortcut LG for L1(Z) = {x ∈ L | gx = x for all g ∈ G}.

2.4. Extending automorphisms
Below we recall a few simple facts on extending automorphisms of lattices. All the
results still hold if the lattices involved are supplied with an action of a finite group G
and the automorphisms are G-equivariant. One can also consider lattices defined over
an order in an algebraic number field.

LEMMA 2.4.1
Let M be a nondegenerate lattice, and let M ′

⊂ M be a sublattice of finite index.
Then the groups Aut M and Aut M ′ have a common finite-index subgroup.

LEMMA 2.4.2
Let M be a lattice, and let M ′

⊂ M be a nondegenerate sublattice. Then the group of
automorphisms of M ′ extending to M has finite index in Aut M ′.

LEMMA 2.4.3
Let M be a nondegenerate lattice, and let A be a group acting by isometries on M⊗Q.
Assume that there is a finite-index sublattice M ′

⊂ M such that a(M ′) ⊂ M for any
a ∈ A. Then A has a finite-index subgroup acting on M .

Proof
It suffices to apply Lemma 2.4.1 to the A-invariant sublattice

∑
a∈A a(M ′) ⊂ M .

COROLLARY 2.4.4
Let M+ and M− be two nondegenerate lattices, and let J : M−

→ M+ be a dilation
invertible over Q. Then there exists a finite-index subgroup A+

⊂ Aut M+ such that
the correspondence a 7→ a⊕J−1a J restricts to a well-defined homomorphism A+

→

Aut(M+
⊕ M−).

2.5. Fundamental polyhedra
Given a real vector space V with a nondegenerate quadratic form, we denote by
H (V ) the space of maximal positive definite subspaces of V . Note that H (V )
is a contractible space of nonpositive curvature. If σ+V = 1 (i.e., if V is hyper-
bolic), one can define H (V ) as the projectivization C (V )/R∗ of the positive cone
C (V ) = {x ∈ V | x2 > 0}.

Fix an algebraic number field k ⊂ R, and let O be the ring of integers of k.
Consider a hyperbolic integral lattice M and a hyperbolic sublattice M ′

⊂ M ⊗ k
defined over O, that is, such that OM ′

⊂ M ′. Let H ′
= H (M ′

⊗O R). Then any
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group A acting by isometries on M and preserving M ′ acts on H ′. Since M is a
hyperbolic integral lattice and (M ′)⊥ ⊂ M is elliptic, the induced action is discrete,
and the Dirichlet domain with center at a generic k-rational point of H ′ is a k-rational
polyhedral fundamental domain of the action. Any such domain is called a rational
Dirichlet polyhedron of A (in H ′).

The following theorem treats the classical case where M = M ′ is an integral
lattice and A = Aut M . It is due to C. L. Siegel [Si], H. Garland, M. S. Raghu-
nathan [GR], and N. J. Wielenberg [Wi].

THEOREM 2.5.1
Let M be a hyperbolic integral lattice. Then the rational Dirichlet polyhedra of the full
automorphism group Aut M in H (M) are finite. Unless M has rank 2 and represents
zero, the polyhedra have finite volume.

COROLLARY 2.5.2
Let M be a hyperbolic integral lattice. Then the closure in H (M) ∪ ∂H (M) of
any rational Dirichlet polyhedron of Aut M in H (M) is the convex hull of a finite
collection of rational points.

2.6. The fundamental representations
Let θ : G → Aut L be a finite group action on a nondegenerate lattice L with σ+L =

3. We say that θ is almost geometric if there is a G-invariant flag ` ⊂ w, where
w ⊂ L ⊗ R is a positive definite 3-subspace and ` is a 1-subspace with trivial G-
action.

LEMMA 2.6.1
Let θ : G → Aut L be a finite group action on a lattice L with d = σ+L > 0. Then
for any positive definite G-invariant d-subspace w ⊂ L ⊗ R, the induced action
θw: G → O(w) = O(d) is determined by θ up to conjugation in O(d). In particular,

the augmentation κ: G → O(w)
det
−→ {±1} is uniquely determined by θ .

Proof
Given another subspace w′ as in the statement, the orthogonal projection w′

→ w is
nondegenerate and G-equivariant. Hence, the induced representations θw, θw′ : G →

O(d) are conjugated by an element of GL(d). Since G is finite, they are also conju-
gated by an element of O(d). Indeed, it is sufficient to treat the case of irreducible
representation, where the result follows from the uniqueness of a G-invariant scalar
product up to a constant factor.
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Given an almost geometric action θ : G → Aut L , we always assume G augmented
via κ above, so that an element c ∈ G does not belong to G0

= Ker κ if and only
if it reverses the orientation of w. From Lemma 2.6.1 it follows that the existence of
a 1-subspace ` with trivial G-action does not depend on the choice of a G-invariant
positive definite 3-subspace w. Furthermore, the induced action on w0 = `⊥ ⊂ w is
also independent of w. Choosing an orientation of w0, one obtains a 2-dimensional
representation ρ: G0

→ SO(w0) = S1. In what follows, we identify S1 with the unit
circle in C and often regard representations in S1 as 1-dimensional complex represen-
tations. In particular, we consider the spaces (lattices) Lρ(3) (Section 2.3) associated
with θ . Note that Lρ(C) is the ρ-eigenspace of G0. Changing the orientation of w0

replaces ρ with its conjugate ρ̄. In view of Lemma 2.6.1, the unordered pair (ρ, ρ̄) is
determined by θ ; we call ρ and ρ̄ the fundamental representations associated with θ .
The order of the image ρ(G0) is called the order of θ and is denoted ord θ .

LEMMA 2.6.2
Let ξ : G0

→ S1 be a nonreal representation (i.e., ξ̄ 6= ξ ). Then the map Lξ (C) →

Lξ (R), ω 7→ (ω + ω̄)/2, is an isomorphism of R-vector spaces. In particular, the
space Lξ (R) inherits a natural complex structure Jξ (induced from the multiplication
by i in Lξ (C)), which is an antiselfadjoint isometry. One has Jξ̄ = −Jξ .

Proof
The proof is straightforward. The metric properties of Jξ follow from the fact that
ω2

= 0 for any eigenvector ω (of any isometry) corresponding to an eigenvalue α
with α2

6= 1.

LEMMA 2.6.3
Let θ be an almost geometric action, and let ρ be an associated fundamental repre-
sentation. Assume that κ 6= 1. Then any element c ∈ G r G0 restricts to an involution
cρ: Lρ(R) → Lρ(R). If ρ is not real, then cρ is Jρ-antilinear; in particular, the
(±1)-eigenspaces V ±

ρ of cρ are interchanged by Jρ .

Proof
Clearly, c takes ρ-eigenvectors of G0 to ρc-eigenvectors, where ρc is the representa-
tion g 7→ ρ(c−1gc). Since, by the definition of fundamental representations, there is
a ρ-eigenvector ω taken to a ρ̄-eigenvector, one has ρc

= ρ̄ and the space Lρ(R) is
c-invariant. Furthermore, the vector Reω is invariant under c2

ρ . Since c2
∈ G0, one

has c2
ρ = id.

If ρ is nonreal, then c interchanges Lρ(C) and L ρ̄(C). Since c commutes with the
complex conjugation, the isomorphism ω 7→ (ω + ω̄)/2 (Lemma 2.6.2) conjugates
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cρ with the antilinear involution ω 7→ c(ω̄) on Lρ(C).

LEMMA 2.6.4
Let θ be an almost geometric action, let ρ be an associated fundamental representa-
tion, and let k ⊂ R be a field. Then the space Lρ(k) is G-invariant and the induced
G-action on Lρ(k) factors through an action of the cyclic group Zn (if κ = 1) or the
dihedral group Dn (if κ 6= 1), where n = ord θ . The induced Zn-action is k-isotypic;
the Dn-action is k-isotypic unless n ≤ 2.

Proof
All statements are obvious if κ = 1. Assume that κ 6= 1, and pick an element c ∈ G r
G0. The intersection Q = Lρ(k) ∩ c(Lρ(k)) is defined over k, and Q ⊗k R contains
Lρ(R) (Lemma 2.6.3). Hence, Q ⊃ Lρ(k) and Lρ(k) is G-invariant. Further, the
endomorphisms c2 and g − c−1gc of Lρ(k)⊗k R (where g ∈ G0) are defined over k
and annihilate Lρ(R) (Lemma 2.6.3 again); due to the minimality of Lρ(k), they are
trivial.

3. Folding the walls

3.1. Geometric actions
A finite group action θ : G → Aut L on an even nondegenerate lattice L with σ+L = 3
is called geometric if it is almost geometric and the sublattice L•

= (LG
+ Lρ(Z))⊥

contains no roots, where ρ is a fundamental representation of θ .
Consider a geometric action θ , and fix an associated fundamental representation

ρ. If κ 6= 1, fix an element c ∈ G r G0, and denote by V ±
ρ and V ± its (±1)-

eigenspaces in Lρ(R) and Lρ(Q), respectively (Lemmas 2.6.3 and 2.6.4). Let M±
=

V ±
∩ L be the (±1)-eigenlattices of c in Lρ(Z). If ρ 6= 1, the spaces V ±

ρ and V ± are
hyperbolic. The following lemma is a straightforward consequence of Lemmas 2.6.3
and 2.6.4.

LEMMA 3.1.1
The subspaces V ±

ρ and V ± and the sublattices M± are G-characteristic; they are
G-invariant if and only if ord θ ≤ 2. If ρ 6= 1, there is a well-defined action of AutG L
on H (V ±

ρ ); it is discrete and, up to isomorphism, independent of the choice of an
element c ∈ G r G0.

In view of this lemma, one can consider corresponding G-actions and introduce the
following rational Dirichlet polyhedra.
• 01 ⊂ H (LG

⊗ R) is a rational Dirichlet polyhedron of WG((LG
⊕ L•)̂); it



SYMMETRIC K 3-SURFACES 17

is defined whenever ρ 6= 1, so that σ+LG
= 1.

• 0±
ρ ⊂ H (V ±

ρ ) are some rational Dirichlet polyhedra of WG((M±
⊕ L•)̂);

they are defined whenever ρ is real and κ 6= 1. (To define 0+
ρ , one needs to

assume, in addition, that ρ 6= 1, so that σ+M+
= 1.)

• 6±
ρ ⊂ H (V ±

ρ ) are some rational Dirichlet polyhedra of Aut0G(Lρ(Z)); they
are defined whenever ρ is nonreal and κ 6= 1.

Given a vector v ∈ L , put h(v) = {x ∈ L ⊗ R | x · v = 0}, and introduce the
following notation:
• h1(v) = h(v) ∩ (LG

⊗ R);
• if ρ is real and κ 6= 1, then h±

ρ (v) = h(v) ∩ V ±
ρ ;

• if ρ is nonreal, then hρ(v) = {x ∈ Lρ(R) | x · v = Jρx · v = 0}; if, besides,
κ 6= 1, then h±

ρ (v) = hρ(v) ∩ V ±
ρ .

We use the same notation h1(v) and h±
ρ (v) for the projectivizations of the corre-

sponding spaces in H (LG
⊗ R) and H (V ±

ρ ), respectively (whenever the space is
hyperbolic).

The goal of this section is to prove the following two theorems.

THEOREM 3.1.2
Let θ : G → Aut L be a geometric action, and let ρ be an associated fundamental
representation. If ρ 6= 1, then for any root v ∈ Lρ(Z)⊥ the intersection h1(v)∩ Int01

is empty. If ρ is real and κ 6= 1, then for any root v ∈ (LG
⊕ M∓)⊥ the intersection

h±
ρ (v)∩ Int0±

ρ is empty. (For 0+
ρ to be well defined, one needs to assume, in addition,

that ρ 6= 1.)

THEOREM 3.1.3
Let θ : G → Aut L be a geometric action with nonreal associated fundamental rep-
resentation ρ and κ 6= 1. Then 6±

ρ intersects finitely many distinct subspaces h±
ρ (v)

defined by roots v ∈ (LG)⊥.

Theorem 3.1.2 is proved at the end of Section 3.2. Theorem 3.1.3 is proved in Sec-
tion 3.6.

3.2. Walls in the invariant sublattice
THEOREM 3.2.1
Let N be an even lattice, and let G be a finite group acting on N so that (N G)⊥ ⊂ N
is negative definite. Let v ∈ N be a root whose projection to N G

⊗ R has negative
square. Then either
(1) the orthogonal complement (N G)⊥ contains a root, or
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(2) there is an element of WG(N ) whose restriction to N G is the reflection against
the hyperplane h(v) ∩ (N G

⊗ R).

COROLLARY 3.2.2
In the above notation, assume that N is hyperbolic and (N G)⊥ contains no roots. Then
for any root v ∈ N , the intersection of h(v) with the interior of a rational Dirichlet
polyhedron of WG(N ) in H (N G) is empty.

To prove Theorem 3.2.1 we need a few facts on automorphisms of root systems. Let R
be an even root system, and let G be a finite group acting on R. The action is called
admissible if the orthogonal complement (RG)⊥ contains no roots, and it is called
b-transitive if there is a root whose orbit generates R.

LEMMA 3.2.3
Given a finite group G action on an elliptic root system R, the following statements
are equivalent:
(1) the action is admissible;
(2) the action preserves a camera of R;
(3) the action factors through the action of a subgroup of the symmetry group of a

camera of R.

Proof
An action is admissible if and only if RG does not belong to a wall h(v) defined by a
root v ∈ R. On the other hand, RG contains an inner point of a camera if and only if
this camera is preserved by the action.

COROLLARY 3.2.4
Up to isomorphism, there are two faithful admissible b-transitive actions on irre-
ducible even root systems: the trivial action on A1 and a Z2-action on A2 interchang-
ing two roots u, v with u · v = 1.

Proof
The statement follows from Lemma 3.2.3, the classification of irreducible root sys-
tems, and the natural bijection between the symmetries of a camera and the symme-
tries of its Dynkin diagram.

Proof of Theorem 3.2.1
Pick a vector v as in the statement, and consider the sublattice R ⊂ N generated by
the orbit of v. Under the assumptions, R is an even root system, and the induced G-
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action on R is b-transitive. Assume that the action on R is admissible (as otherwise
(RG)⊥, and thus (N G)⊥, would contain a root). Then, in view of Corollary 3.2.4, the
lattice R splits into an orthogonal sum of several copies of either A1 or A2, and the
vector v̄ =

∑
g∈G g(v) has the form

∑
mi ai , mi ∈ Z, where each ai is a generator

of A1 or the sum of two generators of A2 interchanged by the action. Since the ai ’s
are mutually orthogonal roots, the composition of the reflections sai is the desired
automorphism of N .

Proof of Theorem 3.1.2
The statement for 01 follows immediately from Theorem 3.2.1 applied to N =

Lρ(Z)⊥. To prove the assertion for 0±
ρ , consider the induced G-action θw: G →

O(w), where w is as in the definition of an almost geometric action (Section 2.6),
and note that, under the hypotheses (ρ 6= 1 is real), θw factors through the abelian
subgroup C ⊂ O(w) generated by the central symmetry c and a reflection s. Thus,
the statement for 0+

ρ (resp., 0−
ρ ) follows from Theorem 3.2.1 applied to the lattice

N = (LG
⊕ M−)⊥ (resp., N = (LG

⊕ M+)⊥) with the twisted action g 7→ r(g)θ(g),
where r : G → {±1} is the composition of θw and the homomorphism c 7→ −1,
s 7→ 1 (resp., c 7→ −1, s 7→ −1).

3.3. The group AutG L
As before, let θ : G → Aut L be an almost geometric action, and let ρ be a fundamen-
tal representation of θ . Recall (Lemma 2.6.4) that the induced G-action on Lρ(Z)
factors through the group G ′

= Zn (if κ = 1) or Dn (if κ 6= 1), where n = ord θ > 2.
Let K be the cyclotomic field Q(exp(2π i/n)), and let k ⊂ K be the real part of K,
that is, the extension of Q obtained by adjoining the real parts of the primitive nth
roots of unity. Both K and k are abelian Galois extensions of Q. Denote by OK and O

the rings of integers of K and k, respectively. Unless specified otherwise, we regard k
and K as subfields of C via their standard embeddings. An isotypic k-representation
of G ′ corresponding to a pair of conjugate primitive nth roots of unity is called prim-
itive.

LEMMA 3.3.1
For any primitive irreducible k-representation ξ of G ′, the restriction homomorphism
AutG L → AutG Lξ (O) is well defined and its image has finite index. If L = Lξ (Z),
the restriction is a monomorphism.

Proof
In view of Lemmas 2.4.2 and 2.6.4, it suffices to consider the case when L = Lξ (Z)
and G = G ′. The restriction homomorphism is well defined as any G-equivariant
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isometry of Lξ (Z), after extension to Lξ (Z) ⊗ k, must preserve the k-isotypic sub-
spaces. It is a monomorphism since Lξ (Q) is the minimal Q-vector space such that
Lξ (Q)⊗ k contains Lξ (k). (If an element g ∈ AutG Lξ (Z) restricts to the identity of
Lξ (O), then Ker(g − id) is a Q-vector space with the above property; hence, it must
contain Lξ (Q).)

It remains to prove that, up to finite index, any G-equivariant O-automorphism g
of Lξ (O) extends to a G-equivariant automorphism of Lξ (Z) ⊗ O defined over Z.
Up to finite index, one has an orthogonal decomposition Lξ (Z) ⊗ O ⊃

⊕
Lξi (O),

the summation over all primitive irreducible representations ξi of G. For each such
representation ξi there is a unique element gi ∈ Gal(k/Q) such that ξi = giξ , and the
automorphism

⊕
gi gg−1

i of
⊕

Lξi (O) is Galois invariant, that is, defined over Z.

Now let κ 6= 1 (i.e., let G ′
= Dn). Put M±

ξ = V ±

ξ ∩ (L ⊗ O), and denote by Aut M±

ξ

the group of isometries of M±

ξ defined over O. (Note that V ±
ρ are defined over k and

thus can be regarded as subspaces of Lρ(k).)

LEMMA 3.3.2
For any primitive irreducible k-representation ξ of G ′

= Dn , the restriction homo-
morphism AutG Lξ (O) → Aut M±

ξ is a well-defined monomorphism, and its image
has finite index.

Proof
Again, it suffices to consider the case G = G ′. Obviously, any G-equivariant auto-
morphism of Lξ (O) preserves M±

ξ . To prove the converse (say, for M+

ξ ), note that,
up to a factor, the map Jξ is defined over k (as this is obviously true for an irreducible
representation, where dimk V +

ξ = dimk V −

ξ = 1); that is, there is a dilation J = k Jξ
of Lξ (k) interchanging V +

ξ and V −

ξ . Furthermore, the factor can be chosen so that
J (M−

ξ ) ⊂ M+

ξ . Since any extension of an isometry a ∈ Aut M+

ξ to Lξ (O) must
commute with J , on M+

ξ ⊕ M−

ξ it must be given by a ⊕ J−1a J ′. On the other hand,
due to Corollary 2.4.4, the latter expression does define an extension for all a in a
finite-index subgroup of Aut M+

ξ .

COROLLARY 3.3.3
The polyhedron 6±

ρ is the union of finitely many copies of a rational Dirichlet poly-
hedron of Aut M±

ρ in H ±
ρ .

3.4. Dirichlet polyhedra: The case ϕ(ord ρ) = 2
Recall that ϕ is the Euler function: ϕ(n) is the number of positive integers less than
n prime to n. Alternatively, ϕ(n) is the degree of the cyclotomic extension of Q of



SYMMETRIC K 3-SURFACES 21

order n. Consider a hyperbolic sublattice M ⊂ L , and denote by H = H (M ⊗ R)
the corresponding hyperbolic space. Given a vector v ∈ M , let

hM (v) =
(

h(v) ∩ C (M ⊗ R)
)
/R∗

⊂ H .

LEMMA 3.4.1
Let ` ⊂ H be a line whose closure intersects the absolute ∂H at rational points.
Then for any integer a there are at most finitely many vectors v ∈ M such that v2

= a
and the hyperplane hM (v) intersects `.

Proof
Let u1, u2 ∈ M be some vectors corresponding to the intersection points ` ∩ ∂H .
Then u1, u2 span a (scaled) hyperbolic plane U ⊂ M and the orthogonal complement
U⊥

⊂ M is elliptic. Therefore, U ⊕ U⊥ is of finite index d in M .
Let v be a vector as in the statement. Since hM (v) intersects `, one has v =

λbu1 + (λ−1)bu2 +v′ for some v′
∈

1
d U⊥ and λ ∈ (0, 1). Thus, the equation v2

= a
turns into −b2λ(1 − λ) + (v′)2 = a. Since dv′ belongs to a negative definite lattice,
λ(1 − λ) > 0, and both λbd and (1 − λ)bd are integers, this equation has finitely
many solutions.

COROLLARY 3.4.2
Let Q ⊂ H be a polyhedron whose closure in H ∪ ∂H is a convex hull of finitely
many rational points. Then for any integer a there are at most finitely many vectors
v ∈ M such that v2

= a and the hyperplane hM (v) intersects Q.

Proof
Each edge of Q either is a compact subset of H or has a rational endpoint on the
absolute. In the former case, since the hyperplanes hM (v) form a discrete set, the
edge intersects finitely many of them. In the latter case, both the intersection points
of the absolute and the line containing the edge are rational, and the edge intersects
finitely many hyperplanes hM (v) due to Lemma 3.4.1. Finally, if a hyperplane does
not intersect any edge of Q, it contains at least dim H vertices of Q at the absolute
and is determined by those vertices. Since Q has finitely many vertices, the number
of such hyperplanes is also finite.

COROLLARY 3.4.3 (of Corollaries 3.4.2 and 2.5.2)
Assume that κ 6= 1 and ϕ(ord θ) = 2 (so that M±

ρ are defined over Z), and let 5±
ρ

be some rational Dirichlet polyhedra of Aut M±
ρ in H ±

ρ . Then for any integer a there
are at most finitely many vectors v ∈ M±

ρ such that v2
= a and the subspace h±

ρ (v)

intersects 5±
ρ or Jρ(5∓

ρ ).
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3.5. Dirichlet polyhedra: The case ϕ(ord θ) ≥ 4
Recall that an algebraic number field F has exactly deg(F/Q) distinct embeddings
to C. Denote by r(F) the number of real embeddings (i.e., those whose image is
contained in R), and denote by c(F) the number of pairs of conjugate nonreal ones.
Clearly, r(F)+ 2c(F) = deg F . The following theorem is due to Dirichlet (see, e.g.,
[BSh]).

THEOREM 3.5.1
The rank of the group of units (i.e., invertible elements of the ring of integers) of an
algebraic number field F is r(F)+ c(F)− 1.

Let n = ord θ , and assume that ϕ(n) ≥ 4. Let k, O, and M±
ρ be as in Section 3.3.

Note that r(k) = deg k = ϕ(n)/2 ≥ 2 and c(k) = 0.

LEMMA 3.5.2
If κ 6= 1, ϕ(n) ≥ 4, and dimk V ±

ρ = 2, then the rational Dirichlet polyhedra of
Aut M±

ρ in H ±
ρ are compact.

Proof
Since H ±

ρ are hyperbolic lines, it suffices to show that the groups Aut M±
ρ are infinite.

Consider one of them, say, Aut M+
ρ . The lattice M+

ρ contains a finite-index sublattice
M ′ whose Gramm matrix (after, possibly, dividing the form by an element of O) is of
the form [

0 1
1 0

]
or

[
1 0
0 −d

]
with d > 0 and

√
d /∈ k.

In the former case (which occurs if the form represents zero over k), the automor-
phisms of M ′ are of the form

Aλ =

[
±λ 0
0 ±1/λ

]
,

where λ ∈ O∗ is a unit of k. Thus, in this case, Aut M+
ρ contains a free abelian group

of rank r(k)− 1 > 0.
In the latter case, the automorphisms of M ′ are of the form[

±1 0
0 ±1

]
or Bλ =

[
α dβ
β α

]
,

where α, β ∈ O and λ = α + β
√

d is a unit of F = k(
√

d) such that α2
− β2d = 1.

We show that the group of such units is at least Z.
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The map µ: α + β
√

d 7→ α2
− β2d is a homomorphism from the group of units

of F to the group of units of k, and its cokernel is finite. As d > 0, the quadratic
extension F of k has at least two real embeddings to C, that is, r(F) ≥ 2. Since
r(F)+ 2c(F) = 2 deg k = 2r(k), one has∗ rk Kerµ = r(F)/2 ≥ 1.

The coefficients α, β of all integers α+β
√

d of F have “bounded denominators”;
that is, α, β ∈

1
N O for some N ∈ N (since the abelian group generated by α’s and

β’s has finite rank and O has maximal rank). Hence, for any λ ∈ Kerµ, the map Bλ
defines an isometry of V + taking N · M ′ into M ′, and Lemma 2.4.3 applies.

Remark. Note that if ϕ(n) > 4, the form cannot represent zero over k. Indeed, Aut M±
ρ

would otherwise contain a free abelian group of rank at least 2, which would contra-
dict the discreteness of the action.

The next theorem (as well as Lemma 3.5.2) can probably be deduced from the Gode-
ment criterion. We chose to give here an alternative self-contained proof.

THEOREM 3.5.3
If κ 6= 1 and ϕ(n) ≥ 4, then the rational Dirichlet polyhedra of Aut M±

ρ in H ±
ρ are

compact.

Proof
Let m = dimk V ±

ρ . The assertion is obvious if m = 1, and it is the statement of
Lemma 3.5.2 if m = 2. If m > 2 and a rational Dirichlet polyhedron 5 ⊂ H +

ρ is
not compact, one can find a line H ′

= H (V ′
⊗k R), V ′

⊂ V +

ξ , such that 5 ∩ H ′

is not compact. (If 5 = H +
ρ , one can take for V ′ any hyperbolic 2-subspace. Other-

wise, one can replace5 with one of its noncompact facets and proceed by induction.)
Applying Lemma 3.5.2 to M ′

= V ′
∩ Lρ(O), one concludes that the polyhedron

5′
⊂ H ′ of Aut M ′ is compact. On the other hand, in view of Lemma 2.4.2,5∩H ′

must be a finite union of copies of 5′.

COROLLARY 3.5.4
Assume that κ 6= 1 and ϕ(ord θ) ≥ 4, and let 5±

ρ be some rational Dirichlet polyhe-
dra of Aut M±

ρ in H ±
ρ . Then for any integer a there are at most finitely many vectors

v ∈ M± such that v2
= a and the subspace h±

ρ (v) intersects 5±
ρ or Jρ(5∓

ρ ).

∗In fact, under the assumption on the signature of the form, F has exactly two real embeddings to C, namely,
k(

√
d) and k(−

√
d). In particular, modulo torsion one has Kerµ = Z. Indeed, the other embeddings are

k(±
√

g(d)), where g ∈ Gal(k/Q) and g 6= 1, and since all spaces Lgρ(k) are negative definite, one has
g(d) < 0.



24 DEGTYAREV, ITENBERG, and KHARLAMOV

3.6. Proof of Theorem 3.1.3
In view of Corollary 3.3.3, one can replace 6±

ρ in the statement with the rational
Dirichlet polyhedra 5±

ρ of Aut M± in H ±
ρ .

For a root v ∈ (LG)⊥, denote by v± its projections to V ± (the (±1)-eigenspaces
of c on Lρ(Q)⊗ R), and denote by v±

ρ its projections to V ±
ρ . The projections v± are

rational vectors with uniformly bounded denominators; that is, there is an integer N ,
depending only on θ , such that Nv±

∈ M±. Under the assumption (ρ is nonreal and
κ 6= 1), the set h+

ρ (v) is not empty if and only if each of v±
ρ either is trivial or has

negative square. In any case, (v±
ρ )

2
≤ 0 and, hence, (v±)2 ≤ 0. Thus, the squares

(Nv±)2 take finitely many distinct integral values, and the statement of the theorem
follows from Corollaries 3.4.3 and 3.5.4.

4. The proof

4.1. Period spaces related to K 3-surfaces
Let L = 2E8⊕3U . Consider the variety Per of positive definite 3-subspaces in L ⊗R.
It is a homogeneous symmetric space (of noncompact type)

Per = SO+(3, 19)/SO(3)× SO(19).

The orthogonal projection of a positive definite 3-subspace to another one is nonde-
generate. Hence, one can orient all the subspaces in a coherent way; this gives an
orientation of the canonical 3-dimensional vector bundle over Per. In what follows
we assume that such an orientation is fixed; the corresponding orientation of a space
w ∈ Per is referred to as its prescribed orientation.

Given a vector v ∈ L with v2
= −2, let hv ⊂ Per be the set of the 3-subspaces

orthogonal to v. Put
Per0 = Per r

⋃
v∈L , v2=−2

hv.

The space Per0 is called the period space of marked Einstein K 3-surfaces.
There is a natural S2-bundle K� → Per, where

K� =
{
(w, γ )

∣∣ w ∈ Per, γ ∈ w, γ 2
= 1

}
.

The pullback K�0 of Per0 is called the period space of marked Kähler K 3-surfaces.
Finally, let � be the variety of oriented positive definite 2-subspaces of L ⊗ R; it is
called the period space of marked K 3-surfaces. One can identify � with the projec-
tivization {

ω ∈ L ⊗ C
∣∣ω2

= 0, ω · ω̄ > 0
}
/C∗, (4.1.1)

associating to a complex line generated by ω the plane {Re(λω) | λ ∈ C} with the
orientation given by a basis Reω, Re iω. Thus,� is a 20-dimensional complex variety,
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which is an open subset of the quadric defined in the projectivization of L⊗C by ω2
=

0. The spaces K�0 and Per0 are (noncompact) real analytic varieties of dimensions 59
and 57, respectively.

4.2. Period maps
A marking of a K 3-surface X is an isometry ϕ: H2(X) → L . It is called admissible if
the orientation of the space w = 〈Reϕ(ω), Imϕ(ω), ϕ(γ )〉, where ω ∈ H2,0(X) and
γ is the fundamental class of a Kähler structure on X , coincides with its prescribed
orientation. A marked K 3-surface is a K 3-surface X equipped with an admissible
marking. Two marked K 3-surfaces (X, ϕ) and (Y, ψ) are isomorphic if there exists a
biholomorphism f : X → Y such that ψ = ϕ ◦ f ∗. Denote by T the set of isomor-
phism classes of marked K 3-surfaces.

The period map per : T → � sends a marked K 3-surface (X, ϕ) to the 2-
subspace {Reϕ(ω) | ω ∈ H2,0(X)}, the orientation given by (Reϕ(ω),Reϕ(iω)).
(We always use the same notation ϕ for various extensions of the marking to other
coefficient groups.) Alternatively, per(X, ϕ) is the line ϕ(H2,0(X)) in the complex
model (4.1.1) of �.

A marked polarized K 3-surface (see the discussion in Section 1.4) is a K 3-
surface X equipped with the fundamental class γX of a Kähler structure and an ad-
missible marking ϕ: H2(X) → L . Two marked polarized K 3-surfaces (X, ϕ, γX )

and (Y, ψ, γY ) are isomorphic if there exists a biholomorphism f : X → Y such that
ψ = ϕ ◦ f ∗ and f ∗(γY ) = γX . Denote by KT the set of isomorphism classes of
marked polarized K 3-surfaces.

The period map perK : KT → K� sends a triple (X, ϕ, γX ) ∈ KT to the point
(w, ϕ(γX )) ∈ K�, where w = per(X, ϕ)⊕ ϕ(γX ) ∈ Per is as above. When this does
not lead to confusion, we abbreviate perK (X, ϕ, γX ) as perK (X).

As is known (see [PS] and [Ku], or [Siu]), the period map perK is a bijection
to K�0, and the image of per is �0. Moreover, K�0 is a fine period space of marked
polarized K 3-surfaces; that is, the following statement holds (see [B]).

THEOREM 4.2.1
The space K�0 is the base of a universal smooth family of marked polarized K 3-
surfaces, that is, a family p: 8 → K�0 such that any other smooth family p′: X → S
of marked polarized K 3-surfaces is induced from p by a unique smooth map S →

K�0. The latter is given by s 7→ perK (Xs), where Xs is the fiber over s ∈ S.

Since the only automorphism of a K 3-surface identical on the homology is the iden-
tity (see [PS]), Theorem 4.2.1 can be rewritten in a slightly stronger form.
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THEOREM 4.2.2
For any smooth family p′: X → S of marked polarized K 3-surfaces, there is a unique
smooth fiberwise map X → 8 (see Theorem 4.2.1) that covers the map S → K�0,
s 7→ perK (Xs), of the bases and is an isomorphism of marked polarized K 3-surfaces
in each fiber.

COROLLARY 4.2.3
Let (X, γX ) and (Y, γY ) be two polarized K 3-surfaces, and let g: H2(Y ) → H2(X)
be an isometry such that g(γY ) = γX . Then we have the following.
(1) If g(H2,0(Y )) = H2,0(X), then g is induced by a unique holomorphic map

X → Y , which is a biholomorphism.
(2) If g(H2,0(Y )) = H0,2(X), then −g is induced by a unique antiholomorphic

map X → Y , which is an antibiholomorphism.

4.3. Equivariant period spaces
In this section we construct the period space of marked polarized K 3-surfaces with a
G-action of a given homological type. Recall that we define the homological type as
the class of the twisted induced action θX : G → Aut H2(X) modulo conjugation by
elements of Aut H2(X). A marking takes θX to an action θ : G → Aut L . Note in this
respect that, since we work with admissible markings only, it would be more natural
to consider θX up to conjugation by elements of the subgroup Aut L ∩ O+(L ⊗ R).
However, this stricter definition would be equivalent to the original one as the central
element − id ∈ Aut L belongs to O−(L ⊗ R).

PROPOSITION 4.3.1
Let X be a K 3-surface supplied with a Klein action of a finite group G. Then the
twisted induced action θX : G → Aut H2(X) is geometric, and the augmentation
κ: G → {±1} and the pair ρ, ρ̄: G0

→ S1 of complex conjugated fundamental
representations introduced in Section 1.7 coincide with those determined by θX (see
Section 2.6).

Proof
Since G is finite, X admits a Kähler metric preserved by the holomorphic elements
of G and conjugated by the antiholomorphic elements. Take for γX the fundamental
class of such a metric. Pick also a holomorphic form on X , and denote by ω its coho-
mology class. Let w be the space spanned by γX , Reω, and Imω, and let ` ⊂ w be
the subspace generated by γX . Then the flag ` ⊂ w attests the fact that θX is almost
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geometric, and this flag can be used to define κ and ρ. As γX and ω cannot be simul-
taneously orthogonal to an integral vector v ∈ H2(X) of square (−2), the action is
geometric.

Let θ : G → Aut L be an almost geometric action on L . The assignment g: w 7→

κ(g)g(w), where g ∈ G and −w stands for w with the opposite orientation, defines
a G-action on the space Per. Denote by PerG the subspace of the G-fixed points, and
let PerG

0 = PerG
∩ Per0. There is a natural map K�G

→ PerG , where

K�G
=

{
(w, γ )

∣∣ w ∈ PerG, γ ∈ wG, γ 2
= 1

}
with wG standing for the G-invariant part of w. Put K�G

0 = {(w, γ ) ∈ K�G
| w ∈

PerG
0 }, and denote by �G (resp., �G

0 ) the image of K�G (resp., K�G
0 ) under the

projection K� → �. The following statement is a paraphrase of the definitions.

PROPOSITION 4.3.2
An almost geometric action θ : G → Aut L is geometric if and only if the space K�G

0
(as well as PerG

0 and �G
0 ) is nonempty.

Let (X, ϕ) be a marked K 3-surface. We say that a Klein G-action on X and an action
θ : G → Aut L are compatible if for any g ∈ G one has θX g = ϕ−1

◦ θg ◦ ϕ, where
θX : G → Aut H2(X) is the twisted induced action. If a marking is not fixed, we say
that a Klein G-action on X is compatible with θ if X admits a compatible admissible
marking, that is, if θX is isomorphic to θ .

PROPOSITION 4.3.3
An action θ : G → L is compatible with a Klein G-action on a marked K 3-surface
if and only if θ is geometric. Furthermore, K�G

0 is a fine period space of marked
polarized K 3-surfaces with a Klein G-action compatible with θ ; that is, it is the base
of a universal smooth family of marked polarized K 3-surfaces with a Klein G-action
compatible with θ .

Proof
The “only if” part follows from Proposition 4.3.1, and the “if” part from Corol-
lary 4.2.3 and Proposition 4.3.2. The fact that K�G

0 is a fine period space is an im-
mediate consequence of Theorem 4.2.2.

PROPOSITION 4.3.4
Let κ: G → {±1} be the augmentation, and let ρ: G0

→ S1 be a fundamental repre-
sentation associated with θ . If ρ = 1, then the spaces K�G and �G are connected.
If ρ 6= 1, then the space K�G (resp., �G) consists of two components, which are
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transposed by the involution (w, γ ) 7→ (w,−γ ) (resp., the involution reversing the
orientation of 2-subspaces). If, besides, ρ 6= ρ̄, the two components of K�G (or �G)
are in a one-to-one correspondence with the two fundamental representations ρ, ρ̄.

Proof
Since Per is a hyperbolic space and G acts on Per by isometries, the space PerG is
contractible. The projections K�G

→ PerG and K�G
0 → PerG

0 are (trivial) S p-
bundles, where p = 0 if ρ 6= 1, p = 1 if ρ = 1 and κ 6= 1, and p = 2 if ρ = 1
and κ = 1. Finally, since each space w ∈ Per has its prescribed orientation, a choice
of a G-invariant vector γ ∈ w determines an orientation of γ⊥

⊂ w and hence a
fundamental representation.

4.4. The moduli spaces
Fix a geometric action θ : G → Aut L , and consider the space KMG

=

K�G
0 /AutG L . In view of Proposition 4.3.3, it is the “moduli space” of polarized K 3-

surfaces with Klein G-actions compatible with θ . Given such a surface (X, γX ), pick a
marking ϕ: H2(X) → L compatible with θ , and denote by mK (X, γX ) = mK (X) the
image of perK (X, ϕ, γX ) in KMG . Since any two compatible markings differ by an
element of AutG L , the point mK (X, γX ) is well defined. The following statement is
an immediate consequence of Proposition 4.3.3 and the local connectedness of K�G

0 .

PROPOSITION 4.4.1
Let (X, γX ) and (Y, γY ) be two polarized K 3-surfaces with Klein G-actions compat-
ible with θ . Then X and Y are G-equivariantly deformation equivalent if and only if
mK (X) and mK (Y ) belong to the same connected component of KMG .

In Lemmas 4.4.2 – 4.4.7 we give a more detailed description of period and moduli
spaces. We use the notation of Section 3.1.

LEMMA 4.4.2 (The case ρ = 1, κ = 1)
If ρ = 1 and κ = 1, then K�G

0
∼= (H (LG) r 1) × S2, where codim1 ≥ 3. In

particular, K�G
0 and hence KMG are connected.

LEMMA 4.4.3 (The case ρ = 1, κ 6= 1)
If ρ = 1 and κ 6= 1, then KMG is a quotient of the connected space ((H (LG) ×

Int0−
ρ )r1)× S1, where codim1 ≥ 2. In particular, KMG is connected.

LEMMA 4.4.4 (The case ρ 6= 1 real, κ = 1)
If ρ 6= 1 is real and κ = 1, then KMG is a quotient of the two-component space
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(
(Int01 × H (Lρ(R)))r1

)
× S0, where codim1 ≥ 2. In particular, KMG has at

most two connected components, which are interchanged by the complex conjugation
X 7→ X̄ .

LEMMA 4.4.5 (The case ρ 6= 1 real, κ 6= 1)
If ρ 6= 1 is real and κ 6= 1, then KMG is a quotient of the two-component space(
(Int01×Int0+

ρ ×Int0−
ρ )r1

)
×S0, where codim1 ≥ 2. In particular, KMG has at

most two connected components, which are interchanged by the complex conjugation
X 7→ X̄ .

LEMMA 4.4.6 (The case ρ nonreal, κ = 1)
If ρ is nonreal and κ = 1, then KMG is a quotient of the two-component space
((Int01 × PJ Cρ) r 1) × S0, where PJ Cρ is the space of positive definite (over R)
Jρ-complex lines in Lρ(R) and codim1 ≥ 2. In particular, KMG has at most two
connected components, which are interchanged by the complex conjugation X 7→ X̄ .

LEMMA 4.4.7 (The case ρ nonreal, κ 6= 1)
If ρ is nonreal and κ 6= 1, then KMG is a quotient of the space ((Int01 × 6+

ρ ) r
1)× S0, where 1 is the union of a subset of codimension at least 2 and finitely many
hyperplanes of the form Int01 × (h±

ρ (v) ∩ 6+
ρ ) defined by roots v ∈ (LG)⊥. This

space has finitely many connected components; hence, so does KMG .

Proof of Lemmas 4.4.2 – 4.4.5
One has
• PerG

= H (LG
⊗ R) in Lemma 4.4.2 (i.e., ρ = 1, κ = 1),

• PerG
= H (LG

⊗ R)× H (V −
ρ ) in Lemma 4.4.3 (i.e., ρ = 1, κ 6= 1),

• PerG
= H (LG

⊗ R)× H (Lρ(R)) in Lemma 4.4.4, (i.e., ρ 6= 1 real, κ = 1),
and

• PerG
= H (LG

⊗ R)× H (V +
ρ )× H (V −

ρ ) in Lemma 4.4.5 (i.e., ρ 6= 1 real,
κ 6= 1).

Thus, in each case, PerG is a product
∏

H (L i ⊗ R) of the hyperbolic spaces of
orthogonal indefinite sublattices L i ⊂ L such that

⊕
i L i ⊕ L• is a finite-index sub-

lattice in L . Consider the quotient Q0 = PerG
0 /W , where W =

∏
Wi (the product

in WG(L)) and Wi = 1 if σ+L i > 1 or Wi = WG((L i ⊕ L•)̂) if σ+L i = 1. The
quotient Q0 can be identified with a subspace of Q =

∏
Int0i , where 0i is a fun-

damental Dirichlet polyhedron of Wi in H (L i ⊗ R). (Note that 0i = H (L i ⊗ R)
unless σ+L1 = 1.) Put1 = Q r Q0; it is the union of the walls hv ∩Q over all roots
v ∈ L .

For a root v ∈ L , one has codim(hv ∩ Q) ≥
∑
σ+L i , the summation over
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all i such that the projection of v to L i is nontrivial. Thus, a wall hv ∩ Q may have
codimension 1 only if v ∈ (L i ⊕ L•)̂ and σ+L i = 1. However, in this case hv∩Q =

∅ due to Theorem 3.1.2. Hence, codim1 ≥ 2 and the space Q0 is connected.

Proof of Lemma 4.4.6
In this lemma, PerG

0 /WG((LG
⊕ L•)̂) can be identified with a subset of Int01 ×

PJ Cρ , and the proof follows the lines of the proof of Lemmas 4.4.2 – 4.4.5.

Proof of Lemma 4.4.7
One has PerG

= H (LG
⊗ R) × H (V +

ρ ), and the quotient space Q0 =

PerG
0 /(WG(Lρ(Z)⊥) · Aut0G(Lρ(Z)) can be identified with a subset of Int01 × 6+

ρ .
Now the statement follows from Theorems 3.1.2 and 3.1.3.

4.5. Proofs of Theorems 1.7.1 and 1.7.2
Theorem 1.7.2 follows from Lemmas 4.4.2 – 4.4.6. Theorem 1.7.1 consists, in fact, of
two statements: finiteness of the number of equivariant deformation classes within
a given homological type of G-actions (of a given group G), and finiteness of the
number of homological types of faithful actions. The former is a direct consequence
of Lemmas 4.4.2 – 4.4.7. The latter is a special case of the finiteness of the number of
conjugacy classes of finite subgroups in an arithmetic group (see [BH] and [Bo]).

5. Degenerations

5.1. Passing through the walls
Let L = 2E8⊕3U . Consider a geometric G-action θ : G → Aut L . Pick a G-invariant
elliptic root system R ⊂ L . Denote by R̄ the sublattice of L generated by all roots in
(R + L•) .̂ Clearly, R̄ is a G-invariant root system; it is called the θ -saturation of R.
We say that R is θ -saturated if R = R̄. Any θ -saturated root system R is saturated,
that is, R contains all roots in R .̂

Fix a camera C of R̄, and denote by SC its group of symmetries. Then, for any
g ∈ G, the restriction of θg to R̄ admits a unique decomposition sgwg , sg ∈ SC ,
wg ∈ W (R̄). Let θR(g) = (θg)w−1

g ∈ Aut L with wg extended to L identically on
R̄⊥. We call the map θR : G → Aut L the degeneration of θ at R.

PROPOSITION 5.1.1
The map θR is a geometric G-action. Up to conjugation by an element of W (R̄), it
does not depend on the choice of a camera C of R̄ and is the only action with the
following properties:
(1) the action induced by θR on R̄ is admissible;
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(2) θ and θR induce the same action on each of the following sets: R̄⊥, discr R̄,
and the set of irreducible components of R̄.

Conversely, if R̄ ⊂ L is a saturated root system and θR: G → L is an action satisfying
(1) and (2) above, then R̄ is θ -saturated and θR is a degeneration of θ at R̄.

Proof
Clearly, both θ and θR factor through a subgroup of Aut R̄ × Aut R̄⊥. The compo-
sition of θR with the projection to Aut R̄⊥ coincides with that of θ ; the composition
of θR with the projection to Aut R̄ is the composition of θ , the projection to Aut R̄,
and the quotient homomorphism Aut R̄ → SC ⊂ Aut R̄. Hence, θR is a homomor-
phism. Furthermore, another choice of a camera C ′ of R̄ leads to another represen-
tation Aut R̄ → SC ′ ⊂ Aut R̄, which is conjugated to the original one by a unique
element w0 ∈ W (R̄); the latter can be regarded as an automorphism of L .

All other statements follow directly from the construction. For the uniqueness
part, it suffices to notice that, for any irreducible root system R′ and a camera C ′ of
R′, the natural homomorphism SC ′ → Aut discr R′ is a monomorphism.

PROPOSITION 5.1.2
Let R be a θ -saturated root system, and let R′

⊂ R be the sublattice generated by all
roots in R∩(LG)⊥. Then, up to conjugation by an element of W (R), the degenerations
θR and θR′ coincide. In particular, θR can be chosen to coincide with θ on (R′)⊥.

Proof
Take for C a camera adjacent to the intersection of the mirrors defined by the roots
of R′. Then C has an invariant face (possibly empty), and the decomposition θg|R =

sgwg has wg ∈ W (R′) for any g ∈ G.

If the action is properly Klein, one can take for R the θ -saturated root system generated
by all roots in (LG)⊥ orthogonal to a given wall h+

ρ (v). The resulting degeneration is
called the degeneration at the wall h+

ρ (v).

Remark. The degeneration construction gives rise to a partial order on the set of ho-
mological types of geometric actions of a given finite group G.

5.2. Degenerations of K 3-surfaces
Let (G, κ) be an augmented group. Denote by Dε the disk {s ∈ C | |s| < ε}. The
composition of κ and the {±1}-action via the complex conjugation s 7→ s̄ is a Klein
G-action on Dε. A G-equivariant degeneration of K 3-surfaces is a nonsingular com-
plex 3-manifold X supplied with a Klein G-action and a G-equivariant (with respect
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to the above G-action on Dε) proper analytic map p: X → Dε so that the following
requirements are satisfied.
• The projection p has no critical values except s = 0.
• The fibers Xs = p−1(s) of p are normal K 3-surfaces, nonsingular unless

s = 0.
(By a singular K 3-surface we mean a surface whose desingularization is K 3.) Given
a degeneration X , denote by πs : X̃s → Xs , s ∈ Dε, the minimal resolution of singu-
larities of Xs (see, e.g., [L]). (Note that X̃s = Xs unless s = 0.) From the uniqueness
of the minimal resolution, it follows that any Klein action lifts from Xs to X̃s . Thus,
if either κ = 1 or s is real, X̃s inherits a natural Klein action of G.

THEOREM 5.2.1
Let p: X → Dε be a G-equivariant degeneration of K 3-surfaces. Pick a regular
value t ∈ Dε real if κ 6= 1. Denote by R ⊂ H2(X t ) the subgroup Poincaré dual
to the kernel of the inclusion homomorphism H2(X t ) → H2(X) = H2(X0). Then
R is a saturated elliptic root system and the twisted induced G-action on H2(X̃0) is
isomorphic to the degeneration at R of the twisted induced G-action on H2(X t ).

Remark. A statement analogous to Theorem 5.2.1 holds, in a more general situation,
for a family of complex surfaces whose singular fiber at s = 0 has at worst simple
singularities, that is, those of type An , Dn , E6, E7, or E8. The only difference is the
fact that one can no longer claim that the root system R is saturated, and one should
consider the degeneration at R without passing to its saturation first. (In particular, the
algebraic definition of degeneration should be changed. Our choice of the definition,
incorporating the saturation operation, was motivated by our desire to assure that the
result should be a geometric action.) The proof given below applies to the general
case with obvious minor modifications.

Proof
It is more convenient to switch to the twisted induced actions θs in the homology
groups H2(Xs), s ∈ Dε; they are Poincaré dual to the twisted induced actions in the
cohomology.

Let ιs : H2(X̃s) → H2(X), s ∈ Dε, be the composition of (πs)∗ and the inclusion
homomorphism. Put Rs = Ker ιs . Consider sufficiently small G-invariant open balls
Bi ⊂ X about the singular points of X0, and let B =

⋃
Bi . One can assume that t

is real and sufficiently small, so that Mi = X t ∩ Bi are Milnor fibers of the singular
points. Then there is a G-equivariant diffeomorphism d ′: X t r B → X0 r B.

Recall that all singular points of the K 3-surface X0 are simple and that R0 is a
saturated elliptic root system (Lemma 5.2.2). In particular, d ′ extends to a diffeomor-
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phism d: X t → X̃0. Note that neither d nor the induced isomorphism d∗: H2(X t ) →

H2(X̃0) is canonical and that d∗ does not need to be G-equivariant. However, d∗ does
preserve the G-action on the sets of irreducible components of the root systems Rt ,
R0 (as it is just the G-action on the set of singular points of X0), and in view of natural
identifications R⊥

s = H2(Xs r B)/Tors and discr Rs = H1(∂(Xs r B)), s = t, 0,
and the fact that d ′ commutes with G, the restrictions of d∗ to R⊥

t and discr Rt are
G-equivariant. Finally, the action induced by θ0 on R0 is admissible; it preserves the
camera defined by the exceptional divisors in X̃0 (Lemma 3.2.3). Thus, after identi-
fying H2(X t ) and H2(X̃0) via d∗, the actions θ = θt and θR = θ0 have properties (1)
and (2) from Proposition 5.1.1, and Proposition 5.1.1 implies that θ0 is the degenera-
tion of θt at Rt .

For completeness, we outline the proof of the following lemma, which refines the
well-known fact that a K 3-surface can have at worst simple singular points.

LEMMA 5.2.2
Let X be a K 3-surface. Then any negative definite sublattice R ⊂ H2(X) generated
by classes of irreducible curves is a saturated root system.

Proof
As follows from the adjunction formula, any irreducible curve C ⊂ X of nega-
tive self-intersection is a (−2)-curve, that is, a nonsingular rational curve of self-
intersection (−2). Thus, any sublattice R as in the statement is an elliptic root system
generated by classes of irreducible (−2)-curves.

From the Riemann-Roch theorem it follows that, given a root r ∈ Pic X , there
is a unique (−2)-curve C ⊂ X whose cohomology class is ±r . Thus, the set of all
roots in Pic X splits into disjoint union 1+ ∪ 1−, where 1+ is the set of effective
roots (those realized by curves) and 1− = −1+. Furthermore, the set 1+ is closed
with respect to positive linear combinations, and the function #: 1+ → N counting
the number of components of the curve representing a root r ∈ 1+ is a well-defined
homomorphism in the sense that, whenever a root r is decomposed into

∑
airi for

some ri ∈ 1+ and ai ∈ N, one has r ∈ 1+ and #r =
∑

ai #ri . (Note that, if X
is algebraic, the roots r ∈ 1+ with #r = 1 define the walls of the rational Dirichlet
polyhedron of Aut Pic X in H (Pic X ⊗ R) containing the fundamental class of a
Kähler structure; see, e.g., [PS] or [DIK]. If X is nonalgebraic, they define the walls
of a distinguished camera of Pic X .)

Now let R ∈ Pic X be a root system as in the statement, and let R̄ ⊃ R be its
saturation in Pic X . Consider the subsets 1̄± = R̄ ∩1±. They form a partition of the
set of roots of R̄, one has 1̄− = −1̄+, and 1̄+ is closed with respect to positive linear
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combinations. Hence, there is a unique camera C of R̄ such that 1̄+ is the set of roots
positive with respect to C (see, e.g., [Bou]); this means that the roots r1, . . . , rk ∈ 1̄+

defining the walls of C form a basis of R̄ and each root r ∈ 1̄+ is a positive linear
combination of the ri ’s. Hence, any root r ∈ 1̄+ with #r = 1 must be one of the ri ’s.
Since R is generated by such roots, one has R = R̄.

6. Are K 3-surfaces quasi-simple?

6.1. KMG with walls
Here we construct an example of a geometric action of the group G = D3 (with ρ
nonreal and κ 6= 1) whose associated space KMG has more than two components
(i.e., the action of AutG L on the set of connected components of PerG

0 is not tran-
sitive). This shows that the assumptions on the action in Theorem 1.7.2 cannot be
removed. However, the resulting Klein actions on K 3-surfaces are not diffeomorphic
(Proposition 6.2.1), that is, they do not constitute a counterexample to quasi-simplicity
of K 3-surfaces.

PROPOSITION 6.1.1
There is a homological type of D3-action on L ∼= 3U ⊕ 2E8 realizable by six D3-
equivariant deformation classes of K 3-surfaces. More precisely, there is a geometric
action of G = D3 on L such that the corresponding moduli space KMG consists of
three pairs of complex conjugate connected components.

Proof
Fix a decomposition L = P ⊕ Q, where P ∼= 2U and Q ∼= U ⊕ 2E8. Define a
D3-action on L as follows. On Q, the Z3 part of D3 acts trivially, and each nontrivial
involution of D3 acts via multiplication by −1. On P , fix a basis u1, v1, u2, and v2 so
that u2

i = v2
i = 0, ui · vi = 1, and ui · u j = vi · v j = ui · v j = 0 for i 6= j . Choose

an order 3 element t and an order 2 element s in D3, and define their action on P by
the matrices

T =


0 0 −1 0
0 −1 0 −1
1 0 −1 0
0 1 0 0

 , S =


0 0 1 0
1 0 0 1
1 0 0 0
0 1 −1 0

 ,
respectively. Note that L• is trivial. Hence, according to Proposition 4.3.3, the con-
structed D3-action on L is realizable by a Klein D3-action on a K 3-surface.

The associated fundamental representation of the constructed action is nonreal.
Hence, KMG ∼= (PerG

0 /AutG L)× S0, and it suffices to show that PerG
0 /AutG L has

three connected components.
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One has LG
= Q and Lρ(Z) = P . The lattice M+ (the (+1)-eigenlattice of s)

is generated by w1 = u1 + v1 + u2 and w2 = u1 + u2 − v2, and one has w2
1 = 2,

w2
2 = −2, and w1 · w2 = 0. We assert that the only nontrivial automorphism of M+

that extends to an equivariant automorphism of P is the multiplication by −1; thus,
AutG P = {±1}. Indeed, Aut M+ consists of the four automorphisms w1 7→ ε1w1,
w2 7→ ε2w2, where ε1, ε2 = ±1, and the equivariant extension to P ⊗ Q is uniquely
given by the additional conditions t (wi ) 7→ εi t (wi ). If ε1 6= ε2, the extension is not
integral.

Thus, the action of AutG L on H + is trivial, the fundamental do-
main 6+

ρ coincides with H +, and, in view of Theorem 4.4.7, one has
PerG

0 /AutG L = (0̃1 × H +)r1, where 0̃1 = Int01/Aut Q and 1 is the union
of a subset of codimension at least 2 and the hyperplanes 0̃1 × h±

ρ (v) defined by roots
v ∈ P . (Since dim H +

= 1, each nonempty set h±
ρ (v) is a hyperplane.) Let v ∈ P

be a root, and let v± be its projections to V ±. Since 2v±
∈ M±

ρ and M+
ρ has no

vectors of square −4, the condition h+
ρ (v) 6= ∅ implies that either v+

= 0 (and then
(v−)2 = −2), or (v+)2 = −2 (and then v−

= 0), or (2v+)2 = −8 − (2v−)2 = −2
or −6. Each M±

ρ contains, up to sign, one vector of square (−2) and two vectors of
square (−6). Comparing their images under Jρ , one concludes that the space H + is
divided into three components by the two walls h+

ρ (w2) and h+
ρ (2w2 − w1).

6.1.2
Before discussing this example in more detail, we introduce another geometric D3-
action on L with the same sublattice LG

= Q = U ⊕ 2E8. In the above notation,
replace S with the matrix

S′
=


1 0 −1 0
0 1 0 0
0 0 −1 0
0 −1 0 −1

 ,
and keep the rest unchanged. For the new action, one has M±

ρ
∼= U (2). The only

possible wall in H + is h+
ρ (w

+), where w+
∈ M+

ρ is the only vector of square −4.
However, Jρw+ is not proportional to the vector w−

∈ M−
ρ of square −4; hence, the

action is realized by a single D3-equivariant deformation class of K 3-surfaces.
In view of the following lemma, there are exactly two (up to isomorphism) geo-

metric D3-actions on L with LG ∼= U ⊕ 2E8.

LEMMA 6.1.3
Up to automorphism, there are three nontrivial Z3-actions on the lattice P ∼= 2U ;
their invariant sublattices are isomorphic to either A2, or A2(−1), or zero. The last
action admits two, up to isomorphism, extensions to a D3-action.
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Proof
Let t ∈ Z3 be a generator. Pick a primitive vector u1 of square zero, and let u2 =

t (u1). If t (u1) = u1 for any such u1, the action is trivial. If u1 · u2 = a 6= 0, then u1,
u2, and t2(u1) span a sublattice P ′ of rank 3. In this case, a = ±1, and the action is
uniquely recovered using the fact that its restriction to (P ′)⊥ (a sublattice of rank 1)
is trivial. Finally, if u1 · u2 = 0 and u1, u2 are linearly independent, then one must
have t (u2) = −u1 − u2. Completing u1, u2 to a basis u1, v1, u2, v2 as in the proof of
Proposition 6.1.1, one can see that the system T 3

= id, Gr = T ∗ Gr T (where T is the
matrix of t and Gr is the Gramm matrix) has a unique solution (the one indicated in
the proof of Proposition 6.1.1).

Consider the last action and an involution s: P → P , ts = st−1. The invariant
space M+ of s is either U , or U (2), or 〈2〉 ⊕ 〈−2〉. The consideration above shows
that the Z3-orbit of any primitive vector u1 of square zero is standard and spans a
sublattice of rank 2. Start from u1 ∈ M+, and complete it to a basis u1, v1, u2, v2,
as above. The set of solutions to the system T S = ST −1, S2

= id, Gr = S∗ Gr S for
the matrix S of s depends on one parameter a, s(v2) = au1 − v2, and a change of
variables shows that only the values a = 0 or 1 produce essentially different actions
(resp., with M+ ∼= U (2) or 〈2〉 ⊕ 〈−2〉).

6.2. Geometric models
In this section, we give a geometric description (via elliptic pencils) of the six families
constructed in Proposition 6.1.1. At a result, at the end of the section we prove the
following statement.

PROPOSITION 6.2.1
All three pairs of complex conjugate deformation families constructed in Proposi-
tion 6.1.1 differ by the topological type of the D3-action.

Fix a decomposition Q = Pic X ∼= 2E8 ⊕ U . Let e′

1, . . . , e′

8, e′′

1, . . . , e′′

8 be some
standard bases for the E8-components, and let u, v be a basis for the U component, so
that u2

= v2
= 0 and u ·v = 1. Under an appropriate choice of γ (a small perturbation

of u + v), the graph of (−2)-curves on X is the following:

ce′

1 ce′

2 ce′

3 ce′

5 ce′

6 ce′

7 ce′

8 ce′

9 ce0 ce′′

9 ce′′

8 ce′′

7 ce′′

6 ce′′

5 ce′′

3 ce′′

2 ce′′

1

| |c
e′

4

c
e′′

4

Here e0 = u − v, e′

9 = v − 2e′

1 − 4e′

2 − 6e′

3 − 3e′

4 − 5e′

5 − 4e′

6 − 3e′

7 − 2e′

8, and
e′′

9 = v − 2e′′

1 − 4e′′

2 − 6e′′

3 − 3e′′

4 − 5e′′

5 − 4e′′

6 − 3e′′

7 − 2e′′

8 .
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Consider the equivariant elliptic pencil π : X → P1 defined by the effective
class v. From the diagram above it is clear that the pencil has a section e0 and two sin-
gular fibers of type Ẽ8, whose components are e′

1, . . . , e′

9 and e′′

1, . . . , e′′

9 , respectively,
and has no other reducible singular fibers. (We use the same notation for a (−2)-curve
and for its class in L .) Counting the Euler characteristic shows that the remaining sin-
gular fibers are either 4 Ã∗

0, or 2 Ã∗

0 + Ã∗∗

0 , or 2 Ã∗∗

0 . (Here Ã∗

0 and Ã∗∗

0 stand for a
rational curve with a node or a cusp, resp.) In any case, at least one of these singular
fibers must also remain fixed under the Z3-action; hence, the Z3-action on the base
of the pencil has three fixed points and thus is trivial. This implies, in particular, that
the pencil has no fibers of type Ã∗

0; the normalization of such a fiber would have three
fixed points (the two branches at the node and the point of intersection with e0), and
the Z3-action on it and hence on the whole surface would have to be trivial. Thus, the
types of the singular fibers of the pencil are 2 Ã∗∗

0 + 2Ẽ8.
Let us study the action of Z3 on the fibers of the pencil. Each fiber has at least

one fixed point: the point of intersection with e0. For nonsingular fibers this implies
that
(1) they all have j-invariant j = 0 (as there is only one elliptic curve admitting a

Z3-action with a fixed point) and
(2) each nonsingular fiber has two more fixed points.
Denote the closure of the union of these additional fixed points by C . This is a curve
fixed under the Z3-action. In particular, it must intersect the cuspidal fibers at the
cusps. The action on the Ẽ8 singular fibers can easily be recovered starting from the
points of intersection with e0 and using the following simple observation: in appropri-
ate coordinates (x, y), a generator g ∈ Z3 acts via (x, y) 7→ (x, εy) in a neighborhood
of a point of a fixed curve y = 0, and via (x, y) 7→ (ε2x, ε2 y) in a neighborhood of
an isolated fixed point (0, 0). (Here ε is the eigenvalue of ω: g(ω) = εω.) One con-
cludes that the components e′

3, e′

7, e′′

3 , and e′′

7 are fixed, the intersection points of pairs
of other components are isolated fixed points, and C intersects the Ẽ8 fibers at some
points of e′

1 and e′′

1 . In particular, the restriction π : C → P1 is a double covering with
four branch points; hence, C is a nonsingular elliptic curve.

Let X̃ be X with isolated fixed points blown up, and let Ỹ = X̃/Z3. This is a
rational ruled surface with two singular fibers F̃ ′, F̃ ′′ (the images of the Ẽ8 fibers of
X ) whose adjacency graphs are as follows:

c s c c∗ c s c c∗ c s c
|c
|s

(Here ◦, •, and ◦∗ stand for a nonsingular rational curve of self-intersection −1, −3,
and −6, resp.; an edge corresponds to a simple intersection point of the curves.) The
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image R̃ of the section e0 has self-intersection (−6) and intersects the rightmost curve
in the graph; the image D̃ of the section C has self-intersection zero and intersects the
leftmost curve in the graph. The branch divisor of the covering X̃ → Ỹ is R̃ + D̃ +

(the (−6)-components) − (the (−3)-components).
Contract the singular fibers of Ỹ to obtain a geometrically ruled surface Y . Denote

by R, D, F ′, and F ′′ the images of R̃, D̃, F̃ ′, and F̃ ′′, respectively. The contraction
can be chosen so that R2

= 0, that is, Y ∼= P1
×P1. Then D2

= 8 and D is a curve of
bidegree (2, 2). It is tangent to F ′ and F ′′, and R passes through the tangency points.

The above construction respects the D3-action on X , and Y inherits a canonical
real structure with respect to which D, R, F ′, and F ′′, as well as the base of the pencil,
are real; one has YR = S1

× S1.
Recall that, up to rigid isotopy, the embedding DR ⊂ YR is one of the following:

(1) DR is empty;
(2) DR consists of one oval (a component contractible in YR);
(3) DR consists of two ovals;
(4) DR consists of two components, each realizing the class (0, 1) in H1(YR);
(5) DR consists of two components, each realizing the class (1, 0) in H1(YR);
(6) DR consists of two components, each realizing the class (1, 1) in H1(YR).
(The basis in H1(YR) is chosen so that RR realizes (1, 0) and F ′

R realizes (0, 1).) Now
one can easily indicate four topologically distinct types of action. Since p′ and p′′ are
on the same generatrix R, the embedding DR ⊂ YR is either
(a) as in (2), or
(b) as in (3) (the points p′, p′′ are in the same component of DR), or
(c) as in (4) (the points p′, p′′ are in the different components of DR).
In case (c), there are two possibilities:
(c′) F ′

R and F ′′

R belong to (the closure of) the same component of YR r DR;
(c′′) F ′

R and F ′′

R belong to (the closure of) distinct components of YR r DR.
Note that, according to Lemma 3.2.4, any model constructed does necessarily

realize either the action of Proposition 6.1.1 or the action of Section 6.1.2.
The models of types (a) and (b) (resp., (a) and (c′)) can be joined through a

singular elliptic K 3-surface whose desingularization has a fiber of type Ã2. In view
of Proposition 5.2.1, these types realize the action of Proposition 6.1.1. Hence, the
remaining type (c′′) realizes the action of Section 6.1.2.

Proof of Proposition 6.2.1
The surfaces in question are represented by the above models of types (a), (b), and
(c′), which differ topologically by the number of components of CR ∼= DR and by
whether CR has a component bounding a disk in XR.
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6.3. The four families in their Weierstrass form
Since the four families constructed above are Jacobian fibrations (i.e., have sections),
are isotrivial, and have singular fibers of type 2 Ã∗∗

0 +2Ẽ8, their Weierstrass equations
are of the form

y2z = x3
+ (u2

− v2)5 p2(u, v)z3,

where (u : v) are homogeneous real coordinates in P1, p2 is a degree 2 homogeneous
real polynomial with simple roots other than u = ±v, and (x, y, z) are regarded
as coordinates in the bundle P(O(6) ⊕ O(4) ⊕ O) over P1(u : v). Isomorphisms
between such elliptic fibrations are given by projective transformations in P1(u : v)

and coordinate changes of the form x 7→ k4x , y 7→ k6 y, z 7→ z, u 7→ ku, v 7→ kv,
k ∈ R∗. By means of such isomorphisms, the equation can be reduced to one of the
following four families:

y2z = x3
+ (u2

− v2)5(u − cv)(u − c̄v)z3, c 6= c̄,

y2z = x3
± (u2

− v2)5(u − av)(u − bv)z3, −1 < a < b < 1,

and

y2z = x3
+ (u2

− v2)5(u − av)(u − bv)z3, −1 < a < 1 < b.

The Ẽ8 singular fibers are those with u2
= v2. Each of the surfaces can be equipped

with any of the two D3-actions generated by the complex conjugation and the multi-
plication of x by either exp(2π i/3) or exp(−2π i/3).

The exceptional family, that is, that with the action of Section 6.1.2, is the one
with the last equation. To see this, one can explicitly construct two cycles in M−

with square 0 and intersection 2. For one of them, we pick a skew-invariant under the
complex conjugation circle ξ in an elliptic fiber between u = av and u = v and drag
it along a loop in P1(u : v) around u = −v and u = av. The other (singular) cycle is
constructed from a circle η in the same fiber with Tη = η̄, where T is the monodromy
operator about the fiber u = v. We drag it along a loop around u = v and pull its ends
together into the cusp of the fiber u = av.

Note that the real part of the double section of the surfaces in the first family
has only one connected component, so it correspond to the series (a). One component
of the double section of the surfaces given by the second equation with the sign −

bounds a disc in the real part of the surface, so it corresponds to series (b). The same
equation with the sign + gives series (c′).

Thus, one obtains another description of the six disjoint families constructed
in Proposition 6.1.1. The bijection between the set of isomorphism classes of K 3-
surfaces with a D3-action such that LG

= U ⊕ 2E8 and the set of surfaces given by
the above four equations (considered up to projective transformations of the base and
rescalings) can be used for an alternative proof of Proposition 6.1.1.
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6.4. Distinct conjugate components with the same real ρ
In this section, we construct an example of a geometric action θ of a certain group
G = T̃192 (with ρ 6= 1 real and κ = 1) whose moduli space has two distinct compo-
nents interchanged by the conjugation X 7→ X̄ . Note that, since ρ is real, the compo-
nents are not distinguished by the associated fundamental representations.

Recall that the group T192 can be described as follows. Consider the form
8(u, v) = u4

+ v4
− 2

√
−3 u2v2. Its group of unitary isometries is the so-called

binary tetrahedral group T24 ⊂ U (2); it can be regarded as a Z3-extension of the
Klein group Q8 = {±1,±i,± j,±k} ⊂ H. (Note that the double projective line ram-
ified at the roots of 8 is a hexagonal elliptic curve. An order 3 element of T24 can be
given, for example, by the matrix

q =
1

−1 + i
√

3

[
−1 − i 1 − i
−1 − i −1 + i

]
,

whose determinant is (−1 + i
√

3)/2.) The center of T24 is {±1} ⊂ Q8. Identify
two copies of T24/Q8 ∼= Z3 via [q] 7→ [q]

−1, and let T ′ be the fibered central
product (T24 ×Z3 T24)/{c1 = c2}, where c1 and c2 are the central elements in the two
factors. Then T192 is the semidirect product T ′ o Z2, the generator t of Z2 acting via
transposing the factors.

Denote by T̃192 the extension of T192 by an element c subject to the relations
c2

= c1 = c2, c−1tc = c1t , and ac = ca for any a in either of the two copies
of T24 ⊂ T192. Augment this group via κ: T̃192 → T̃192/T192 = Z2.

PROPOSITION 6.4.1
There is a geometric action of G = T̃192 on L = 3U ⊕ 2E8 such that the associ-
ated fundamental representation ρ is real and the corresponding moduli space KMG

consists of a pair of conjugate points X , X̄ .

Proof
Consider the quartic X ⊂ P3 given by the polynomial 8(x0, x1) + 8(x2, x3). Ac-
cording to Mukai [M], there is a T192-action on X with ρ = 1. It can be described
as follows. The central product (T24 × T24)/{c1 = c2} acts via block diagonal linear
automorphisms of 8 ⊕ 8, the two factors acting separately in (x0, x1) and (x2, x3).
The fundamental representation of the induced action on X has order 3, and its kernel
extends to a symplectic T192-action via the involution (x0, x1) ↔ (x2, x3).

The described T192-action on X extends to a T̃192-action, the element c ∈ T̃192

acting via (x0 : x1 : x2 : x3) 7→ (i x0 : i x1 : x2 : x3), so that ρ(c) = −1. Choosing an
isometry H2(X) → L , one obtains a geometric T̃192-action on L .

Fix a marking H2(X) = L , and consider the twisted induced action on L . We
assert that the corresponding period space consists of two points X and X̄ , both ad-
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mitting a unique embedding into P3 compatible with a projective representation of
T̃192. Indeed, as follows, for example, from the results of Xiao [X], for any action of
the group G ′

= T192 with ρ = 1, one has rk L•
= 19; hence, PerG ′

is a single point
w ⊂ L ⊗ R and K�G ′

= S2. Passing to G = T̃192 decomposes w into ` = wG

and `⊥ and reduces K�G to a pair of points. Since the action is induced from P3, the
line ` is generated by an integral vector of square 4, and this is the only (primitive)
polarization of the surface compatible with the action.

It remains to show that X does not admit an antiholomorphic automorphism com-
muting with T̃192. Any such automorphism would preserve ` and hence would be in-
duced from an antiholomorphic automorphism a of P3. Since a commutes with T̃192,
it must fix the four intersection points of X with the line C given by {x0 = x1 = 0}. In
particular, a must preserve C . On the other hand, the roots of 8 do not lie on a circle
and thus cannot be fixed by an antihomography.

A. Appendix. Finiteness and quasi-simplicity for 2-tori

A.1. Klein actions on 2-tori
In this section we prove analogs of Theorems 1.7.1 and 1.7.2 for complex 2-tori (or just
2-tori, for brevity). The homological type of a finite group G Klein action on a 2-torus
X is the twisted induced action θX : G → Aut H2(X) on the lattice H2(X) ∼= 3U ,
considered this time up to conjugation by orientation-preserving lattice automor-
phisms. As in the case of K 3-surfaces, one has H2,0(X) ∼= C, and the action of
G0 on H2,0(X) gives rise to a natural representation ρ: G0

→ C∗ called the asso-
ciated fundamental representation. Both θX and ρ are deformation invariants of the
action; θX is also a topological invariant.

Our principal results for 2-tori are the following two theorems.

THEOREM A.1.1 (Finiteness theorem)
The number of equivariant deformation classes of complex 2-tori with faithful Klein
actions of finite groups of uniformly bounded order (for any given bound) is finite.

Remark. Note that the order of groups acting on 2-tori and not containing pure trans-
lations is bounded (cf. Theorem A.1.4). In particular, there are finitely many deforma-
tion classes of such actions.

THEOREM A.1.2 (Quasi-simplicity theorem)
Let X and Y be two complex 2-tori with diffeomorphic finite group G Klein actions.
Then either X or X̄ is G-equivariantly deformation equivalent to Y . If the associate
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fundamental representation is trivial, then X and X̄ are G-equivariantly deformation
equivalent.

COROLLARY A.1.3
The number of equivariant deformation classes of hyperelliptic surfaces with faithful
Klein actions of finite groups is finite. If X and Y are two hyperelliptic surfaces with
diffeomorphic finite group G Klein actions, then either X or X̄ is G-equivariantly
deformation equivalent to Y .

Recall that, after fixing a point zero on a 2-torus X , one can identify X with the
quotient space T0(X)/H1(X; Z) and thus regard it as a group. Then with each
(anti)automorphism t of X one can associate its linearization dt preserving zero,
and hence, any Klein action θ on X gives rise to its linearization dθ consisting of
(anti)holomorphic autohomomorphisms of X . As is known (see, e.g., [VS] or [Ch]),
the original action θ is uniquely determined by dθ and a certain element

a(θ) ∈ H2(G; H1(X)
)

= H1(G; T0(X)/H1(X; Z)
)
,

the latter depending only on the equivalence class of the extension 1 → H1(X) →

G → G → 1, where G is the lift of G to the group of (anti)holomorphic trans-
formations of the universal covering T0 X of X . In particular, a(θ) is a topological
invariant.

Clearly, both the homological type of a Klein action θ and its fundamental rep-
resentation ρ depend only on the linearization dθ . Since the group H2(G; H1(X))
is finite and a(θ) is a topological invariant, the general case of Theorems A.1.1 and
A.1.2 reduces to the case of linear actions. Thus, from now on, we consider only ac-
tions preserving zero. All (anti)automorphisms preserving zero are group homomor-
phisms, and they all commute with the automorphism − id : X → X . For simplicity,
we always assume that − id ∈ G. For such actions, we prove Theorems A.1.4 and
A.1.5, which imply Theorems A.1.1 and A.1.2.

THEOREM A.1.4
The number of equivariant deformation classes of complex 2-tori with faithful linear
Klein actions of finite groups preserving zero is finite.

THEOREM A.1.5
Let X and Y be two complex 2-tori with linear finite group G Klein actions of the
same homological type. Then either X or X̄ is G-equivariantly deformation equiv-
alent to Y . If the associate fundamental representation is trivial, then X and X̄ are
G-equivariantly deformation equivalent.
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These theorems are proved at the end of Section A.3.

Remark. Note that, speaking about linear actions, Theorem A.1.5 is somewhat stronger
than Theorem A.1.2 as it also asserts that the diffeomorphism type of a linear action
is determined by its homological type.

Remark. In the case of real actions (see Section 1.7), the surfaces X and X̄ are ob-
viously equivariantly isomorphic. The same remark applies to Theorem A.1.3, which
gives us gratis the following generalization of the corresponding result by F. Catanese
and P. Frediani [CF] for real structures on hyperelliptic surfaces. Let X and Y be two
complex 2-tori with real structures and with real holomorphic G0-actions, so that the
extended Klein actions of G = G0

× Z2 have the same homological type and the
same value of a(θ). Then X and Y are G-equivariantly deformation equivalent.

A.2. Periods of marked 2-tori
Let 3 be an oriented free abelian group of rank 4. Put L =

∧23∨. The orientation
of3 defines an identification

∧43∨
= Z and turns L into a lattice via per : L ⊗ L →∧43∨

= Z. It is isomorphic to 3U . Denote Aut+ L = Aut L ∩ SO+(L ⊗ R).
Let J be the set of complex structures on3⊗R compatible with the orientation

of 3. Further, let � be the set of oriented positive definite 2-subspaces in L ⊗ R. As
in (4.1.1), one can identify � with the space {ω ∈ L ⊗ C | ω2

= 0, ω · ω̄ > 0}/C∗.
Both J and� have natural structures of smooth manifolds. Let per : J → � be the
map defined via J 7→ (x1

+ i J ∗x1)∧ (x2
+ i J ∗x2), where J ∈ J , J ∗ is the adjoint

operator on L∨, and x1, x2
∈ L∨

⊗ R are any two vectors generating L∨
⊗ R over C

(with respect to the complex structure J ∗).
The following statement is essentially contained in [PS] and [S].

PROPOSITION A.2.1
The map per : J → � is a well-defined diffeomorphism. The map SL(3) → Aut+ L ,
ϕ 7→ ∧

2ϕ∗, is an epimorphism; its kernel is the center {±1} ⊂ SL(3). An element
ϕ ∈ SL(3) commutes with a complex structure J ∈ J if and only if its image ∧

2ϕ∗

preserves per J .

Proof
We briefly indicate the proof. A simple calculation in coordinates shows that the
map per : J → � is an immersion and generically one-to-one. (Remarkably, the
equations involved are partially linear.) Since J and � are connected homogeneous
spaces of the same dimension, per is a diffeomorphism.

The map SL(3 ⊗ R) → O(L ⊗ R), ϕ 7→ ∧
2ϕ∗, is a homomorphism of Lie
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groups of the same dimension. Hence, it takes the connected group SL(3 ⊗ R) to
the component of unity SO+(L ⊗ R). The pullback of Aut+ L ⊂ SO+(L ⊗ R) is a
discrete subgroup of SL(3 ⊗ R) containing SL(3); on the other hand, SL(3) is a
maximal discrete subgroup (see [R]); hence, it coincides with the pullback.

The last statement follows from the naturality of the construction; one has
per(ϕ Jϕ−1) = ∧

2ϕ∗(per J ).

A 1-marking of a 2-torus X is a group isomorphism ϕ1: 3 → H1(X). We call a
1-marking admissible if it takes the orientation of 3 to the canonical orientation of
H1(X) (induced from the complex orientation of X ). A 2-marking of X is a lattice iso-
morphism ϕ: H2(X) → L . Since H2(X) =

∧2 H1(X), every 1-marking ϕ1 defines
a 2-marking ϕ = ∧

2ϕ∗

1 . A 2-marking is called admissible if it has the form ∧
2ϕ∗

1 for
some admissible 1-marking ϕ1. Any two admissible 1-markings differ by an element
of SL(3); in view of Proposition A.2.1, any two admissible 2-markings differ by an
element of Aut+ L and any admissible 2-marking has the form ∧

2ϕ∗

1 for exactly two
admissible 1-markings ϕ1.

From now on, by a 1- (resp., 2-)marked torus we mean a 2-torus with a fixed
admissible 1- (resp., 2-)marking. Isomorphisms of marked tori are defined in the ob-
vious way (cf. Section 4.2). Clearly, 1-marked tori have no automorphisms; the group
of (marked) automorphisms of a 2-marked torus is {± id}.

Consider the space 8 = J × (3 ⊗ R)/3 and the projection p: 8 → J .
The bundle Ker dp has a tautological complex structure, which converts p: 8 → J

to a family of 1-marked tori. This family is obviously universal. In view of Proposi-
tion A.2.1, this implies the following statement, called the global Torelli theorem for
2-marked tori.

THEOREM A.2.2
The family p: 8 → � is a universal smooth family of 2-marked complex 2-tori; that
is, any other smooth family p′: X → S of 2-marked complex 2-tori is induced from p
by a unique smooth map S → �.

A.3. Equivariant period spaces
The following statement is similar to Proposition 4.3.1; it relies on Proposition A.2.1
and on the fact that a finite group action admits an equivariant Kähler metric.

PROPOSITION A.3.1
Given a Klein action of a finite group G on a complex 2-torus X , the twisted induced
action θX : G → Aut H2(X) is almost geometric (Section 2.6); its image belongs to
Aut+ H2(X).
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Now we proceed as in the case of K 3-surfaces. Let θ : G → Aut+ L be an almost
geometric action, and denote by �G

⊂ � the fixed point set of the induced action
g: v 7→ κ(g)g(v), v ∈ �. (As before, −v stands here for v with the opposite orienta-
tion.) Then the following holds.

PROPOSITION A.3.2
The space�G is a fine period space of 2-marked complex 2-tori with a Klein G-action
compatible with θ ; that is, it is the base of a universal smooth family of 2-marked
complex 2-tori with a Klein G-action compatible with θ .

PROPOSITION A.3.3
Let κ: G → {±1} be the augmentation, and let ρ: G0

→ S1 be a fundamental rep-
resentation associated with θ . If ρ = 1, then the space �G is connected. If ρ 6= 1,
then the space�G consists of two components, which are transposed by the involution
v 7→ −v.

Proof
As in the case of K 3-surfaces, one can consider the contractible space PerG and
sphere bundle K�G

→ PerG and use the fibration K�G
→ �G with contractible

fibers.

Proof of Theorems A.1.4 and A.1.5
Theorem A.1.5 follows from A.3.2 and A.3.3. In view of A.1.5, Theorem A.1.4 fol-
lows from the finiteness of the number of homological types of faithful actions (cf.
Section 4.5).

A.4. Comparing X and X̄
As a refinement of Theorem A.1.2, we show that in most cases the 2-tori X and X̄ are
not equivariantly deformation equivalent.

PROPOSITION A.4.1
Consider a faithful finite group G Klein action on a complex 2-torus X . Assume that
G0 has an element of order greater than 2 acting nontrivially on holomorphic 2-
forms. Then X is not G-equivariantly deformation equivalent to X̄ .

Proof
Let g ∈ G be an element as in the statement. The assertion is obvious if the associated
fundamental representation ρ is nonreal. Thus, one can assume that ρ is real and
ρ(g) = −1. A simple calculation (using the fact that g is orientation-preserving,
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ord g > 2, and ∧
2g∗ has eigenvalue (−1) of multiplicity at least 2) shows that in this

case the eigenvalues of the action of g on 3 are of the form ξ , ξ̄ , −ξ̄ , −ξ for some
ξ /∈ R. Hence, there is a distinguished square root

√
g ∈ SL(3 ⊗ R). (One chooses

the arguments of the eigenvalues in the interval (−π, π) and divides them by 2.) The
automorphism ∧

2(
√

g)∗ has order 4 on the (only) g-skew-invariant 2-subspace v;
hence, it defines a distinguished orientation on v.

Remark. As a comment on the proof of Proposition A.4.1, we would like to empha-
size a difference between K 3-surfaces and 2-tori. Under the assumptions of Proposi-
tion A.4.1, if ρ is real, it is still possible that there is an element a ∈ Aut+G L inter-
changing the two points v and −v of �G (representing X and X̄ ). However, unlike
the case of K 3-surfaces, this does not imply that X and X̄ are G-isomorphic; an ad-
ditional requirement is that a lift of a to SL(3) should commute with G.

A.5. Remarks on symplectic actions
We would like to outline here a simple way to enumerate all symplectic (i.e., identical
on the holomorphic 2-forms) finite group actions on 2-tori. (This result is contained in
the classification by Fujiki [Fu], who calls symplectic actions special.) Our approach
follows that of Kondō [Ko1] to the similar problem for K 3-surfaces.

In view of Propositions A.3.1 and A.3.2, it suffices to consider finite group actions
on L ∼= 3U identical on a positive definite 3-subspace in L ⊗ R. Let θ : G → Aut+ L
be such an action, and let L•

= (LG)⊥. Then L• is a negative definite lattice of
rank at most 3, and the induced G-action on L• is orientation-preserving and trivial
on discr L• (as it is on discr LG). Standard calculations with discriminant forms (cf.
[Ko1]) show that L• can be embedded into E8 (the only negative definite unimodular
even lattice of rank 8), and the G-action on L• extends to E8 identically on EG

8 =

(L•)⊥ ⊂ E8. Since Aut E8 = W (E8), the lattice L• is the orthogonal complement
of a face of a camera of E8. Hence, L• is a root system contained in A3, A2 ⊕ A1, or
3A1, and G/Ker θ is a subgroup of W (L•) ∩ SO(L•

⊗ R). It remains to observe that
any such lattice admits a unique (up to isomorphism) embedding to L , and hence the
pair L•, G/Ker θ ⊂ W (L•) determines a G-action on L up to automorphism.

In particular, one obtains a complete list of finite groups G acting faithfully and
symplectically on 2-tori. One has Ker θ = {± id}, and the group G/Ker θ is a sub-
group of W (L•)∩SO(L•

⊗R) for L•
= A3, A2⊕A1, or 3A1, that is, of A4 (alternating

group on 4 elements), S3 (symmetric group on 3 elements), or Z2 ⊕ Z2. Lifting the
action from L to 3 (Proposition A.2.1), one finds that G is a subgroup of the bi-
nary tetrahedral group T24, the binary dihedral group Q12, or the Klein (quaternion)
group Q8.
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[Wi] N. J. WIELENBERG, Discrete Möbius groups: Fundamental polyhedra and
convergence, Amer. J. Math. 99 (1977), 861 – 877. MR 0477035 14

[X] G. XIAO, Galois covers between K 3 surfaces, Ann. Inst. Fourier (Grenoble) 46 (1996),
73 – 88. MR 1385511 4, 5, 41

Degtyarev
Department of Mathematics, Bilkent University, 06533 Ankara, Turkey; degt@fen.bilkent.edu.tr

Itenberg
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