
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [Bilkent University] Date: 13 November 2017, At: 02:42

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20

Minimizing L max for the single machine scheduling
problem with family set-ups

S. R. Schultz , T. J. Hodgson , R. E. King & M. R. Taner

To cite this article: S. R. Schultz , T. J. Hodgson , R. E. King & M. R. Taner (2004) Minimizing
L max for the single machine scheduling problem with family set-ups, International Journal of
Production Research, 42:20, 4315-4330, DOI: 10.1080/00207540410001716561

To link to this article: http://dx.doi.org/10.1080/00207540410001716561

Published online: 21 Feb 2007.

Submit your article to this journal

Article views: 44

View related articles

Citing articles: 6 View citing articles

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20
http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207540410001716561
http://dx.doi.org/10.1080/00207540410001716561
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207540410001716561
http://www.tandfonline.com/doi/mlt/10.1080/00207540410001716561
http://www.tandfonline.com/doi/citedby/10.1080/00207540410001716561#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00207540410001716561#tabModule

int. j. prod. res., 15 october 2004,
vol. 42, no. 20, 4315–4330

Minimizing Lmax for the single machine scheduling problem

with family set-ups

S. R. SCHULTZy, T. J. HODGSONz*, R. E. KINGz and
M. R. TANER§

A procedure for the single machine-scheduling problem of minimizing the
maximum lateness for jobs with sequence independent set-ups is presented.
The procedure provides optimal/near-optimal solutions over a wide range of
problems. It performs well compared with other heuristics, and it is effective in
finding solutions for large problems.

1. Introduction

Consider the problem of minimizing the maximum lateness (Lmax) for a set of
jobs to be processed on a single machine. Each job belongs to a given part family.
Jobs are denoted with an (i, j) subscript indicating the jth job from family i. Thus,
pij and dij are the processing time and due date for job (i, j), respectively. The number
of jobs in a family i is Ni. When starting the processing of a job with a family
different from that of the preceding job, a set-up of length si occurs for family i.
The set-up time for the new family is independent of the prior family. All jobs
are ready to be scheduled at time 0. Lateness (Lij) is defined as the job completion
time (Cij) minus the job due date (dij), i.e. Lij ¼ Cij� dij. This problem in standard
scheduling notation is 1/si,b/Lmax.

The problem was first studied by Bruno and Downey (1978), who showed that
the problem of determining whether a schedule exists with no tardy jobs is NP-
complete. Monma and Potts (1989) showed that maximum lateness and the
number of tardy jobs problems are NP-hard. Schutten et al. (1996) developed a
branch-and-bound algorithm to solve the problem with non-zero ready times.
Hariri and Potts (1997) analysed several heuristics and developed a branch-and-
bound algorithm for the case when all jobs are ready at time 0. Computational
results in Hariri and Potts (1997) and Schutten et al. (1996) indicate difficulty in
solving problems with more than 50 jobs. Baker and Magazine (2000) also used a
branch-and-bound approach and established that the size of the problems that can
be solved is a function of the number of families, the number of jobs per families, the
relative size of the set-up time and the relative due date range. For the most difficult
categories, they solved problems with up to 60 jobs.

Revision received December 2003.
yDepartment of Mechanical and Industrial Engineering, Mercer University, Macon,

GA 31207, USA.
zDepartment of Industrial Engineering, PO Box 7906, North Carolina State University,

Raleigh, NC 27695-7906, USA.
§Department of Industrial Engineering, Bilkent University, TR-06800 Bilkent, Ankara,

Turkey.
* To whom correspondence should be addressed. e-mail: hodgson@eos.ncsu.edu

International Journal of Production Research ISSN 0020–7543 print/ISSN 1366–588X online # 2004 Taylor & Francis Ltd

http://www.tandf.co.uk/journals

DOI: 10.1080/00207540410001716561

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

Baker (1999) examined heuristic solution procedures for the problem. An experi-
mental framework based on due date ranges and set-up time factors was developed
that identified problem instances difficult to solve. Computational results indicate
that his hybrid heuristic (on average) produces results where the difference between
the heuristic maximum lateness and optimal maximum lateness is approximately the
average job processing time.

In the present paper, a new neighbourhood search heuristic is presented. The
procedure is shown to be effective, producing optimal/near-optimal solutions over a
wide range of problem instances and is computationally efficient for large problems.
It was developed based on properties and theorems presented by Hariri and
Potts (1997) and Baker (1999). Of particular interest is Hariri and Potts’ problem
reduction procedure that identifies conditions under which two jobs from the same
family must be scheduled contiguously and can thus be replaced by a single compos-
ite job, therefore reducing the overall problem size. Also of interest is Baker’s
Property 3, which states that there exists an optimal schedule such that the batches
are sequenced in non-decreasing order of their batch due dates.

2. Sequencing improvement routine for a given batch partition

2.1. Optimality conditions for a batch partition
Conditions for optimality are presented below for a constrained version of the

original problem where the number of batches for each part family is fixed. As will
be shown, a heuristic is developed that solves a succession of these constrained
problems in order to construct a solution to the original problem.

The following definitions are helpful in presenting the optimality conditions.

. Batch — set of successive jobs from the same part family,

. Batch partition (n1, n2, n3, . . .) — representation of the problem space where ni
is the number of batches of family i. For example, given four part families a
batch partition of (2, 3, 2, 3) indicates that the sequence contains two batches
for part families 1 and 3, and three batches for part families 2 and 4,

. Neighbouring partition — batch partition created by inserting a new batch
into a given partition. The neighbour may incur an increase of one or two
batches depending on how the new batch is inserted,

. Subset of jobs — within a sequence of jobs, the set of all jobs between and
including those from two consecutive batches of a given part family. For
example, given a sequence of jobs (. . .(i, n) . . . (k, l) . . . (i, n þ 1). . .), a subset
is formed from the sequence of jobs beginning with the batch that ends with
job (i, n) through the batch that begins with job (i, n þ 1).

Given these definitions, there exists at least one optimal schedule that satisfies the
following two conditions.

1. Jobs within a family are sequenced in earliest due-date order. There exists an
optimal sequence such that jobs within each family are sorted by non-
decreasing order of their due dates. Proof of this condition is given by
Monma and Potts (1989) and follows the well-known pair-wise switching
proof for the 1//Lmax problem. Henceforth, assume that jobs of a given family
i are numbered in increasing due date order, i.e. dij � dik8j < k.

2. Batches are sequenced by their batch-adjusted due date. Having defined
a batch as consisting of only jobs from the same part family and using

4316 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

condition 1 above, all jobs within a batch are sequenced in earliest due-date
order. Then a due date, db, can be assigned to batch b consisting of jobs from
family i, such that db ¼ minj2bfdij þ

P
k>j pikg. In other words, the batch-

adjusted due date for batch b is the minimum of the due date for some job
j plus the sum of all downstream processing in its batch. Using these batch-
adjusted due dates, there exists an optimal sequence such that all batches are
sorted by non-decreasing order of their due dates. This condition was first
noted by Webster and Baker (1995) as a corollary to a property proved earlier
in Unal and Kirnan (1992) and Potts and VanWassenhove (1992).

In addition, when constrained by a fixed batch partition, an observation is
identified under which an optimal schedule is obtained.

3. All possible exchanges of jobs between batches of a family have been tested.
Given a batch partition sorted by optimality condition 2 (batches sorted by
batch-adjusted due date), there may exist jobs that can be moved between
batches of a like family such that Lmax is improved without changing the
batch partition.

2.2. Job moves to improve the sequence
In keeping with observation 3, we consider three types of job moves: right job

move, left job move and left Lmax move. For the first two, consider a subset of jobs
defined by a given part family. Let the lmax job be the one with the largest lateness
amongst all jobs in the given subset excluding those of the family that define the
subset (first and last batch), and let the lmax batch be the batch to which the lmax job
belongs. (lmax is used rather than Lmax since the job with the largest lateness in the
subset may not be the job with the largest lateness for the entire sequence.)

We make the following observations.

. Consider some given subset. While maintaining the same batch partition, an
improvement in the subset’s lmax will result when the last job in the first batch
in the subset is moved to the first position in the last batch in the subset. With
such amove, the lateness of all jobs between the first and last batch will improve,
while the lateness of the moved job will increase. However, the lateness of any
other job in the first and last batch is unaffected by the move. If the new lateness
of the job being moved is less than the original lmax, then the move is immedi-
ately accepted. Otherwise, with the job moved, all batches in the entire
sequence are sorted to satisfy optimality condition 2. If the overall Lmax

improves, the move is accepted. We define this type of move as a right job move.
. Consider the case where the lateness of the first job of the last batch that

defines the subset, call this lmax0, is greater than the lmax for the subset.
While maintaining the same batch partition, an improvement in the subset’s
lmax0 may result when the considered job is moved to the last position of the
first batch in the subset. If the lmax of the subset after the move is less than the
original lateness of the moved job, lmax0, then the move is immediately
accepted. Otherwise, with the considered job moved, all batches in the entire
sequence are sorted to satisfy optimality condition 2. If the overall Lmax

improves, the move is accepted. We define this type of move as a left job move.
. Consider all jobs in the schedule. An improvement in Lmax may result when the

jobs from the Lmax batch preceding and including the Lmax job are moved as a

4317Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

group to the batch of the same part family preceding the Lmax batch. After the
jobs are moved, the batches are reordered to satisfy optimality condition 2.
If the result is an improvement in Lmax, the jobs are moved. We define this type
of move as a left Lmax move.

To illustrate these moves, consider the examples in figure 1. Let Gib be the bth batch
of part family i. Figures 1(a–c) illustrate a right job move, a left job move and a left
Lmax move, respectively.

2.3. Scheduling heuristic for a fixed batch partition
For a fixed batch partition, right job moves, left Lmax moves, left job moves

(observation 3) and sorts by batch-adjusted due dates (optimality condition 2) are
performed to find a schedule that ‘best’ minimizes Lmax. The term ‘best’ is used since
there is no guarantee that an optimal sequence of jobs is constructed. The moves are
executed only if the batch partition integrity is maintained. In other words, a right or
left job move is not accepted if the considered job comes from a batch containing a
single job. Additionally, a sort by batch-adjusted due date is not accepted if batches
from the same family end up being consecutive.

 | | | | Last job

Gj1

 lmax job

Gi2 Gj2

(a) - Right job move

Gj1

 lmax’ job

Gi2 Gj2

First job | | |

(b) - Left job move

Gj1 Gi1 Gj2

| |Lmax job | |

(c) - Left Lmax move

Figure 1. Examples of job moves.

4318 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

Figure 2 describes the heuristic procedure. First, all right job moves are tested,
starting with the first batch. Next, the left Lmax move is evaluated. If accepted, the
procedure starts over with right job moves. If not, left job moves are evaluated
starting with the last batch. If any left job move is accepted, the whole procedure
begins again. When all moves are tested, a final batch sort is made. If the batches are
not re-sequenced, the procedure terminates. This heuristic requires O(N –B)3(B)2

time in the worst case, where N ¼
P

i Ni is the number of jobs and B ¼
P

i ni is
the number of batches. See appendix A for the discussion on the complexity of the
fixed batch-partition heuristic.

Set: i = 1

Is move
accepted?

ReturnReturn

Yes

Evaluate “Right job
move” from batch move” from batch i

Set: i = number of
batches

Set: i = i+ 1

Evaluate “Left Lmax
move” of the group of

jobs from the Lmax batch,
up to and including the

Lmax job

Last batch
in

sequence?

Is move
accepted?

Evaluate “Left job move”
from batch i

Evaluate “Left job move”
from batch i

Is move
accepted?
Is move

accepted?

First batch
in

sequence?

First batch
in

sequence?

Sort by batch-adjusted
due date

Sort by batch-adjusted
due date

Does sequence
of batches
change?

Does sequence
of batches
change?

Set: i = i - 1Set: i = i - 1

Update sequence to
reflect move. Set: i = 1

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 2. Procedure to find the ‘best’ schedule for a fixed batch partition.

4319Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

Note that the Lmax job in a sequence may not be in the subset containing the lmax

and lmax0 jobs. Thus, while the right and left moves appear to concentrate on subsets
of jobs that do not directly affect the Lmax of the sequence, eventually the subset
containing the Lmax job will be evaluated. Also, the focus on subsets not containing
Lmax allows for improved sequencing of those batches, which in turn allows
for possible re-sequencing of the schedule as a whole that might not have occurred
if only the subset containing the Lmax job is evaluated.

Also note from figure 2 that while immediately accepting a right or left job
move when lmax or lmax0 is improved may result in a violation of condition 2 (earliest
due-date by batch-adjusted due date), the condition, however, is met with a batch
sort in the last action box in the flow diagram.

3. Batch-partition heuristic

In this section, a procedure for finding optimal/near-optimal solutions to the 1/
si, b/Lmax problem is presented using insight gained from the optimality conditions.

3.1. General algorithm methodology
The methodology involves solving a series of constrained versions of the prob-

lem, i.e. fixed batch partitions. For the batch partition considered, a schedule is
found that ‘best’ minimizes Lmax using the fixed batch-partition heuristic described
above. The algorithm proceeds from one batch partition to another using a
constructive neighbourhood search that is described below. The search begins at
partition (1, 1, . . . , 1) and continues until no neighbour is found that improves Lmax.

3.2. Problem reduction
Before constructing the sequence corresponding to the (1, 1, . . . , 1) partition, the

problem is reduced using Theorem 3 from Hariri and Potts (1997). It identifies
conditions where an optimal solution exists such that pairs of jobs j and k from
the same family i are scheduled consecutively, i.e. j followed by k. When these
conditions hold, the two jobs are replaced by a composite job with the processing
time of the composite job being the sum of the two jobs’ processing times. The due
date of the composite job is set to min{dij þ pik, dik}.

The conditions under which a composite job is formed are as follows: for any
family i, if si þ di,1� di,2�Pi,2, where job (i, 1) is the job with the earliest due date
from family i, then there exists an optimal solution in which jobs (i, 1) and (i, 2)
are scheduled contiguously; and if di, j� di, j þ 1�Pi, j þ 1 for any j (j ¼ 2, . . . ,Ni�1),
then there exists an optimal solution in which jobs (i, j) and (i, jþ 1) are scheduled
contiguously.

3.3. Neighbour construction phase
Neighbour construction consists of generating neighbouring sequences of an

existing sequence. The objective of creating a neighbour is to reduce Lmax. The
following three neighbour types are defined for the batch-partition heuristic.

. Neighbour type 1: consider a sequence S with the Lmax job in batch Gj1

(figure 3a). A neighbouring partition, S0, is created by moving the last job
from a batch of a differing family preceding Gj1 to a position immediately
after the Lmax job (figure 3b). This increases the number of batches for families
i and j by one.

4320 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

. Neighbour type 2: if the last job from batch Gi1 was inserted after the last
job in batch Gj1 then the neighbouring partition would have an increase of
one in the number of batches for only family i. Note that if the batch following
Gj1 is also of family i, then the number of batches does not increase. In this
situation, the neighbour is not created because the fixed-batch-partition
heuristic already accounts for this as a ‘right job move’.

. Neighbour type 3: this neighbour has an additional batch for the part family
containing the Lmax job. It is generated from sequence S by forming a new
batch consisting of the jobs from the Lmax batch up to and including the Lmax

job. The new batch is placed in front of the batch preceding the Lmax batch.
Sequence S00 results when the jobs from Gj1 in sequence S, up to and including
the Lmax job are inserted in front of batch Gi1 (figure 3c). Note again, this
neighbour is not created if the batch immediately preceding this newly created
batch is from the same family. This condition is accounted for as a ‘left Lmax

move’ in the fixed-batch-partition heuristic.

Note that the generation of neighbour types 1–3 will lead to three neighbours of
S if the Lmax job is not the last job in a batch, but will lead to only two neighbours if
the Lmax job is the last job in a batch (neighbour types 1 and 2 are equivalent when
the Lmax job is the last job in a batch).

3.4. Summary of the batch-partition heuristic
The batch-partition heuristic begins by constructing a batch sequence in which all

jobs from the same family are in a single batch, i.e. (1, 1, . . . , 1). The (1, 1, . . . , 1)
partition is chosen as the initial solution because the neighbourhood structure is one
of splitting batches, not combining batches, thus starting at a partition other than
(1, 1, . . . , 1) may result in an inferior solution. Baker (1999) calls this (1, 1, . . . , 1)
partition the GT sequence. All neighbouring sequences of the GT sequence are
constructed and sequenced using the fixed batch-partition scheduling heuristic.
Those sequences with Lmax less than the Lmax of the GT sequence are added to

sj job(j, 3)

Gj2

(a)

(b)

(c)

si job(i, 1) |job(i, 2) | job (i, 3) job(j, 1) |job(j, 2) | job (j, 3)sj

Gi1 Gj1

S

Lmax job

si job(i, 1) |job(i, 2) job(j ,1) |job(j, 2)sj

Gi1 Gj1

S’ si sjjob(i, 3) job(j, 3)

Gi2 Gj2

si job(i, 1) |job(i, 2) | job (i, 3)job(j, 1) |job(j, 2)sj

Gi1Gj1

S’’

Figure 3. Generation of neighbours.

4321Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

the candidate list. Sequences are removed from the candidate list in FIFO order.
Upon removal, if the sequence’s Lmax value is less than the incumbent value ðL�

maxÞ,
the neighbours of the sequence are generated. Otherwise, the sequence is discarded.
As a neighbour is generated, the ‘best’ sequence is found using the fixed batch-
partition scheduling heuristic. If Lmax for the new sequence is less than the incum-
bent best Lmax ðL�

maxÞ, the neighbours of the new incumbent schedule are added to
the candidate list and L�

max is updated. Otherwise, the sequence is discarded. The
process continues until the candidate list is empty. Figure 4 summarizes the batch-
partition procedure.

Construct initial sequence using the (1,1,….,1) batch
partition. Set Lmax

* = Lmax for this sequence. Generate
neighbouring sequences and perform the fixed batch-

partition scheduling heuristic. Add those schedules with
Lmax < Lmax

* to the candidate list.

Is candidate
list empty?

Is the candidate’s
Lmax < Lmax

* ?

Lmax < Lmax
* ?

For each
neighbour, is its

Set: Lmax
* = Neighbour’s

Lmax. Add neighbour to the
candidate list

Generate neighbouring sequences,
and perform the fixed batch-
partition scheduling heuristic.

Remove the first sequence from
the candidate list (FIFO)

Discard this
sequence.

Stop

No

No

Yes

Yes

Yes

No

Figure 4. Batch-partition heuristic.

4322 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

This batch-partition heuristic requires O(F2N5.6) time to solve, where F is the
number of families and N is the number of jobs. See appendix B for a discussion on
the complexity analysis.

4. Computational experiments

Three different experiments are conducted to evaluate the performance of the
batch-partition heuristic. The first is modelled after experiments by Baker (1999)
and is used to evaluate the differences in performance versus the Baker heuristic.
The second is modelled after experiments by Hariri and Potts (1997) and is used
to compare solution quality and computational effort against an optimal procedure.
Finally, experimentation is performed to evaluate computational effort for large-
scale problems.

4.1. Experiment 1
In the Baker framework, two problem sets are generated. One set consists of

24 or 25 jobs using problem size combinations (families� jobs/family) of 2� 12,
3� 8, 4� 6 and 5� 5. The other set consists of 36 jobs using 2� 18, 3� 12, 4� 9
and 6� 6 combinations. Processing times (pij) are generated randomly as Uniform
[1, 99]. Due dates (dij) are generated as Uniform [0, rn �pp], where r is a due date range,
n is the number of jobs and �pp is the average processing time. Then, the smallest due
date is subtracted from all due dates, making the minimum due date zero, and
forcing a positive value for Lmax. All families have the same set-up time (ms*).
Baker defines m as a set-up time parameter and s* as:

s� ¼ max
i

½max
j

fdij þ qijg �min
j
fdij þ qijg�,

where qij is the sum of the processing times of all jobs from family i with due dates
greater than that of job j.

Baker shows that the difficult region of problems to solve includes the following
combinations of due date range (r) and set-up time (m) parameters indicated by XX:

r
0:5 1:0 2:0 4:0

0:10 XX XX
0:25 XX XX XX

m 0:50 XX XX XX
0:75 XX XX

Baker defines a performance measure for comparing the heuristic result to the
optimal solution. Let the heuristic produce a solution Lmax, and let the optimal
solution be L�

max, then:

V ¼ ðLmax � L�
maxÞ= �pp:

The performance measure V returns a value of 0 if the heuristic finds the optimal
solution, and a value less than 1 if Lmax is within an average processing time of the
optimal solution.

Baker obtained his best results using the hybrid heuristic. This heuristic uses the
best result of either his Gap/CS or GT/SC heuristic. The Gap/CS heuristic begins by
evaluating jobs in earliest due date ordering and placing them one at a time into a
sequence. Jobs are evaluated for a gap condition that suggests that jobs are either

4323Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

placed at the end of the sequence or added to the latest batch of the same family.

Once construction is complete, a neighbourhood search is initiated based on

combining (C) and splitting (S) of batches and sorting batches by batch due date.

The GT/SC heuristic starts with single batches for each family and sorts these

batches by batch due date. The GT/SC also uses neighbourhood search, this time

splitting (S) and combining (C) batches and sorting by batch due date.

Twenty problems were generated for each due date range and set-up time

parameter combination for each problem, giving 800 test problems for each of the

two problem sets. Optimal solutions were found using an implicit enumeration

procedure. Table 1 shows that the batch-partition heuristic provides the optimal

solution for at least 87% of the test problems in the first problem set. The average

worst case performance is within 0.10* �pp (or 10% of an average processing time) of

the optimal value. Table 2 shows that the heuristic provides the optimal solution

at least 83% of the time for the second problem set. The average worst-case

performance to objective is 0.18* �pp. In both cases, the problems are constructed

from the same parameter set. However, Baker’s performance data are taken directly

from his paper. CPU times are recorded indicating on average all problems solve

under 0.05 s. The heuristic was coded in Cþþ and experiments were performed on a

500-MHz Pentium processor.

Tables 3 and 4 show how the heuristic performs over the due date and set-up time

ranges. Note that the batch-partition heuristic consistently outperforms Baker’s

hybrid. It does very well when the set-up times are large, finding the optimal solution

for all the problems when m is 0.5 and 0.75. An explanation for this observation is

that with large set-up times, the optimal solution tends toward the group technology

(GT) solution, and because the batch-partition heuristic begins its neighbourhood

Measure Size Baker’s hybrid Batch partition

Per cent optimal 2� 12 66% 95%
3� 8 50% 88%
4� 6 48% 87%
5� 5 59% 89%

Average V 2� 12 0.60 0.03
3� 8 0.90 0.10
4� 6 0.92 0.07
5� 5 0.52 0.08

Table 1. Summary of performance (Baker’s first problem set).

Measure Size Baker’s hybrid Batch-partition

Per cent optimal 2� 18 46% 92%
3� 12 35% 88%
4� 9 30% 86%
6� 6 41% 83%

Average V 2� 18 1.20 0.11
3� 12 1.33 0.14
4� 9 1.03 0.16
6� 6 0.77 0.18

Table 2. Summary of performance (Baker’s second problem set).

4324 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

search at the GT solution, it tends to perform well for those problems with long
set-up times. The heuristic also performs well when due dates are sampled from the
smallest and largest range of the experimental design. Baker (1999) notes that when
due dates are identical, it is desirable to have the minimum number of batches and
that the GT solution achieves the minimum Lmax; thus with the batch-partition
heuristic beginning its neighbourhood search at the GT solution, it performs well
for problems where due dates are sampled from a small range. Also, as due dates
become widely dispersed, the solution that minimizes Lmax tends to be the due date
ordering of all jobs. Therefore, problems with large due date ranges tend to be well
solved by the batch-partition heuristic because the heuristic sorts jobs within a family
by earliest due date, and continually divides batches until no improvement in Lmax

is observed, finally rendering due date ordering of all jobs.

4.2. Experiment 2
In this experiment, the batch-partition heuristic is assessed in relation to the

Hariri and Potts (1997) branch-and-bound algorithm. Hariri and Potts generate
test problems with 30, 40, 50 and 60 jobs (N) and with 2, 4, 6, 8 and 10 families
(F). Jobs are distributed uniformly across families, with the last family containing
additional jobs when the number of families does not divide evenly into the number
of jobs. Processing times are random integers from the Uniform distribution [1, 100].
Having generated processing times, the sum of the processing times is P ¼

P
i, j pij .

Due dates are generated as random integers from the Uniform [a*P, b*P], where a
takes on the values {0.0, 0.2, 0.4, 0.6, 0.8} and b takes on the values {0.2, 0.4, 0.6, 0.8,
1.0}, with a<b. This results in 15 combinations of due date range experiments.
Set-up times are integers generated from the following Uniform distributions:

. Class A: [1, 100].

. Class B: [1, 20].

. Class C: [101, 200].

Set-up factor (m) 0.1 0.25 0.5 0.75

Average V – Baker’s hybrid 0.64 1.32 1.58 0.42
Average V – Batch partition 0.28 0.31 0.00 0.00

Due date range (r) 0.5 1 2 4

Average V – Baker’s hybrid 0.3 1.25 1.46 1.06
Average V – Batch partition 0.01 0.17 0.24 0.08

Table 4. Summary of performance (Baker’s second problem set).

Set-up factor (m) 0.1 0.25 0.5 0.75

Average V – Baker’s hybrid 0.36 0.71 0.76 0.31
Average V – Batch partition 0.12 0.16 0.00 0.00

Due date range (r) 0.5 1 2 4

Average V – Baker’s hybrid 0.15 0.64 0.78 0.6
Average V – Batch partition 0.01 0.11 0.12 0.00

Table 3. Summary of performance (Baker’s first problem set).

4325Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

Note that class A has set-up times in the same range as the processing times,
class B has relatively small set-up times and class C has set-up times larger than any
processing time. Five test problems are generated for each due date range, for 75 test
problems for each combination of job size, family size and set-up class, for a total of
4500 problems. Table 5 is a copy of results presented by Hariri and Potts. They were
able to solve all but 144 problems in 100 s on an IBM 3090. Their results also present
the average solution time and average number of nodes evaluated. If a problem was
abandoned due to computation time, they used the time and number of nodes at the
time of abandonment for the average time and node calculations. In the last column,
they present the number of times problems were solved at the root node. They
summarize that their branch-and-bound algorithm is effective in solving problems
with up to 50 jobs.

Table 6 is an evaluation of the performance of the batch-partition heuristic over
this same experimental framework. The batch-partition heuristic is coded in Cþþ

and executed on a 500-MHz Pentium processor. Optimal solutions for each problem
were obtained using an implicit enumeration procedure. Problems are classified as
unsolved if the implicit enumeration was unable to obtain an optimal solution.
Average computation times and average number of nodes visited are presented for
each job, family and set-up class combination. The average number of nodes visited
represents the average number of neighbouring fixed batch-partition solutions
evaluated. Also displayed is the number of problems in which the batch-partition

Average computation

time (s)

Average number

nodes

Number of unsolved

problems

Number of problems

for which

LB ¼ UB

Set-up class Set-up class Set-up class Set-up class

N F A B C A B C A B C A B C

30 2 0.01 0.01 0.02 13 6 22 0 0 0 45 53 45

4 0.10 0.13 0.18 116 146 196 0 0 0 19 24 12

6 0.17 0.19 0.32 188 206 342 0 0 0 9 16 2

8 0.11 0.10 0.26 113 101 277 0 0 0 11 15 3

10 0.10 0.09 0.21 96 90 209 0 0 0 8 9 3

40 2 0.06 0.04 0.06 61 41 57 0 0 0 39 44 38

4 0.50 0.71 1.06 554 754 1100 0 0 0 21 21 10

6 0.79 1.33 3.28 856 1407 3370 0 0 0 9 16 0

8 0.71 0.81 3.67 740 839 3635 0 0 1 2 7 1

10 0.74 0.80 2.23 769 811 2232 0 0 0 5 9 2

50 2 0.06 0.11 0.12 63 116 132 0 0 0 43 43 41

4 2.54 3.07 5.70 2741 3219 5952 0 0 2 19 21 14

6 6.28 10.06 11.03 6607 10298 11155 1 3 3 8 10 0

8 4.02 7.36 17.66 4150 7394 17786 1 1 9 2 4 2

10 4.87 9.79 19.00 4885 9655 18716 1 1 7 1 2 0

60 2 0.96 0.27 0.70 1092 297 751 0 0 0 40 45 37

4 5.78 11.77 10.35 6163 12051 10375 2 5 5 18 18 14

6 11.82 21.38 25.00 12150 21684 26022 3 8 12 4 4 2

8 18.60 30.99 31.47 18608 30714 43655 9 16 17 3 3 1

10 17.46 27.26 34.38 17047 26547 34792 7 10 20 1 1 0

Table 5. Performance of Hariri and Potts’ algorithm.

4326 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

heuristic obtained the optimal solution. Of the 4500 problems, the heuristic
obtained 3053 optimal solutions, 1218 solutions were suboptimal, and it was
indeterminate for the remaining 229 problems because the implicit enumeration
was abandoned.

While the heuristic obtains a significant number of optimal solutions, the branch-
and-bound algorithm can obtain optimal solutions for nearly all problems in the
experimental framework. The trade-off, however, is that the branch-and-bound solu-
tion time is increasing at a substantially greater exponential rate and, as the authors
point out, is effective in only solving problems with up to 50 jobs. Of additional
interest is that while the heuristic obtained optimal solutions for approximately two-
thirds of the problems, the average V for the heuristic over all problems (except those
where the enumeration was abandoned) was 0.14. In other words, the batch-
partition heuristic found optimal or near-optimal solutions for all problems.

One may conclude from this experiment that an approach to solving these
problems is to begin with the Hariri and Potts branch-and-bound algorithm, and
if unable to solve after a time, resorting to the batch-partition heuristic which should
return a near-optimal solution in a relatively short time.

Also of interest is that Hariri and Potts’ branch-and-bound algorithm found
the Class C set-up problems to be the most challenging while the batch-partition
heuristic performed best on these problems. Performance was best for Class C
problems because again, as observed in Experiment 1, the batch-partition heuristic
performs best on those problems with large family set-up times.

Average
computation

time

Average
number
nodes

Number of
unsolved
problems

Number of problems
solved

optimally

Set-up class Set-up class Set-up class Set-up class

N F A B C A B C A B C A B C

30 2 0.01 0.01 0.01 7 8 5 0 0 0 71 70 74
4 0.02 0.02 0.01 24 32 15 0 0 0 62 49 70
6 0.03 0.04 0.02 49 61 23 0 0 0 56 48 69
8 0.03 0.05 0.02 50 82 24 0 0 0 65 59 74
10 0.07 0.08 0.06 83 129 32 0 6 0 59 41 69

40 2 0.01 0.01 0.01 7 9 5 0 0 0 71 68 74
4 0.03 0.03 0.02 28 38 19 0 0 0 53 52 60
6 0.05 0.08 0.03 61 86 33 0 2 0 58 43 66
8 0.10 0.11 0.07 100 140 51 1 5 0 45 36 64
10 0.08 0.14 0.08 117 178 56 11 23 0 34 17 61

50 2 0.02 0.02 0.02 7 9 5 0 0 0 69 66 73
4 0.04 0.04 0.02 34 46 21 0 0 0 49 48 63
6 0.08 0.11 0.05 72 107 44 0 3 0 40 35 59
8 0.15 0.21 0.11 118 187 62 4 15 0 29 0 48
10 0.18 0.28 0.11 170 254 89 18 24 3 23 10 52

60 2 0.03 0.03 0.03 8 10 6 0 0 0 67 71 70
4 0.06 0.06 0.06 36 49 23 0 0 0 46 44 55
6 0.12 0.13 0.06 83 118 50 1 3 0 37 30 49
8 0.20 0.27 0.13 146 206 80 10 19 2 29 24 47
10 0.31 0.41 0.20 222 308 120 31 40 8 14 7 34

Table 6. Performance of a batch-partition heuristic.

4327Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

4.3. Experiment 3
Since the computational cost of the batch-partition heuristic is non-polynomial, a

third series of experiments are performed to evaluate the size of the problem the
heuristic is capable of solving. Tests are run for the problems using the three set-up
classes and for two, four, six and eight families. Again, 75 test problems are
generated over the due date ranges for each job size, family size and set-up class
combination using the Hariri and Potts experimental framework. The job sizes range
from 100 to 500 jobs in increments of 100. Figure 5 represents the average solution
times for the eight family problem sets and the three set-up classes (depicted as A, B
and C on the legend). Figure 5 indicates that the batch-partition heuristic solves
problems for up to 500 jobs in less than 2min. For the two-, four- and six-family
problems, the batch-partition heuristic solves problems for up to 500 jobs in less than
1, 12 and 50 s, respectively. When scaled, the performance graphs for the two-,
four- and six-family problems are similar to figure 5.

5. Conclusions

The 1/si, b/Lmax problem is NP-hard. The best algorithms in the literature for
finding optimal solutions have been successful in solving problems up to a size of
60 jobs. An effective heuristic that produces optimal/near-optimal solutions for the
problem was presented. The batch-partition heuristic was shown to find optimal
solutions for 88 and 85% of problem instances in two experiments. In addition,
over a range of problem instances, the heuristic is shown to find solutions for
problems with up to 500 jobs and eight part families in less than 2min.

Acknowledgements

Research was supported, in part, by the Furniture Manufacturing &
Management Center, North Carolina State University, and by the Office of Naval
Research, Contract #N00014-90-J-1009.

Appendix A: Complexity of the fixed batch-partition heuristic

Considering the heuristic shown figure 2, there are three primary operations:
‘right job move’, the ‘left Lmax move’ and the ‘left job move’. Whenever a job

Run Time Performance
8 Families

0

20

40

60

80

100

120

0 200 400 600

Number of Jobs

Ru
n

Ti
m

e
(C

PU
 s

ec
on

ds
)

Class A

Class B

Class C

Figure 5. Batch-partition heuristic solution times by set-up class for problems with eight
families.

4328 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

move is made, the algorithm restarts. Therefore, the overall order is the product of
the order of each operation. Note that a fourth operation, batch sort, in practice
rarely results in a new sequence of jobs and therefore has essentially no impact on
the problem complexity.

. Order of right job move: because the number of batches is fixed, at least one
job must remain in each batch. Therefore, in the worst case, N�B jobs can be
moved, where N is the number of jobs and B is the number of batches.
Therefore, the order of the right job move is O(N�B).

. Order of left Lmax move: a left Lmax move can be executed, or at least assessed,
for all batches except for the first two batches if the batch-partition integrity is
to be maintained. In addition, a batch sort, of the order O(B), is performed for
each move. Therefore, the order of the left Lmax move is O(B)(B� 2).

. Order of left job move: similar to the argument for the right job move, in the
worst case, N�B left job moves can be executed. However, to evaluate
the acceptance of this move, each batch within the subgroup must be tested.
In the worst case, N�B� 2 of these batches will be evaluated. Therefore, the
order of the left job move is O(N�B)(N�B� 2).

The order for the fixed batch-partition heuristic is the product of the three primary
operations: O(N�B)2(B� 2)(N�B� 2)B, or simply O(N�B)3(B)2.

Appendix B: Complexity of the batch-partition heuristic

From appendix A, the order of the fixed-batch partition is O(N�B)3(B)2.
However, the batch-partition heuristic searches over a series of fixed batch partitions
of varying batch sizes (B). The worse-case order for the fixed batch-partition heu-
ristic occurs when B ¼ 2N/5, observed by taking the first derivative of (N�B)3(B)2

with respect to B and setting this equal to 0. Therefore, the worse-case order for the
fixed-batch partitions visited is O(N� (2N/5))3(2N/5)2, or simply of order O(N5).

The batch-partition heuristic performs a series of these fixed batch-partition
heuristics. Table 7 presents the observed maximum number of fixed batch partitions
visited for the 75 problem sets generated for various job and family-sized problems

Maximum Maximum

N F
Number of
neighbours F2N0.6 N F

Number of
neighbours F2N0.6

50 2 29 42 300 2 60 123
50 4 179 167 300 4 542 490
50 6 329 376 300 6 1113 1103
50 8 591 669 300 8 1961 1961
50 10 1056 1046 300 10 2919 3064

200 2 55 96 400 2 72 146
200 4 415 384 400 4 671 583
200 6 904 865 400 6 1210 1311
200 8 1615 1537 400 8 2241 2330
200 10 3161 2402 400 10 3516 3641

Table 7. Observed maximum number of neighbouring batch partitions visited.

4329Minimizing Lmax for the single machine scheduling problem

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

using Hariri and Potts’ experimental framework described in Experiment 2. The
observed maximum number of fixed batch partitions visited is approximately
F2N0.6, where F is the number of families and N is the number of jobs.

Because the batch-partition heuristic performs a series of fixed batch-
partition heuristics, the complexity of the batch-partition heuristic is a function of
the number of fixed batch partitions and the complexity of the fixed-batch-partition
heuristic: O(N5)(F2N0.6), or simply O(F2N5.6), where N is the number of jobs and F is
the number of families.

References

BAKER, K. R., 1999, Heuristic procedures for scheduling job families with set-ups and due
dates. Naval Research Logistics, 46, 978–991.

BAKER, K. R. and MAGAZINE, M. J., 2000, Minimizing maximum lateness with job families.
European Journal of Operational Research, 127, 126–139.

BRUNO, J. and DOWNEY, P., 1978, Complexity of tasks sequencing with deadlines, set-up times
and changeover costs. SIAM Journal of Computing, 7, 393–404.

HARIRI, A. M. A. and POTTS, C. N., 1997, Single machine scheduling with batch set-up times to
minimize maximum lateness. Annals of Operations Research, 70, 75–92.

MONMA, C. L. and POTTS, C. N., 1989, On the complexity of scheduling with batch setup times.
Operations Research, 37, 798–804.

POTTS, C. N. and VANWASSENHOVE, L. N., 1992, Integrating scheduling with batching and
lot-sizing: a review of algorithms and complexity. Journal of the Operational Research
Society, 43, 395–406.

SCHUTTEN, J. M., VAN DE VELDE, S. L. and ZIJM, W. H., 1996, Single machine scheduling with
release dates, due dates and family setup times. Management Science, 42, 1165–1174.

UNAL, A. T. and KIRNAN, A. S., 1992, Batch sequencing. IIE Transactions, 24, 73–83.
WEBSTER, S. and BAKER, K. R., 1995, Scheduling groups of jobs on a single machine.

Operations Research, 43, 692–703.

4330 S. R. Schultz et al.

D
ow

nl
oa

de
d

by
 [

B
ilk

en
t U

ni
ve

rs
ity

]
at

 0
2:

42
 1

3
N

ov
em

be
r

20
17

