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We consider a model-based approach for the anticontrol of some discrete-time systems. We first
assume the existence of a chaotic model in an appropriate form. Then by using an appropriate
control input we try to match the controlled system with the chaotic system model. We also
give a procedure to generate the model chaotic systems in arbitrary dimensions. We show that
with this approach, controllable systems can always be chaotified. Moreover, if the system to be
controlled is stable, control input can be chosen arbitrarily small.
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1. Introduction

The analysis and control of chaotic behavior in dy-
namical systems has been investigated by many
researchers in various disciplines in recent years.
Among the vast amount of works already published
in the literature, the interested reader may con-
sult e.g. various survey papers such as [Fradkov
& Evans, 2002; Boccaletti et al., 2000; Gadre &
Varma, 1997; Chen & Moiola, 1994], to research
monographs such as [Kapitaniak, 2000; Chen &
Dong, 1998; Fradkov & Pogromsky, 1998], and to
a bibliography [Chen, 1996].

While in majority of works in the area of
chaos control, the main aim is the suppression of
chaotic behavior, see e.g. [Fradkov & Evans, 2002;
Chen & Dong, 1998], the opposite approach, i.e. to
retain the chaotic behavior, or even to force a
regular behavior into a chaotic one, has also received
considerable interest. This problem is known as
“anticontrol” [Schiff et al., 1994], or “chaotification”
[Wang & Chen, 2000a], and has a great potential
for applications in diverse fields, see e.g. [Brandt
& Chen, 1997; Ditto, 1996; Goldberger, 1994; Yang

et al., 1995]. Various feedback schemes, mostly for
discrete-time systems are available in the literature
for the anticontrol of such systems, see e.g. [Chen
& Lai, 1996, 1998; Wang & Chen, 2000b].

In this work, we will consider a model-based
approach for the anticontrol of some discrete-time
systems. We first assume the existence of a chaotic
model in an appropriate form. Then by using an
appropriate control input we try to match the con-
trolled system with the chaotic system model. We
prove that (i) any controllable linear time-invariant
system can be chaotified with an appropriate input,
(ii) this approach could be generalized to a class of
nonlinear systems, (iii) if in addition the system to
be controlled is stable, then the control input can be
chosen arbitrarily small. We also address the ques-
tion of the existence of model chaotic systems. We
propose a simple procedure to generate such chaotic
models in arbitrary dimension. Then we consider
the computability of the required feedback law by
using only the available signals. For this aim, esti-
mates of the controlled system states could be used
and such estimates could be obtained by using an
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appropriate synchronization scheme. As an exam-
ple, we propose an observer-based synchronization
scheme. We also comment on the robustness of the
proposed scheme. We note that this approach could
also be applied to the anticontrol of continuous-time
systems, see [Morgiil, 2003].

This paper is organized as follows. In the second
section, we define the problems considered in this
paper and present some developments which will
be used in the sequel. In the third section, we pro-
pose an anticontrol scheme for linear systems, and
then generalize it to a class of nonlinear systems.
In the fourth section, we present a method to com-
pute the required control input when the available
output is not sufficient. For this aim, we propose
an observer-based synchronization scheme to esti-
mate the states of the system to be controlled. In
the fifth section, we propose a simple way to gener-
ate the model chaotic systems for arbitrary dimen-
sion. Then we consider the problem of chaotification
by arbitrary small control input. In the following
section we present some simulation results. Finally
we give some concluding remarks.

2. Problem Statement

We will first consider the linear systems. Consider
the system given below:

z(k+1) = Az(k) + Bu(k), y(k)=Cz(k), (1)

where x € R", A € R™" is a constant matrix,
B, CT € R™ are constant vectors, here superscript
T denotes transpose, u is the (scalar) control input
and y is the (scalar) output, which is assumed to
be measurable, and £ = 0, 1, 2,... is an integer.
For this system, we pose the following problems.

Problem 1. Find a feedback law u(k) = g(z(k)),
where ¢g: R™ — R is an appropriate function,
such that the resulting closed-loop system exhibits
chaotic behavior.

Problem 2. Assume that the feedback law u(k) =
g(z(k)), which solves Problem 1, cannot be com-
puted by using the output y(k) alone. Find an ap-
proximate control law u(k) = 4(k), which can be
computed by using the output, such that ||a(k) —
g(x(k))|l — 0 as k — oo; here z(k) is the solution
of (1), and || - || denotes any norm in R".

In the next section we will provide a solution to
Problem 1. In Sec. 4 we will propose a synchroniza-
tion based solution for Problem 2. In this approach,

we will use an observer-based scheme to estimate
x(k) and the output y(k) will be used as a synchro-
nization signal. These estimates will then be used
to approximate the control law u(k) = g(x(k)).

For simplicity, we will first transform the
system given by (1) into an appropriate canonical
form. Let us define the following matrix:

Q.= (A""'B A" 2B... ABB). (2)

It is well-known that the system given by (1) is con-
trollable (i.e. any state zop € R™ can be steered to
any state x1 € R™ with an appropriate control in-
put u) if and only if rank(Q.) = n, see e.g. [Kailath,
1980]. We will assume that this condition holds,
hence Q. is assumed to be invertible.

Let p(A) be the characteristic polynomial of A
given by (1), which is given as follows:

p(A) = det(A] — A)
=M+ N+t ansi Aty (3)

Now, let us define the vectors u1=(1 «q... an_l)T,
uy = (001 oq..an_o)’,..., up = (0 0...1)7,
and define the matrices U = (ujus...u,), R =
(QU )_1. By using the coordinate transformation
z = Rz, (1) can be transformed into the following
form:

2(k+1)=Az4+ Bu, y=Cz, (4)

where z = (21 2o zn)T, A = RAR™Y, B =
RB, C = CR™!. After straightforward calculations
and by using Cayley—Hamilton theorem (i.e. p(A) =
0, where p(-) is given by (3)), it can be shown that
A and B have the following form:

0 1 0 0
0 0 1 0
A= :
0 0 0 1
—Qy, —Qp_1 —Qp_2 —Q
(5)
0
0
B=|:
0
1

We note that the form given above is known as
controllable canonical form in control theory, see
e.g. [Kailath, 1980].
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3. An Anti-Control Scheme

Let us assume that our model chaotic system is
given as follows:

wi(k+1) = wa(k)
'LUQ(k + 1) = wg(k))

wp—1(k + 1) = w, (k)
wp(k 4+ 1) = f(wi(k), wa(k),..., wy(k))

where f: R™ — R is an appropriate function.
For n = 1, the system given by (6) reduces to
w(k + 1) = f(w(k)), and there are many one-
dimensional chaotic systems which have this form,
e.g. logistic equation. For n = 2, the well-known
Hénon system can be easily transformed into this
form. In Sec. 5, we will propose a simple scheme to
generate chaotic systems of this form for arbitrary
dimension n > 1.
Note that (6) could be rewritten as

w(k +1) = Aw(k) + Bh(w(k)), (7)
wn)T, and
h(w(k)) = f(w(k)) + crwy (k) + awp—1(k)

+ -+ apwi (k). (8)

where w = (w1 wo

Here, a; are arbitrary constants.

Our anticontrol scheme is based on matching
the system given in (4) with the model chaotic
system given in (6) by using an appropriate control
input u(k). Hence, to achieve this goal, we may
choose u(k) as:

u(k) = h(z(k))
= f(2(k)) + c1zn(k) + azzn-1(k)
+ -+ anzi(k). 9)

Obviously, by using (9) we can transform (4) into
the chaotic system given in (6).

The anticontrol scheme given above can also
be applied to a class of nonlinear systems as well.
Let us assume that the system to be controlled is
given as:

x(k+1)=A(x(k)) + B(x(k))u(k),
y(k) = C(a(k)),
where A, B: R — R"™ and C: R™ — R are appro-
priate functions, v and y are control input and mea-

surement outputs, respectively, which are scalars.
Let us assume that there exists a coordinate change

(10)

z = T(x), where T: R™ — R™ is an appropriate
function, which transforms (10) into the following
form:

2(k +1) = Az(k) + B(y(2(k)) + B(z(k))u(k)),

y(k) = C(=(k)),
(11)

where A, B are as given in (5), aj,i=1,..., n are
appropriate constants, and -, [, C: R" — R are
appropriate functions. Note that the terms multi-
plying «a; in (11) could be included in v(-). The
transformation given above is related to the concept
of feedback linearization, and a set of conditions
guaranteeing the existence of such a transformation
is known, see e.g. [Khalil, 2002].

An appropriate control input u(k) to obtain
a model match between (11) and (6) is given as
follows:

where h(-) is given by (8). Obviously, we require
B(z(k)) # 0 along the solutions of (11). This re-
quirement is natural, since otherwise the control
input u(k) has no effect on the system dynamics,
see (11).

The results presented in this section can be
summarized as follows

(i) Any controllable linear (single input) system
can be chaotified with an appropriate control
law.

(i) Any nonlinear (single input) system which
could be transformed into the form (11) can
be chaotified with an appropriate control law
provided that 3(z(k)) # 0.

4. Synchronization-based
Implementation

For the computation of the control laws given in (9)
or (12), in general the state vector z(k) should be
available through measurements. However, in most
cases, the available output signal y(k) is not suffi-
cient alone to compute the required control signal.
In such cases, an appropriate approach would be to
obtain an approximation Z(k) of z(k), and use this
estimate to approximate the required control signal.

Since the synchronization schemes may provide
good estimates of the receiver states, which is z(k)
in our case, a natural approach to solve Problem 2
given in Sec. 2 is to use a synchronization scheme for
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the system given in (4). With this aim, any synchro-
nization scheme which uses the output y(k) of (4)
as a synchronization signal and provides estimates
Z(k) of z(k) could be used. There are many such
schemes proposed in the literature, see e.g. [Ushio,
1999]. For illustrative purposes, we will consider the
following observer-based synchronization scheme:

2(k+1) = A2(k) + Bu(k) + K (y(k) — §(k)),

g(k) = C2(k),
(13)
where K € R"” is a gain vector to be determined.

Let the synchronization error be defined as e(k) =
z(k) — 2(k). By using (4) and (13) we obtain:

e(k+1) = (A - KC)e(k). (14)

Therefore e(k) — 0 as k — oo if and only if the
matrix A, = A— KC is Schur stable (i.e. any eigen-
value A of A, satisfies |A\| < 1). Moreover, in this
case the decay is exponential, i.e. the following holds
for some M >0and 0 < p < 1:

lle(k) ]| < Mp*|le(0)]. (15)

It is known that there exists such a gain vector K
which makes A. Schur stable if the system given
in (1), or equivalently the system given in (4), is
observable, see e.g. [Kailath, 1980]. It is also known
that the latter condition is satisfied if and only if the
observability matrix @), given below has full rank:

C

CA
Qo = : : (16)

CAn!

see e.g. [Kailath, 1980]. Moreover, in this case
the decay rate p given in (15) can be assigned
arbitrarily. Note that this condition is sufficient
in many observer-based synchronization schemes
for continuous-time systems, see [Morgiil & Solak,
1996, 1997; Morgiil, 1999].

As explained above, a natural approximation of
the control law given in (9) is to use Z(k) instead
of z(k), i.e. to use u = h(2(k)). To see the effect of
this approximation, let us assume that h: R — R
given in (9) is a Lipschitz function, i.e. the following
holds for some ¢ > 0:

1h(2) = h(2)I| < cllz — 2] (17

Let us assume that the feedback law u = h(Z(k)
is used in (4). Since h(2(k)) = h(2(k)) — h(z(k)) +

h(z(k)), from (4) we obtain the following:
2(k+1) = Az(k) + Bh(z(k)) + ec(k),  (18)

where the error term e.(k) = B(h(2(k)) — h(z(k)))
satisfies

lec(R)I| < eMp"le(0)]], (19)

here we used (15) and (17). Since the perturbation
term in (18) is exponentially decaying, it is natural
to expect that the qualitative behavior of (18) and
(7) be similar, provided that the chaotic behavior
is structurally stable. If the chaotic attractor of (7)
is globally attractive, then the solutions of (18) will
eventually converge to this attractor since e (k) —
0 as k — oo. On the other hand, if the chaotic
attractor of (7) is only locally attractive, then only
local convergence maybe valid. To elaborate further,
let us assume that the chaotic attractor of (7) is
only locally attractive and is structurally stable, in
the sense that for some ¢ > 0, the behaviors of
(7) and (18) are qualitatively similar provided that
llec(k)|| < e, see e.g. [Fradkov & Pogromsky, 1998].
It easily follows from (19) that this condition holds
for ||e(0)|| < e/cM. Therefore, if the initial error is
sufficiently small then the solutions of (18) will be
chaotic provided that the chaotic attractor of (7)
is locally attractive and structurally stable in the
sense given above. On the other hand, if |[e(0)|| < R
for some R > 0, it follows from (19) that ||e.(k)| < e
for k > N = (Ine —IncMR)/In p. Hence we could
use a switching law to generate u as follows:

0 k< N
ulk) = {h@(k)) k>N

If the system to be controlled is nonlinear and
is given by (11), then the method given above could
be used provided that a synchronization scheme
for (11) is available. Since our main aim is to pro-
vide an anticontrol scheme, we do not elaborate on
this point. For such a synchronization scheme, see
e.g. [Ushio, 1999]. We also note that the basic idea
presented above is similar to the observer-based
control of some chaotic systems presented in [Solak
et al., 2001].

(20)

Remark 1. The requirement that various functions
be Lipschitz may seem to be restrictive. Note that
any differentiable function is locally Lipschitz in any
bounded domain. Hence, if the solutions remain in
a bounded set, which is the case for chaotic systems,
then this requirement is satisfied provided that the
corresponding functions are differentiable.
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Remark 2. Let us consider the effect of parameter
mismatch in the anticontrol scheme proposed above.
Such a case may arise if the parameters of the con-
trolled system are not known exactly. In such cases,
the effect of such discrepancies may be included in
the system equations by adding an extra perturba-
tion term e, (k), similar to e.(k) in (18). Note that
llep(k)|| will be proportional to the magnitude of
parameter mismatch. Therefore, this perturbation
term will be small provided that the parameter mis-
match magnitude is small, and hence will not affect
the proposed anticontrol scheme. Another source of
such an error term may be the possible parame-
ter mismatch and noise which could be present in
the synchronization scheme. Such effects may also
be included in the system dynamics by adding yet
another perturbation term. This extra term will
also be small provided that the parameter mismatch
magnitudes and noise magnitudes are small and the
synchronization scheme is robust with respect to
noise and parameter mismatch.

5. Model Chaotic Systems

In the sequel we will present a simple scheme to
generate chaotic systems of the form given by (6)
in arbitrary dimension n. Note that for n = 1, the
required form reduces to w(k + 1) = f(w(k)), and
there are many one-dimensional chaotic systems in
this form. Now assume that there exists a chaotic
system of the form given by (6) for n > 1. We will
present a simple scheme to generate a chaotic sys-
tem of the same form for dimension n + 1. Consider
the following system:

wl(k + 1) = wQ(k‘)
wg(k + 1) = wg(k)

wp—1(k + 1) = wy(k)
wp(k+1) = f(wi(k), wa(k),...
z(k+1) = pz(k)

» wn(K)) + z(k)

(21)

where |p| < 1 is an arbitrary real number. Obvi-
ously, z(k) = pFz(0) — 0 as k — oo, hence the
first n equations of (21) and (6) are asymptotically
the same. Therefore if (6) has a globally attractive
chaotic attractor, so does (21). On the other hand,
if (6) has only locally attractive chaotic attractor,

which is structurally stable in the sense given in
Sec. 4, then so does (21) provided that |z(0)| is
sufficiently small.

To transform (21) into the form (6), let us
define the variable w, 1 as follows:

wasa (k) = Fwi(k), wak), ..

Hence, from (21) we have wy(k+1) = wyp11(k). By
using (21) and (22) we obtain the following:

wpy1(k +1)
= fwi(k+1), we(k+1),..., wy(k+1))
+z(k+1)
= f(wa(k), w3(k), ..., wny1(k)) + pz(k)
= f(wa(k), w3(k), ..., wni1(k)) + pwn(k + 1)
— pf(wi(k), wa(k), ..., wa(k))
= f(wz(k), w3(k), ..., wns1(k)) + pwni1(k)
= pf(wi(k), wa(k), ..., wn(k)).
(23)
Hence, (21) can be rewritten as follows:
wi(k + 1) = wa(k)
wa(k +1) = ws(k)
(24)

wo(k+ 1) = wysq (k)
Wopt (k+ 1) = F(wy (k), wa(k),. .., wns1(k))

where F' is given as:

F(w(k)) = f(wa(k), ws(k), ..., wpi1(k))
+ pwn+1(k) — pf (wi(k),
wo(k), ..., wn(k)). (25)
As an application, consider the well-known
Hénon system given below:
z(k+1) =1+ y(k) — ax?(k)

y(k+1) =bx(k). (26)

Let us define the new variables as wi =y, wo = bx.
Then, (25) can be transformed into the following
form:

wl(k + 1) = wQ(k‘)

wa(k+1) =b+bwi (k) — %wg(k) 7 (27)
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which has the form given in (6) for n = 2. By using
(6), (24), (25) and (27), we obtain the following
chaotic system for n = 3:

wi(k+ 1) = wa(k)
walk +1) = ws(k) (28)
w3(k + 1) = F(wi(k), wa(k), ws(k)),
where F' is given by (see (25)):
F(w(k)) = b— pb — pbwi (k) + bws (k) + pws(k)

a a
+ (k) - Zud(h).

(29)
Remark 3. Note that the system given in (24) will
have a chaotic attractor which is qualitatively sim-
ilar to the attractor of the generating system given
in (6). Hence, from mathematical point of view,
the system given in (24) is not anymore interesting
than the generating lower dimensional model given
by (6). However, our aim in this section is not to
generate interesting higher dimensional chaotic sys-
tems but to show the existence of chaotic systems
of the form given in (6) in arbitrary dimensions.
Obviously, for our anticontrol scheme any chaotic
system which has this form could be used.

6. Chaotification by Arbitrary
Small Feedback

In this section we will show that when the sys-
tem given in (4) is stable in the uncontrolled case
(i.e. when uw = 0), then chaotification is possible
with arbitrary small control input. More precisely,
under the stated stability assumption, given any
e > 0, one can find a control input u satisfying
|u(k)| < e such that the resulting closed loop sys-
tem exhibits chaotic behavior. The idea behind this
argument is as follows. First note that the size of the
chaotic attractor of (6) can be scaled arbitrarily by
using a linear transformation in the form w; = aw;,
1=1,2,...,n, where a > 0 is a scaling constant.
Since this transformation is linear, the dynamics of
the model chaotic system in w coordinates will still
have the same form given in (6). Since the system to
be controlled is stable, we can first choose u = 0 till
the solutions of (6) enter the domain of attraction
of the chaotic attractor of the model chaotic system
(in @ coordinates). After this phase, we can apply
the control law given in (9). Note that since the size
of the chaotic attractor is reduced, the magnitude of
u given in (9) will be small as well. Moreover, given

the form of f, the coefficients «; and the bound &,
one can determine an appropriate scaling constant
a by using (9). We note that different strategies to
chaotify a given stable linear system are also avail-
able in the literature, see e.g. [Wang & Chen, 2000a,
2000b].

To elaborate further, consider the model
chaotic system given in (6). Assume that this sys-
tem has a chaotic attractor in a compact region
B C R"™. Without loss of generality, we assume that
B contains the origin, otherwise we could simply
increase this domain to satisfy the stated assump-
tion. Let us define the size index 7, for the chaotic
attractor in question as:

s = max{||w|| |w € B}. (30)
Since we assume that B is compact, v, is well de-

fined and is finite. Now let us define the following
change of variables:

i=1,2,...,n, (31)

where a > 0 is a scaling constant. By using this
change of variables, the dynamics given in (6) is
transformed into the following:

wy(k+1) = wa(k)
wa(k + 1) = ws(k)

’Li)i = Qwy,

(32)
W —1(k + 1) = 1, (k)
@y (k+1) = f(d1(k), d2(k), ... D (k)
where f is given by:
Fain(k), ..., bn(k)) = of (wloik) "wnOEk:)) |
(33)

Clearly, (32) has the same form as given in (6).
Therefore (32) also has a chaotic attractor in a com-
pact region B C R". Following (30) and (31), we
obtain the following size index 4, for B:
(34)
Now consider the system given in (4) and assume
that A is stable. Hence if we choose u = 0, the
solutions of (4) will satisfy the following:

(k)| < Mp*|z(0)]], (35)

for some M > 1 and 0 < p < 1. Hence, eventually
we have

s = max{||®|| |& € B} < a,.

mL
REDT

B <4s, k>N
o)) <4 b

(36)
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Therefore for £k > N, the size of the solutions of
(4) become comparable with that of . Hence, for
k > N, we can use the anticontrol scheme given
in Sec. 3 by using the model chaotic system given
n (32).

Now let us try to find the bound on the con-
trol law given in (9). Note that if we use the model
chaotic system as given in (32), the required control
law becomes:

u(k) = f(i(k))+ariy(k)+- - +apin (k). (37)

To find a bound on u, we need a bound on f . Now
assume that f given in (6) is Lipschitz in B, i.e. the
following holds for some ¢ > 0:

1f(w) = f@)]| < ¢ellw —wll, w, weB.  (38)
This condition may seem restrictive. However,
if f is (piecewise) differentiable, this condition
is automatically satisfied, in fact we have ¢ >
max{||Df(w)|||w € B}, see e.g. [Morgiil & Solak,
1996, 1997]. It then follows from (31) that f given
in (33) is also Lipschitz in B. Moreover, we have:

1£() — FO)]| < allf (/) — £(O)]]
< acllw/all < cf@ff,  (39)
hence we have

IF @) < £ + ¢l
< allf(O)[ + cllall, (40)

for @ € B. Now by using (34) and (40) in (37), we
obtain:

lu(B) | < |1 f(@(k))]| + nmax{|a;|} max{ [ (k)] }
< al[f(0)[| + acys + nays max{[a;|}

< a([lF0)[] + vs(c + naum))

(41)

where «;;, = max;{|o;|}. Note that the terms on

the left-hand side of (41) are constant. Hence, given

€ > 0, we can choose o > 0 sufficiently small so that

we have ||u(k)|| < e. In particular, we could choose
a as

< £
a< :
1F )] +7s(c + naum)

Clearly this idea could be applied to the nonlin-
ear systems of the form given in (11) as well, pro-
vided that [(-) is bounded away from zero and
that f(-) and ~(-) are Lipschitz functions. Note
that this approach could also be combined with
the synchronization-based approach to compute the
required control law as given in Sec. 4.

(42)

7. Simulation Results

As an example, we consider the following nonlinear
system:

r1(k+1) =c; — 23(k) — cow3(k) + u(k)
xo(k + 1) = z1(k)
:L’g(ki + 1) = 1’2( )
y(k) = 22(k),
where u(k) and y(k) represent the input and output
of the system. This system is called as generalized
third-order Hénon map and is known to exhibit
chaotic (even hyperchaotic) solutions for certain
parameter values when u(k) = 0 [Baier & Klein,
1990].

First, we consider the case ¢y = 1, co = 0.07, for
which (43) exhibits periodic motion when u(k) = 0,
see Fig. 1(a). This system is in the form given in
(10) and could be transformed into the form given

n (11). One such coordinate change may be given
as follows:

(43)

Z1 =3, X2 =2T2, 23=21, (44)
By using (44) in (43) we obtain:
z1(k+ 1) = z2(k)
zo(k+1
2(k+1) = z5(0) )

) =
) =
z3(k+1) = ¢1 — caz1(k) — 23 (k) + u(k)
y(k) = 22( )-

Note that (45) is in the form given in (11
n =3 and

) with

2, Bz) =1.
(46)
Let us choose the model chaotic system as given
n (28). By using the control law given in (12), we
choose u(k) in (45) as
u(k) = F(2(k)) + coz1(k) — 7(2(k)) (47)

where F(-) and v(-) are given in (29) and (46),
respectively.

Note that the control law given in (47) is not
computable by using the available output y(k), see
(45). A simple synchronization scheme which uses
y(k) as the synchronization signal may be given as
follows:

2i(k +1) = 22(k) + k1(22(k) — 22(k))

Zo(k+ 1) = 23(k) + ka(22(k) — 22(k))

23(k +1) = c1 — 221 (k) — 25 (k) + ka(22(k)
— 22(k)) + u(k),

ar=ay=0,a3=cy, y(2) =1 —

(48)
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(c) z1 versus z3, (d) u(k) versus k.

where K = (ky ko k3)” is the gain vector to be de-
termined. A simple calculation shows that the error
equation (14) is satisfied. Since the pair (C, A) is
observable for C' = (0 1 0), see (45), an appro-
priate gain vector K which makes A — KC Schur
stable may always be found. For such a selection of
K, (15) holds, and hence instead of (47), we may
use the following control law:

u(k) = F(2(k)) + co21(k) —(2(k)) . (49)

Note that v(z(k)) is computable by using y(k), see
(45), (46).

In the first set of simulations we considered the

ideal case (i.e. the parameter mismatch and noise

are not considered). For the system (45) we used
c1 = 1, co = 0.07. For the model chaotic system

u(k)

0 200 400 600 800
k

1000

(d)

Simulation result for generalized Hénon map: ideal case, (a) periodic behavior (without control), (b) z; versus zg,

we used a = 1.4, b = 0.3 and p = 0.5. Note that
with these parameter choices, the system to be con-
trolled exhibits periodic motion while the model
system exhibits chaotic motion. For the observer
given in (48) we used k1 = 1, ko = 0.5, k3 = 0.4.
For these choices, the eigenvalues of A—KC are in-
side the unit circle. We simulated the system given
in (45), (48) and (49) with the parameter values
stated above. The resulting z; versus zo and 2
versus z3 graphs are shown in Figs. 1(b) and 1(c),
respectively. The required control input given in
(49) is also shown in Fig. 1(d).

In the second set of simulations we consider
the effect of parameter mismatch and noise on our
scheme. To see the effect of noise, we assumed
that the synchronization signal y(k) is corrupted
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Fig. 2. Simulation result for generalized Hénon map: nonideal case, (a) z1 versus z2, (b) z1 versus z3, (c) e(k) versus k,

(d) u(k) versus k.

by an additive noise. To see this effect, we used
22(k) +n(k) in (48), where n(k) is a random signal
uniformly distributed in the interval [0 m] for some
m > 0. To see the effect of parameter mismatch, we
assumed that the model coefficients given in (45) are
not known exactly, and instead of the third equation
in (48) we used the following

Z3(k +1) = (1+ A)(er — cazi (k) — (22(k) + n(k))?)
+ k3(22(k) + n(k) — 22(k)) + u(k) .
(50)

This mismatch is also considered in the compu-
tation of u(k) as follows:

u(k) = F(2(k)) + (1 + A)(e2z1 (k) = v(2(K))) ,
(51)

see (49). We simulated the related system with
m = A = 0.02, and the simulation results are
shown in Fig. 2. In addition to z; versus zo and z3
graphs shown in Figs. 2(a) and 2(b), respectively,
we also show the synchronization error magnitude
e(k) = ||z(k) — 2(k)| versus k, and the required
control input wu(k) versus k graphs in Figs. 2(c)
and 2(d), respectively. As can be seen, the syn-
chronization error is of the same order as the noise
and parameter mismatch level, and the proposed
scheme is robust with respect to noise and parame-
ter mismatch.

In the last set of simulations, we use the small
control input idea given in Sec. 6. For the system
to be controlled we consider the nonlinear system
given in (45) without the output term y. Note that
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e = 0.01, (d) u(k) versus k, e = 0.01.

here we have ((z) = 1, which is bounded away
from zero, and both f(z) and ~(z) are differentiable,
hence Lipschitz in any compact domain. For the pa-
rameters ¢; = 0, co = 0.5, it can be shown that the
origin is asymptotically stable in this system (in the
uncontrolled case). The scaled version of the model
chaotic system given in (28) can be found as follows:

wy(k+1) = wa(k)
wa(k + 1) = ws(k) (52)

w3k + 1) = Fain (k), da(k), bs(k)),

where F' is given as

By (K), o (K), 3 (k)) = aF <u71(k)7 (k) w3 k)) |
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(d)

Simulation result for small control input, (a) z1 versus z2, € = 0.1, (b) u(k) versus k, ¢ = 0.1, (c) 21 versus 22,

and F' is given in (29). As before, for the model
chaotic system we used ¢ = 1.4, b = 0.3 and
p = 0.5. By using simulations, we find that for the
case a = 1, the size of the chaotic attractor as given
in (30) is found as v5 = 0.6658. Also, various coeffi-
cients in (41) are found as || f(0)]| = 0.15, ¢ = 4.595.
Also, the Lipschitz constant ¢, of 7(-) is estimated
as ¢, = 0.7688, see (46). By using the ideas given
in Sec. 6, we use the following control law:

k<N
k>N,
(54)

(k) = {0
| F(2(k)) + cazi (k) — y(2(k))

where F is given in (53), y(-) is given in (46), and
N is given in (36).
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First, we assume that ¢ = 0.1. By using (42), we
find that o < 0.0247, hence we choose o = 0.0247.
Note that since in this example, a1 = as =0, a3 #
0, see (46), we may take n = 1 in (42), see (41).
Moreover, ¢, should be added to ¢, see (54). Ini-
tial conditions are chosen as z1(0) = 0.5, z2(0) =
23(0) = 0. By using simulations, it can be found
that for & > 20, the solutions of (45) become com-
parable with the size of the chaotic attractor of the
model system, hence we choose N = 20 in (54). The
results of this simulation are shown in Figs. 3(a) and
3(b). As can be seen, the controlled system exhibits
a chaotic behavior (in fact similar to that of a scaled
Hénon system), and the control input is bounded by
given e.

Secondly, we assume that ¢ = 0.01. In this
case from (42), we find that a < 0.00247, hence
we choose o = 0.00247. The initial conditions are
chosen as given above, and by using simulations we
observe that N = 30 in this case. The results of this
simulation are shown in Figs. 3(c) and 3(d). As can
be seen, the controlled system exhibits a chaotic
behavior and the control input is bounded by
given €.

8. Conclusion

In this paper, we considered a model-based ap-
proach to the anticontrol of some discrete-time
systems. Our aim is to generate a chaotic behavior
which is determined by a chaotic model, by means of
an appropriate control input. To achieve this task,
we assumed the existence of a reference model in an
appropriate form which exhibits chaotic behavior.
Then we determined an appropriate control input to
match the dynamics of the system to be controlled
with that of the model chaotic system. We proved
that: (i) any controllable linear time-invariant sys-
tem can be chaotified with an appropriate input,
(ii) this approach could be generalized to a class
of nonlinear systems, (iii) if in addition the system
to be controlled is stable, then the control input
can be made arbitrarily small. We proposed a sim-
ple procedure to generate such chaotic models in
arbitrary dimension. We also considered the com-
putability of the required feedback law by using only
the available signals. To estimate the states of the
system to be controlled, we proposed a synchroniza-
tion scheme. Under some mild conditions, exponen-
tially fast synchronization may be achieved, and one
can use the estimated states to compute the feed-
back law. We also commented on the robustness of

the proposed scheme. Note that the same approach
may also be used in the model reference anticontrol
of continuous-time systems, see [Morgiil, 2003].

References

Baier, G. & Klein, M. [1990] “Maximum hyperchaos in
generalized Hénon maps,” Phys. Lett. A151, 281-284.

Boccaletti, S., Grebogi, C., Lai, Y. C., Mancini, H. &
Maza, D. [2000] “The control of chaos: Theory and
applications,” Phys. Rep. 329, 103-197.

Brandt, M. E. & Chen, G. [1997] “Bifurcation control
of two nonlinear models of cardiac activity,” IFEFE
Trans. Circuits Syst.-I 44, 1031-1034.

Chen, G. [1996] “Control and synchronization of
chaotic systems, (a bibliography),” ftp.egr.uh.edu/
pub/TeX/chaos.tex loginname: anonymous, pass-
word: your e-mail address.

Chen, G. & Dong, X. [1998] From Chaos to Order:
Methodologies, Perspectives and Applications (World
Scientific, Singapore).

Chen, G. & Lai, D. [1996] “Feedback control of Lyapunov
exponents for discrete-time dynamical systems,” Int.
J. Bifurcation and Chaos 6, 1341-1349.

Chen, G. & Lai, D. [1998] “Feedback anticontrol of
discrete chaos,” Int. J. Bifurcation and Chaos 8,
1585-1590.

Chen, G. & Moiola, J. L. [1994] “An overview of bifur-
cation, chaos, and nonlinear dynamics in nonlinear
systems,” J. Franklin Inst. B331, 819-858.

Ditto, W. L. [1996] “Applications of chaos in biology and
medicine,” in Chaos and the Changing Nature of Sci-
ence and Medicine: An Introduction, ed. Herbert, D.
E. (AIP Press, NY), pp. 175-201.

Fradkov, A. L. & Pogromsky, A. Y. [1998] Introduction to
Control of Oscillations and Chaos (World Scientific,
Singapore).

Fradkov, A. L. & Evans, R. J. [2002] “Control of
chaos: Survey 1997-2000,” in Proc. IFAC 2002 World
Congress, July 2002, Barcelona, Spain.

Gadre, S. D. & Varma, V. S. [1997] “Control of chaos,”
J. Phys. 48, 259-270.

Goldberger, A. L. [1994] “Applications of chaos to phys-
iology and medicine,” in Applied Chaos, eds. Kim, J.
H. & Stringer, J. (Academic Press, NY), pp. 321-331.

Kailath, T. [1980] Linear Systems (Prentice-Hall, NJ).

Kapitaniak, T. [2000] Chaos for Engineers, Theory,
Applications and Control (Springer-Verlag, Berlin).

Khalil, H. K. [2002] Nonlinear Systems, 3rd edition
(Prentice-Hall, NJ).

Morgiil, O. & Solak, E. [1996] “On the observer based
synchronization of chaotic systems,” Phys. Rev. E54,
4803-4811.

Morgiil, O. & Solak, E. [1997] “On the synchronization
of chaotic systems by using state observers,” Int. J.
Bifurcation and Chaos 7, 1307-1322.



Int. J. Bifurcation Chaos 2004.14:2943-2954. Downloaded from www.worldscientific.com
by BILKENT UNIVERSITY on 09/29/17. For personal use only

2954 0. Morygiil

Morgiil, O. [1999] “Necessary condition for observer-
based chaos synchronization,” Phys. Rev. Lett. 82,
169-176.

Morgiil, O. [2003] “A model-based scheme for anticon-
trol of some chaotic systems,” Int. J. Bifurcation and
Chaos 13, 3449-3457.

Schiff, S. J., Jerger, K., Duang, D. H., Chang, T., Spano,
M. L. & Ditto, W. L. [1994] “Controlling chaos in the
brain,” Nature 370, 615-620.

Solak, E., Morgiil, O. & Ersoy, U. [2001] “Observer-
based control of a class of chaotic systems,” Phys.
Lett. A279, 47-55.

Ushio, T. [1999] “Synthesis of synchronized chaotic

systems based on observers,” Int. J. Bifurcation and
Chaos 9, 541-546.

Wang, X. F. & Chen, G. [2000a] “Chaotifying a stable
LTI system by tiny feedback control,” IEEE Trans.
Circuits Syst.-1 47, 410-415.

Wang, X. F. & Chen, G. [2000b] “Chaotification via
arbitrarily small feedback controls: Theory, methods
and applications,” Int. J. Bifurcation and Chaos 10,
549-570.

Yang, W., Ding, M., Mandell, A. J. & Ott, E. [1995]
“Preserving chaos: Control strategies to preserve com-
plex dynamics with potential relevance to biological
disorders,” Phys. Rev. E51, 102-110.



