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Abstract. We investigate the use of low-cost infrared (IR) sensors for
the simultaneous extraction of geometry and surface properties of com-
monly encountered features or targets in indoor environments, such as
planes, corners, and edges. The intensity measurements obtained from
such sensors are highly dependent on the location, geometry, and sur-
face properties of the reflecting target in a way that cannot be repre-
sented by a simple analytical relationship, therefore complicating the lo-
calization and recognition process. We propose the use of angular
intensity scans and present an algorithm to process them to determine
the geometry and the surface type of the target and estimate its position.
The method is verified experimentally with planes, 90-deg corners, and
90-deg edges covered with aluminum, white cloth, and Styrofoam pack-
aging material. An average correct classification rate of 80% of both
geometry and surface over all target types is achieved and targets are
localized within absolute range and azimuth errors of 1.5 cm and 1.1
deg, respectively. Taken separately, the geometry and surface type of
targets can be correctly classified with rates of 99 and 81%, respectively,
which shows that the geometrical properties of the targets are more
distinctive than their surface properties, and surface determination is the
limiting factor. The method demonstrated shows that simple IR sensors,
when coupled with appropriate processing, can be used to extract sub-
stantially more information than that for which such devices are com-
monly employed. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1789136]
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1 Introduction

Target differentiation and localization is of considerable in-
terest for intelligent systems where it is necessary to iden-
tify targets and their positions for autonomous operation.
Differentiation is also important in industrial applications
where different materials must be identified and separated.
In this paper, we consider the use of a very simple IR
sensing system consisting of one emitter and one detector
for the purpose of differentiation and localization. These
devices are inexpensive, practical, and widely available.
The emitted light is reflected from the target and its inten-
sity is measured at the detector. However, it is often not
possible to make reliable distance estimates based on the
value of a single intensity return because the return depends
on both the geometry and surface properties of the reflect-
ing target. Likewise, the properties of the target cannot be
deduced from simple intensity returns without knowing its
distance and angular location. In this paper, we propose a
scanning technique and an algorithm that can simulta-
neously determine the geometry and the surface type of the
target, in a manner that is invariant to its location. Once the
target type is determined, its position (r ,u) can also be

estimated. The method we propose is scalable in the sense
that the accuracy can be increased by increasing the num-
ber of reference scans without increasing the computational
complexity of the differentiation and localization process.
Our results show that by properly processing data obtained
from such simple IR sensors, it is possible to extract a
significantly greater amount of information than is com-
monly expected from such sensors.

Most work on pattern recognition involving IR deals
with recognition or detection of features or targets in con-
ventional 2-D images. Examples of work in this category
include face identification,1 automatic target recognition,2

target tracking,3 automatic vehicle detection,4 remote
sensing,5 detection and identification of targets in back-
ground clutter,6,7 and automated terrain analysis.8 Note that
the position-invariant pattern recognition and position esti-
mation achieved in this paper are different from such op-
erations performed on conventional images9 in that here we
work not on direct ‘‘photographic’’ images of the targets
obtained by some kind of imaging system, but rather on
angular intensity scans obtained by rotating a point sensor.
The targets we differentiate are not patterns in a 2-D image
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whose coordinates we try to determine, but rather objects in
space, exhibiting depth, whose position with respect to the
sensing system we must estimate. As such, position-
invariant differentiation and localization is achieved with
an approach quite different than those employed in invari-
ant pattern recognition and localization in conventional
images.10–16

IR sensors are used in robotics and automation, process
control, remote sensing, and safety and security systems.
More specifically, they have been used in simple object and
proximity detection,17 counting,18 distance and depth
monitoring,19 floor sensing, position measurement, and
control,20,21 obstacle/collision avoidance,22,23 and map
building.24 IR sensors are used in door detection and map-
ping of openings in walls,25 as well as monitoring doors/
windows of buildings and vehicles, and ‘‘light curtains’’ for
protecting an area. In Ref. 26, the properties of a planar
surface at a known distance were determined using the
Phong illumination model, and using this information, the
IR sensor employed was modeled as an accurate range
finder for surfaces at short ranges. In Ref. 27, an IR-sensor-
based system that can measure distances up to 1 m is de-
scribed. References 28, 29, and 30 deal with optical deter-
mination of depth information. In Ref. 31, simulation and
evaluation of the recognition abilities of active IR sensor
arrays are considered for autonomous systems using a ray-
tracing approach. Reference 32 describes a passive IR sens-
ing system that identifies the locations of the people in a
room. IR sensors have also been used for automated sorting
of waste objects made of different materials.33 In Ref. 34,
we considered targets with different geometrical properties
but made of the same surface material~wood!. A correct
classification rate of 97% was achieved with absolute range
and azimuth errors of 0.8 cm and 1.6 deg. A rule-based
approach to the same problem can be found in Ref. 35. In
Ref. 36, targets made of different surface materials but of
the same planar geometry were differentiated with a correct
differentiation rate of 87% and absolute range and azimuth
errors of 1.2 cm and 1.0 deg. In this paper, we deal with the
problem of differentiating and localizing targets whose ge-
ometry and surface properties both vary, generalizing and
unifying the results of Refs. 34 and 36.

2 Target Differentiation and Localization

The IR sensor37 used in this study@see Fig. 1~a!# consists of
an emitter and detector, works with 20 to 28-V dc input
voltage, and provides analog output voltage proportional to
the measured intensity reflected off the target. The detector
window is covered with an IR filter to minimize the effect
of ambient light on the intensity measurements. Indeed,
when the emitter is turned off, the detector reading is es-
sentially zero. The sensitivity of the device can be adjusted
with a potentiometer to set the operating range of the sys-
tem.

The targets employed in this study are a plane, a 90-deg
corner, and a 90-deg edge, each with a height of 120 cm
~Fig. 2!. They are covered with aluminum, white cloth, and
Styrofoam packaging material. Our method is based on an-
gularly scanning each target over a certain angular range.
The IR sensor is mounted on a 12-in. rotary table38 to ob-
tain angular scans from these targets. A photograph of the
experimental setup and its schematics can be seen in Figs.

1~b! and 3, respectively. Reference data sets are collected
for each target with 2.5-cm distance increments from their
nearest to their maximum observable ranges atu50 deg.
The output signal is processed using an 8-bit
microprocessor-compatible analog-to-digital converter chip
having a conversion time of 100ms.

The resulting reference scans for the plane, the corner,
and the edge covered with materials of different surface
properties are shown in Figs. 4, 5, and 6. The intensity
scans areu invariant but notr invariant; changes inr result
in variations in both the magnitude and the basewidth of the
intensity scans. Scans of corners covered with white cloth
and Styrofoam packaging material have a triple-humped

Fig. 1 (a) IR sensor used in this study and (b) experimental setup.

Fig. 2 Target primitives used in this study.
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pattern~with a much smaller middle hump! corresponding
to the two orthogonal constituent planes and their intersec-
tion. The intensity scans for corners covered with alumi-
num @Fig. 5~a!# have three distinct saturated humps. Notice
that the return signal intensities saturate at an intensity cor-
responding to about 11 V output voltage.

We now describe the differentiation and localization
process of an arbitrarily located target whose intensity scan
was observed. First, we check for saturation by examining

the central intensity value of the observed scanI (a). This
situation is treated separately, as will be explained later in
Sec. 2.3. Note that a corner scan is considered saturated
when its central intensity enters the saturation region, not
the humps, since it is the former value that is relevant for
our method.

We start by determining the target type. Unfortunately,
direct comparison with the corresponding curves in Figs.
4–6 is not possible since we do not yet know the distance
to the target, and comparing with all the curves at all dis-
tances would be computationally very expensive. There-
fore, we exploit the fact that the successive curves in Figs.
4–6 exhibit a monotonic dependence on distance. Further-
more, when an observed scan is compared to the several
successive curves in any of Figs. 4–6, the two measures of
difference between them described in Secs. 2.1 and 2.2 also
exhibit a monotonic fall and rise around a single minimum.
Therefore, we are ensured that we will not be settling at a
suboptimal point if we compare the observed scan not with
all scans at all distances, but only with the nine scans~one
for each particular geometry and surface type! whose cen-
tral intensities are closest to that of the observed scan.
Therefore, for unsaturated scans, it is sufficient to make
nine comparisons instead of comparisons with all the scans

Fig. 3 Top view of the experimental setup used in target differentia-
tion and localization. The emitter and detector windows are circular
with an 8-mm diameter and a center-to-center separation 12 mm.
(The emitter is above the detector.) Both the scan angle a and the
target azimuth u are measured counterclockwise from the horizontal
axis.

Fig. 4 Intensity scans for planes at different distances covered with different surface materials: (a)
aluminum, (b) white cloth, and (c) Styrofoam.
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in Figs. 4–6. This remains the case even if the 2.5-cm
increments are reduced to smaller values. This has the ad-
vantage that the accuracy of the system can be increased
without increasing the cost of computation~although a
greater number of scans must be stored!. As a test, we also
ran a version of the method where 18 comparisons were
made using the scans with the nearest central intensities
both above and below the observed central intensity, and
also using all of the scans shown in Figs. 4–6. These com-
putationally more expensive approaches, exceedingly more
so in the latter case, did not improve the results with respect
to a comparison with only nine scans. In fact, in the
matched filtering case discussed in Sec. 2.2, the results are
even somewhat better when nine scans are used, due to the
fact that this systematic elimination ofa priori suboptimal
scans eliminates the small possibility that they will mistak-
enly be chosen as the best matching scan due to noise and
other errors.

Two alternative approaches are employed in performing
the nine comparisons. These are discussed in the following
two subsections.

2.1 Least-Squares Approach

First, we estimate the angular position of the target as fol-
lows. Assuming the observed scan pattern is not saturated,

we check whether or not it has two major humps. If so, it is
a corner and we find the angular location of the corner by
taking the average of the angular locations of the peaks of
the two major humps of the intensity scan. If not, we find
the angular location of the peak of the single hump. This
angular value can be directly taken as an estimate of the
angular position of the target. Alternatively, the angular po-
sition can be estimated by finding the center of gravity
~COG! of the scan as follows:

uCOG5
( i 51

n a i I ~a i !

( i 51
n I ~a i !

. ~1!

Ideally, these two angular position estimates would be
equal, but in practice they differ by a small amount. We
consider the use of both alternatives when tabulating our
results. From now on, we refer to either estimate as the
‘‘center angle’’ of the scan.

Plots of the intensity at the center angle of each scan in
Figs. 4–6 as a function of the distance at which that scan
was obtained, play an important role in our method. Figure
7 shows these plots for the intensity value at the COG for
planes, corners, and edges.

Fig. 5 Intensity scans for corners at different distances covered with different surface materials: (a)
aluminum, (b) white cloth, and (c) Styrofoam.
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In this approach, we compare the intensity scan of the
observed target with the nine reference scans by computing
their least-squares differences after aligning their centers
with each other. The mean-square difference between the
observed scan and the nine scans is computed as follows:

Ej5
1

n (
i 51

n

@ I ~a i2aalign!2I j~a i !#
2, ~2!

whereI j , j 51,...,9, denotes the nine scans. Here,aalign is
the angular shift that is necessary to align both patterns.
The geometry-surface combination resulting in the smallest
value of E is declared as the observed target. Once the
geometry and surface type are determined, the range can be
estimated by using linear interpolation on the appropriate
curve in Fig. 7. Note that, in this way, the accuracy of the
method is not limited by the 2.5-cm spacing used in col-
lecting the reference scans.

2.2 Matched Filtering Approach

As an alternative, we also considered the use of matched
filtering39 to compare the observed and reference scans.
The output of the matched filter is the cross-correlation

between the observed intensity pattern and thej’th refer-
ence scan normalized by the square root of its total energy:

yj~ l !5
(kI ~ak!I j~ak2 l !

$( i 51
n @ I j~a i !#

2%1/2
, ~3!

where l 51,...,2n21 and j 51,...,9. The geometry-surface
combination corresponding to the maximum cross-
correlation peak is declared as the correct target type, and
the angular position of the correlation peak directly pro-
vides an estimate of the azimuth angle of the target. Then,
the distance is estimated by using linear interpolation on
the appropriate curve in Fig. 7 using the intensity value at
the azimuth estimate.

2.3 Saturated Scans

If saturation is detected in the observed scan, special treat-
ment is necessary. In the least-squares approach, the mean
square differences between the aligned observed scan and
all the saturated reference scans are computed and the tar-
get type with the minimum mean square difference is cho-
sen. The range estimate of the target is taken as the distance
corresponding to the scan resulting in the minimum mean

Fig. 6 Intensity scans for edges at different distances covered with different surface materials: (a)
aluminum, (b) white cloth, and (c) Styrofoam.
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square difference. Similarly, for the matched filter, correla-
tion between the observed scan and all the stored saturated
reference scans is computed and the target type resulting in
the highest correlation peak is selected. The range estimate
is again taken as that of the best matching scan.

Note that, in the saturated case, range estimation accu-
racy is limited by the 2.5-cm interval at which the reference
scans were taken since interpolation is not possible. If the
accuracy is not satisfactory, it can be improved by reducing
the 2.5-cm intervals. Note that the 2.5-cm interval does not
limit the range estimation accuracy in the unsaturated case,
where interpolation is possible from Fig. 7.

3 Experimental Verification and Discussion

In this section, we experimentally verify the proposed
method by situating targets at randomly selected distancesr
and azimuth anglesu and collecting a total of 194 test
scans. The targets are randomly located at azimuth angles
varying from 245 to 45 deg from their nearest to their
maximum observable ranges in Figs. 4, 5, and 6.

The results of least-squares-based target differentiation
are displayed in Tables 1 and 2 in the form of confusion
matrices. Table 1 gives the results obtained using the maxi-
mum intensity~or the middle-of-two-maxima intensity for

corner! values, and Table 2 gives those obtained using the
intensity value at the COG of the scans. The average accu-
racy over all target types can be found by summing the
correct decisions given along the diagonal of the confusion
matrix and dividing this sum by the total number of test
trials ~194!. The same average correct classification rate is
achieved by using the maximum and the COG variations of
the least-squares approach, which is 77%.

Matched filter differentiation results are presented in
Table 3. The average accuracy of differentiation over all
target types is 80%, which is better than that obtained with
the least-squares approach.

Planes and corners covered with aluminum are correctly
classified with all approaches employed due to their distinc-
tive features. Planar targets of different surface properties
are better classified than the others, with a correct differen-
tiation rate of 91% for the matched filtering approach. For
corner targets, the highest correct differentiation rate of
83% is achieved with the COG variation of the least-
squares approach. The greatest difficulty is encountered in
the differentiation of edges of different surfaces, which
have the most similar intensity patterns. The highest correct
differentiation rate of 60% for edges is achieved with the
maximum intensity variation of the least-squares approach.

Fig. 7 Central intensity (COG) versus distance curves for different targets: (a) plane, (b) corner, and
(c) edge.
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Taken separately, the geometry and surface type of targets
can be correctly classified with rates of 99 and 81%, re-
spectively, which shows that the geometrical properties of
the targets are more distinctive than their surface properties,
and surface determination is the limiting factor.

The average absolute range and azimuth estimation er-
rors for the different approaches are presented in Table 4
for all test targets. As we see in the table, using the maxi-
mum and COG variations of the least-squares approach, the
target ranges are estimated with average absolute range er-
rors of 1.8 and 1.7 cm, respectively. Matched filtering re-
sults in an average absolute range error of 1.5 cm, which is
better than the least-squares approach. The greatest contri-
bution to the range errors comes from targets which are
incorrectly differentiated and/or whose intensity scans are
saturated. If we average over only correctly differentiated
targets~regardless of whether they lead to saturation!, the
average absolute range errors are reduced to 1.2, 1.0, and
0.7 cm for the maximum and COG variations of the least-
squares and the matched filtering approaches, respectively.
As for azimuth estimation, the respective average absolute
errors for the maximum and COG variations of least-
squares and the matched filtering approaches are 1.6, 1.5,
and 1.1 deg, with matched filtering resulting in the smallest
error. When we average over only correctly differentiated
targets, these errors are reduced to 1.5, 1.2, and 0.9 deg,
respectively.

To explore the boundaries of system performance and to
assess the robustness of the system, we also tested the sys-
tem with targets of either unfamiliar geometry, unfamiliar
surface, or both, whose scans are not included in the refer-
ence data sets. Therefore, these targets are totally new to
the system. First, tests were done for planes, corners, and
edges covered with five new surfaces: brown, violet, black,
and white paper, and wood. The results of these tests are
presented in Tables 5, 6, and 7. Planes are classified as
planes100% of the time using both variations of the least-
squares method and 99.3% of the time using the matched
filtering approach. Corners are classified as corners 100%
of the time using any of the three approaches. Edges are
correctly classified 89.1% of the time using the maximum

variation of the least-squares approach, 88.2% of the time
using the COG variation of the least-squares approach, and
87.3% of the time using the matched filtering approach. In
these tests, no target type is mistakenly classified as a cor-
ner due to the unique characteristics of the corner scans.
For the same reason, corners of the preceding five surface
types are never classified as planes or edges. The range and
azimuth errors are comparable or slightly larger than before
~not shown!.

We also tested the system with cylinders, which were
not among the three geometries in the original data sets,
with the same surface types as used in the reference data
sets: aluminum, white cloth, and Styrofoam. The results are
given in Table 8 and indicate that cylindrical targets are
most likely to be classified as edges. In this case, correct
surface classification rate drops to 35%. We have also con-
sidered cylinders whose surface properties are different
than the surface types considered in the reference data sets.
These are brown, violet, black, and white paper and wood.
That is, both the geometry and surface type of this target is

Table 1 Confusion matrix: least-squares-based classification (maxi-
mum variation).

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

AL 24 — — — — — — — —

P WC — 25 4 — — — — — —

ST — 9 20 — — — — — —

AL — — — 22 — — — — —

C WC — — — — 10 12 — — —

ST — — — — — 20 — — —

AL — — — — — — 9 — 1

E WC — — — — — — — 11 9

ST — — 1 — — — — 8 9

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.

Table 2 Confusion matrix: least-squares based classification (COG
variation).

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

AL 24 — — — — — — — —

P WC — 25 4 — — — — — —

ST — 9 20 — — — — — —

AL — — — 22 — — — — —

C WC — — — — 13 9 — — —

ST — — — — 2 18 — — —

AL — — 1 — — — 7 — 2

E WC — — — — — — — 14 6

ST — 1 1 — — — — 10 6

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.

Table 3 Confusion matrix: matched filter based classification.

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

AL 24 — — — — — — — —

P WC — 27 2 — — — — — —

ST — 5 24 — — — — — —

AL — — — 22 — — — — —

C WC — — — — 14 8 — — —

ST — — — — 4 16 — — —

AL — — — — — — 9 1 —

E WC — — — — — — — 11 9

ST — — 2 — — — — 8 8

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.
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totally unfamiliar to the system. Again, cylinders are most
likely to be classified as edges with Styrofoam surface type
~see Table 9!. In these two cases, average range estimation
error increases to about 9 to 11 cm, but the azimuth error is
of the same order of magnitude as before, since our azi-
muth estimation method is independent of target type.

These results indicate that geometrical properties of the
targets are more dominant and distinctive compared to their
surface properties. When the geometry is familiar but the
surface type is not, as in the cases in Tables 5, 6, and 7, the
correct classification rate of the geometry is very high
~about 96% on the average!. However, when the surface
type is familiar but the geometry is not, the correct classi-
fication rate of the surface type is lower~35%!, as in
Table 8.

Among the three approaches, the maximum variation of
the least-squares approach is slightly more robust to devia-
tions from targets included in the reference sets.

In the remainder of this section, we discuss the effect of
varying the orientation of the targets from their head-on

positions. This constitutes a separate degree of freedom
than the range and azimuth of the targets. Varying the ori-
entation for planes does not make any difference since a
complete scan is acquired. The acquired scan will still be
that of a plane, with its peak shifted to the azimuthal value,
which corresponds to the direction where the sensor line of
sight is perpendicular to the plane. In other words, varying
the orientation of planes does not lead to any deterioration
in performance since such planes are already included in
the reference set. Variation of orientation is not an issue for
cylinders to begin with, since they are rotation invariant.

Change of orientation will make a difference when the
target geometry is a corner or an edge, leading to scans not
existing in the reference set. Unlike with the case of planes
and cylinders, varying the orientation of corners and edges
leads to asymmetric scans. If the scan is symmetric, it is
either a plane or a cylinder, or a corner or an edge with
nearly 0 deg orientation, and the described algorithm can
handle it. If the scan is asymmetric, we know that the target
is either a corner or an edge with nonzero orientation.

Table 4 Absolute range and azimuth estimation errors over all test targets.

Method

P C E

Average ErrorAL WC ST AL WC ST AL WC ST

LS-max r (cm) 2.2 2.3 1.0 2.1 0.8 0.5 2.4 1.9 2.7 1.8

u (deg) 0.9 2.3 0.8 2.4 1.7 1.3 1.1 2.0 1.7 1.6

LS-COG r (cm) 2.2 0.6 1.0 2.1 0.6 0.6 3.8 1.4 3.2 1.7

u (deg) 0.9 1.0 0.8 2.4 1.4 1.1 1.2 2.2 2.3 1.5

MF r (cm) 1.7 0.5 0.7 1.5 0.6 0.6 2.2 1.7 4.2 1.5

u (deg) 0.8 0.9 0.7 1.0 1.1 1.0 1.1 2.6 0.9 1.1

LS: least-squares, MF: matched filter.

Table 5 Confusion matrix for planar targets with unfamiliar surface.

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

WO — 16 14 — — — — — —

BR — 20 10 — — — — — —

P VI — 22 8 — — — — — —

(LS-max) BL — 24 6 — — — — — —

WH — 18 11 — — — — — —

WO — 15 15 — — — — — —

BR — 20 10 — — — — — —

P VI — 22 8 — — — — — —

(LS-COG) BL — 24 6 — — — — — —

WH — 16 13 — — — — — —

WO — 19 11 — — — — — —

BR — 22 8 — — — — — —

P VI — 23 6 — — — — — 1

(MF) BL 1 25 4 — — — — — —

WH — 18 11 — — — — — —

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.

Table 6 Confusion matrix for corner targets with unfamiliar surface.

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

WO — — — — 9 13 — — —

BR — — — 1 3 17 — — —

C VI — — — 1 20 — — — —

(LS-max) BL — — — — 12 10 — — —

WH — — — — 12 9 — — —

WO — — — — 10 12 — — —

BR — — — 1 3 17 — — —

C VI — — — 1 2 18 — — —

(LS-COG) BL — — — — 13 9 — — —

WH — — — — 13 8 — — —

WO — — — — 14 8 — — —

BR — — — 1 4 16 — — —

C VI — — — 1 3 17 — — —

(MF) BL — — — — 13 9 — — —

WH — — — — 13 8 — — —

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.
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While it is possible to deal with this case by extending the
reference set to include targets with nonzero orientation, the
introduction of a simple rule enables us to handle such
cases with only minor modification of the already presented
algorithm. We can determine whether the asymmetric scan
comes from a corner or an edge by checking whether or not
it has two humps. Thus, even with arbitrary orientations,
the target geometry can be determined. Furthermore, we
observe that variations in orientation have very little effect
on the central intensity of the asymmetric scans~see Fig. 8
for some examples!. This means that the central intensity
value can be used to determine the distance in the same

manner as before by using linear interpolation on the cen-
tral intensity versus distance curves for a particular target.

To summarize, with the preceding observations and mi-
nor modifications to the algorithm, the same geometry and
surface recognition and position estimation objectives can
be achieved even when the targets do not have 0-deg ori-
entations. Note, however, that while this approach enables
us to accomplish the desired objectives in an orientation-
invariant manner, it does not determine the orientation of
the target. If determination of target orientation is also de-
sired, this can be accomplished either by storing corre-
sponding scans in the reference set~increasing storage re-
quirements!, or more efficiently by constructing orientation
angle versus measure-of-asymmetry plots based on suitable
measures of asymmetry~for instance, ratios of characteris-
tics of the left- and right-hand sides of the scans!.

To demonstrate this, we performed additional experi-
ments with corners and edges. These targets were placed at
random orientation angles at randomly selected distances. A
total of 100 test scans were collected. Using the orientation-
invariant approach already described, 100% correct differ-
entiation and absolute mean range errors of 1.02 and 1.47
cm for corners and edges respectively, were achieved.

We also tested the case where reference scans corre-
sponding to different orientations are acquired. Reference
data sets were collected for both targets with 5-cm distance
increments atu50 deg, where the orientation of the targets
are varied between235 to 35 deg with 2.5-deg increments.
A total of 489 reference scans were collected. For each test
scan, the best-fitting reference scan was found by matched
filtering. This method also resulted in 100% correct differ-
entiation rate. Absolute mean range and orientation errors

Table 7 Confusion matrix for edge targets with unfamiliar surface.

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

WO — 1 5 — — — — 9 7

BR — — 2 — — — — 12 8

E VI — — 2 — — — — 10 8

(LS-max) BL — — — — — — — 14 9

WH — — 2 — — — — 12 9

WO — 2 4 — — — 1 11 4

BR — — — — — — 1 15 6

E VI — 1 3 — — — — 15 1

(LS-COG) BL — 1 — — — — — 16 6

WH — 2 — — — — — 13 8

WO — — 6 — — — — 12 4

BR — — 3 — — — — 10 9

E VI — — 1 — — — — 17 2

(MF) BL — — 2 — — — — 15 6

WH — — 2 — — — — 12 9

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.

Table 8 Confusion matrix for cylindrical targets with familiar sur-
face.

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

AL — — — — — — 1 — 12

CY WC 7 — 1 — — — — 5 12

(LS-max) ST 4 — — — — — 1 4 16

AL — — — — — — — — 13

CY WC 7 1 — — — — — 4 13

(LS-COG) ST 4 1 1 — — — — 5 14

AL — — — — — — 1 — 12

CY WC 8 — 2 — — — — 2 13

(MF) ST 5 — 1 — — — — 5 14

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.

Table 9 Confusion matrix for cylindrical targets with unfamiliar sur-
face.

Actual

Detected

P C E

AL WC ST AL WC ST AL WC ST

WO 8 — — — — — — 4 13

BR 7 — — — — — — 5 13

CY VI 7 1 1 — — — — 5 12

(LS-max) BL 5 — — — — — — 3 16

WH 8 — — — — — — 5 13

WO 8 — — — — — — 3 14

BR 7 — 1 — — — — 4 13

CY VI 7 2 1 — — — — 5 11

(LS-COG) BL 5 — — — — — 1 7 11

WH 8 1 — — — — — 3 14

WO 8 — — — — — — 5 12

BR 7 — 2 — — — — 4 12

CY VI 8 — 3 — — — — 3 12

(MF) BL 7 — 2 — — — — 3 12

WH 8 — — — — — — 5 13

AL, aluminum; WC, white cloth; ST, Styrofoam; WO, wood; BR,
brown paper; VI, violet paper; BL, black paper; WH, white paper; P,
plane; C, corner; E, edge; CY, cylinder.

Aytaç and Barshan: Simultaneous extraction of geometry . . .

2445Optical Engineering, Vol. 43 No. 10, October 2004

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 9/28/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



for corners and edges were 1.13 and 1.26 cm and 4.48 and
5.53 deg, respectively.

4 Discussion and Conclusion

In this study, differentiation and localization of commonly
encountered indoor features or targets such as planes, cor-
ners, and edges with different surfaces was achieved using
an inexpensive IR emitter and detector pair. Different ap-
proaches were compared in terms of correct target differen-
tiation rate, and range and azimuth estimation accuracy.
The matched filtering approach in general gave better re-
sults for both differentiation and localization. The robust-
ness of the methods was investigated by presenting the sys-
tem with targets of either unfamiliar geometry, unfamiliar
surface type, or both. These targets were not included in the
reference sets so they were completely new to the system.

The accomplishment of this study is that even though
the intensity scan patterns are highly dependent on target
location, and this dependence cannot be represented by a
simple relationship, we realize position-invariant target dif-
ferentiation. An average correct target differentiation rate of
80% over all target types was achieved and targets were
localized within absolute range and azimuth errors of 1.5
cm and 1.1 deg, respectively. The method we propose is
scalable in the sense that the accuracy can be increased by
increasing the number of reference scans without increas-
ing the computational cost. The results reported here repre-
sent the outcome of our efforts to explore the limits of what
is achievable in terms of identifying information with only
a simple emitter-detector pair. Such simple sensors are usu-
ally put to much lower information-extracting uses.

We saw that the geometrical properties of the targets are
more distinctive than their surface properties, and surface
determination is the limiting factor. In this paper, we dem-
onstrated target differentiation for three target geometries
and three different surfaces. Based on the data we collected
and on our previous works,34–36 it seems possible to in-
crease the vocabulary of different geometries, provided
they are not too similar. However, the same cannot be said
for the number of different surfaces. For a given total num-

ber of distinct targets, increasing the number of surfaces
and decreasing the number of geometries will, in general,
worsen the results. On the other hand, decreasing the num-
ber of surfaces and increasing the number of geometries
will, in general, improve the results.

This paper demonstrated that simple IR sensors, when
coupled with appropriate processing, can be used to extract
substantially more information than such devices are com-
monly employed for. We expect this flexibility to signifi-
cantly extend the range of applications in which such low-
cost single-sensor-based systems can be used. Specifically,
we expect that it will be possible to go beyond relatively
simple tasks such as simple object and proximity detection,
counting, distance and depth monitoring, floor sensing, po-
sition measurement, obstacle/collision avoidance, and deal-
ing with tasks such as differentiation, classification, recog-
nition, clustering, position estimation, map building,
perception of the environment and surroundings, autono-
mous navigation, and target tracking. The approach pre-
sented here would be more useful where a self-correcting
operation is possible due to repeated observations and feed-
back.

A typical application of the demonstrated system would
be in mobile robotics in surveying an unknown environ-
ment composed of elementary features or targets. Many
artificial environments fall into this category. Industrial ap-
plications where different targets and/or materials must be
identified and separated may also benefit from this ap-
proach. We plan to test and evaluate the developed system
on a small mobile robot in our laboratory for map building
in a test room composed of the primitive features consid-
ered in this study.

Current work involves identifying more generally
shaped targets~such as a vase or a bottle! by using several
scans from each target obtained at different heights. Also
being considered is the parametric modeling and represen-
tation of intensity scans rather than the use of the intensity
scan vectors themselves.

Fig. 8 Intensity scans for a wooden (a) corner at 65 cm and (b) edge at 35 cm for orientations
between 0 and 35 deg with 2.5-deg increments. The curves with the dotted lines indicate 0-deg
orientation.
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