
A New Meet-in-the-Middle Attack on the IDEA

Block Cipher

Hüseyin Demirci1, Ali Aydın Selçuk2, and Erkan Türe3

1 Tübitak UEKAE, 41470 Gebze, Kocaeli, Turkey
huseyind@uekae.tubitak.gov.tr

2 Department of Computer Engineering
Bilkent University, 06800, Ankara, Turkey

selcuk@cs.bilkent.edu.tr
3 Marmara University, Faculty of Engineering

Göztepe Campus, 81040 Kuyubaşı, İstanbul, Turkey
ture@eng.marmara.edu.tr

Abstract. In this paper we introduce a novel meet-in-the-middle attack
on the IDEA block cipher. The attack consists of a precomputation and
an elimination phase. The attack reduces the number of required plain-
texts significantly for 4 and 4.5 rounds, and, to the best of our knowledge,
it is the first attack on the 5-round IDEA.

1 Introduction

Events that happen with probability one (or zero) have been widely used in
cryptanalysis. The cryptanalysis of Enigma is a historical example whereas the
impossible differential attacks [1, 2] on the block ciphers Skipjack, IDEA, Khufu,
and Khafre are more recent examples. In this paper, we present a new attack on
the reduced-round versions of IDEA which generalizes the idea of “an event with
probability one” to “a set of candidate events with probability one”. The attack
utilizes a set of events among which one is sure to happen. Key candidates are
checked against this criterion, and those which do not realize any of the events
are eliminated as wrong candidates.

The attack presented in this paper is a chosen-plaintext, meet-in-the-middle
attack consisting of two phases: First there is a precomputation phase where
a “sieving set” whose elements are the possible outcomes of a specific event is
generated. Then there is the key elimination phase where the candidate keys
which do not produce any of the events in the sieving set are eliminated. This
attack can be considered as a combination of the Chaum-Evertse’s meet in the
middle approach [5] and the multi-set approach by Gilbert and Minier [9] to
form collisions in the inner rounds of the cipher.

This paper proceeds as follows: In Section 2, we briefly describe the IDEA
block cipher. In Section 3, we prove certain properties of IDEA essential to our
attack. In Section 4, we develop the attack, beginning with three rounds and
gradually advancing it to five rounds. In Section 5, we analyze the complexity of
the attack. Finally in Section 6, we conclude the paper with possible directions
for future research.

1.1 Notation

Throughout this paper we will be using the following notation: We use the
symbol ⊕ for the bitwise exclusive-or (XOR) and � for the modular addition,
for both 8- and 16-bit variables; carry(x�y) denotes the overflow carry bit from
the modular addition of x and y. We denote the plaintext by (P1, P2, P3, P4)
and the ciphertext by (C1, C2, C3, C4) where the separated parts show the 16-
bit subblocks. The round numbers are denoted by superscripts. As an example,

C
(2)
1 denotes the first subblock of the ciphertext after 2 rounds. In the i-th

round we use six round-key subblocks where K
(i)
1 , K

(i)
2 , K

(i)
3 , K

(i)
4 are the round

key subblocks used in the transformation part and K
(i)
5 , K

(i)
6 are the round key

subblocks used in the MA-box. The first input of the MA-box (P1 �K1)⊕ (P3 �

K3) is denoted by p and the second input (P2 � K2) ⊕ (P4 � K4) is denoted by
q. The output words of the MA-box are denoted by t and u, respectively.

The least significant and the most significant bits of a variable x are denoted
by lsb(x) and msb(x), respectively. The least significant eight bits of x are de-
noted by lsb8(x) and the most significant eight bits by msb8(x). The notation

(x|y) denotes the concatenation of x and y. Finally, K
(i)
j [m . . . n] means that the

round key subblock K
(i)
j is being considered which uses the bits from m to n of

the master key.

p
 q

u
 t

P4
P3
P2
P1

C4
C3
C2
C1

K4

K6

K5

K1
 K2
 K3

MA

box

Fig. 1. One round of IDEA.

2

2 IDEA Block Cipher

The IDEA block cipher is a modified version of the PES block cipher [12, 13].
The main design concept is to mix operations from different algebraic groups.
There are three different “incompatible” group operations on 16-bit subblocks:
XOR, modular addition, and the “IDEA multiplication”, which is a modified
multiplication modulo 216 + 1 where 0 is interpreted as 216 to make the multi-
plication invertible. If the result of the multiplication is 216, it is converted to
0.

IDEA admits a 128-bit key, has a 64-bit block size and consists of 8.5 rounds.
The data is processed in 16-bit words. The round function consists of two parts:
First there is a transformation part where each plaintext subblock is operated
with a round key subblock, i.e.,

T : (P1, P2, P3, P4) → (P1 � K1, P2 � K2, P3 � K3, P4 � K4).

In the second part, there is a multiplication-addition structure which is called
the MA-box. MA-box uses two 16-bit inputs p = (P1 � K1) ⊕ (P3 � K3) and
q = (P2�K2)⊕(P4�K4) to produce two 16-bit output words t and u. The output
words are calculated as t = ((p�K5) � q)�K6 and u = (p�K5) � t. Then the
outputs of the MA-box are XORed with the outputs of the transformation part,
and the two middle subblocks are exchanged. After one round, the ciphertext is
of the form (C1, C2, C3, C4), where

C1 = (P1 � K1) ⊕ t,

C2 = (P3 � K3) ⊕ t,

C3 = (P2 � K2) ⊕ u,

C4 = (P4 � K4) ⊕ u.

The encryption algorithm consists of eight full rounds and an extra transforma-
tion part. The key schedule processes the 128-bit master key into an array of
16-bit round subkeys by cyclic shifts; 16 bits are taken from this array each time
a new round key subblock is required in the algorithm.

Decryption is done using the same algorithm, but with different round key
subblocks. In the transformation part the multiplicative and additive inverses of
the round key subblocks are used, whereas the same key subblocks are used in
the MA-Box since it is an involution.

Following its proposal, various cryptanalytic attacks have been applied on
reduced-round versions of IDEA. These include differential [14, 6], linear [11],
differential-linear and truncated-differential [4], impossible differential [2], and
square [15, 8] attack techniques. There are also related key attacks [15], and
some classes of weak keys have been observed [7, 10, 3].

Currently the most effective attack on IDEA is due to Biham, Biryukov, and
Shamir [2]. They used the impossible differential technique to sieve the key space
for 3.5, 4, and 4.5 rounds. The 4.5-round attack requires the encryption of 264

plaintexts which is the whole space.

3

Table 1 gives a comparison of the performance of the attacks described in
this paper and of the attacks developed earlier.

Paper Rounds Type No. of C. Plaintexts Memory Total Complexity

[14] 2 differential 210 232 242

[8] 2 square-like 23 small 264

[14] 2.5 differential 210 296 2106

[6] 2.5 differential 210 232

[15] 2.5 square 3.216 small 3.263 + 248

[8] 2.5 square-like 55 small 281

[4] 3 differential-linear 229 216 244

[8] 3 square-like 71 small 271

This paper 3 collision 233 258 264

[4] 3.5 truncated-differential 256 232 267

[2] 3.5 impossible-differential 238.5 248 253

[8] 3.5 square-like 234 small 282

[8] 3.5 square-like 103 small 2103

This paper 3.5 collision 224 258 273

[2] 4 impossible-differential 237 248 270

[8] 4 square-like 234 small 2114

This paper 4 collision 224 258 289

[2] 4.5 impossible-differential 264 232 2112

This paper 4.5 collision 224 258 2121

This paper 5 collision 224 258 2126

Table 1. Plaintext, memory, and time complexity of chosen plaintext attacks on
reduced-round versions of IDEA

3 Some Properties of IDEA

In this section, we present some observations on the IDEA block cipher. Theo-
rem 1 states the main result of this section which plays a key role in our attack:

Theorem 1. Let P = {(P1, P2, P3, P4)} be a set of 256 plaintexts such that

– P1, P3, lsb8(P2) are fixed,

– msb8(P2) takes all possible values over 0, 1, . . . , 255,

– P4 varies according to P2 such that (P2 � K
(1)
2) ⊕ (P4 � K

(1)
4) is fixed.

For p(2) denoting the first input of the MA-box in the second round, the following

properties will hold in the encryption of the set P:

– lsb8(p
(2)) is fixed,

– msb8(p
(2)) takes all possible values over 0, 1, . . . , 255.

4

Moreover, the p(2) values, when ordered according to their plaintexts’ msb8(P2),
beginning with msb8(P2) = 0, will be of the form

(y0|z), (y1|z), . . . , (y255|z)

for some fixed, 8-bit z, and yi = (((i�a)⊕ b)� c)⊕d, for 0 ≤ i ≤ 255 and fixed,

8-bit a, b, c, d.

Proof. Consider the input of the second round (P
(2)
1 , P

(2)
2 , P

(2)
3 , P

(2)
4). We have

p(2) = (P
(2)
1 � K

(2)
1) ⊕ (P

(2)
3 � K

(2)
3),

where

P
(2)
1 = (P1 � K

(1)
1) ⊕ t(1),

P
(2)
3 = (P2 � K

(1)
2) ⊕ u(1).

Therefore,

p(2) = (((P1 � K
(1)
1) ⊕ t(1)) � K

(2)
1) ⊕ (((P2 � K

(1)
2) ⊕ u(1)) � K

(2)
3)

where the only variable term is msb8(P2). If we order the p(2) values of the
256 plaintexts in P according to their plaintexts’ msb8(P2), beginning with
msb8(P2) = 0, the resulting sequence will be (y0|z), (y1|z), . . . , (y255|z), where

z = lsb8(((P1 � K
(1)
1) ⊕ t(1)) � K

(2)
1) ⊕ lsb8(((P2 � K

(1)
2) ⊕ u(1)) � K

(2)
3)

which is a constant over the set P , and

yi = (((i � a) ⊕ b) � c) ⊕ d

where the only variable term is i and

a = msb8(K
(1)
2) + carry(lsb8(P2) � lsb8(K

(1)
2))

b = msb8(u
(1))

c = msb8(K
(2)
3) + carry(((lsb8(P2) � lsb8(K

(1)
2)) ⊕ lsb8(u

(1))) � lsb8(K
(2)
3))

d = msb8(((P1 � K
(1)
1) ⊕ t(1)) � K

(2)
1)

are constants over P . ut

Theorem 2. In the encryption of the plaintext set P defined in Theorem 1,

lsb(K
(2)
5 � p(2)) equals either lsb(C

(2)
2 ⊕C

(2)
3) or lsb(C

(2)
2 ⊕C

(2)
3)⊕ 1 for all the

256 plaintexts in P.

Proof. Note that

C
(2)
2 = (((P2 � K

(1)
2) ⊕ u(1)) � K

(2)
3) ⊕ t(2),

C
(2)
3 = (((P3 � K

(1)
3) ⊕ t(1)) � K

(2)
2) ⊕ u(2).

5

Since the least significant bits of P2, P3, t(1), u(1) are all fixed, we have either

lsb(C
(2)
2 ⊕C

(2)
3) = lsb(t(2) ⊕u(2)) or lsb(C

(2)
2 ⊕C

(2)
3) = lsb(t(2) ⊕u(2))⊕ 1 for all

plaintexts in P . By Lemma 1 of [8], which we also state below, lsb(K
(2)
5 �p(2)) =

lsb(t(2) ⊕ u(2)) and the result follows. ut

Now observe that in the middle subblocks C2 and C3, only addition and
XOR operations are used between the ciphertext, the round key, and the MA-
box output subblocks. Since the only difference between addition and XOR is
the carry bit, some information can leak from these variables. It seems that the
variable lsb(C2 ⊕ C3) is a candidate for being the Achilles’ heel for the IDEA
encryption algorithm.

Recall the following lemma from [8]:

Lemma 1. lsb(t ⊕ u) = lsb(p � K5).

Proof. Since u = t � (p � K5) and the least significant bit XOR is the same as
addition, we have lsb(t ⊕ u) = lsb(p � K5). ut

This property is useful for us because one bit of information related to the
MA-box outputs can be obtained using only one input and one round key sub-
blocks. This simple observation will play an important role in the attack.

Corollary 1. lsb(C
(i)
2 ⊕ C

(i)
3 ⊕ (K

(i)
5 � (C

(i)
1 ⊕ C

(i)
2))) = lsb(C

(i−1)
2 ⊕ C

(i−1)
3 ⊕

K
(i)
2 ⊕ K

(i)
3).

Proof. By Lemma 1 we have lsb(ti⊕ui) = lsb(K
(i)
5 �(C

(i)
1 ⊕C

(i)
2)). Consider the

middle blocks C
(i)
2 = (C

(i−1)
3 � K

(i)
3)⊕ ti and C

(i)
3 = (C

(i−1)
2 � K

(i)
2)⊕ ui. Since

the least significant bit addition is equivalent to XOR, we have the result. ut

By this corollary, we are able to relate the variables lsb(C
(i−1)
2 ⊕C

(i−1)
3) and

lsb(C
(i)
2 ⊕ C

(i)
3) of two successive rounds. We can generalize this idea. For two

successive rounds, we have the following result:

Corollary 2. lsb(C
(i)
2 ⊕ C

(i)
3 ⊕ (K

(i)
5 � (C

(i)
1 ⊕ C

(i)
2))) ⊕ (K

(i−1)
5 � (C

(i−1)
1 ⊕

C
(i−1)
2))) = lsb(C

(i−2)
2 ⊕ C

(i−2)
3 ⊕ K

(i)
2 ⊕ K

(i)
3 ⊕ K

(i−1)
2 ⊕ K

(i−1)
3).

Proof. Consider the middle blocks in the i-th round,

C
(i)
2 = (((C

(i−2)
2 � K

(i−1)
2) ⊕ ui−1) � K

(i)
3) ⊕ ti,

C
(i)
3 = (((C

(i−2)
3 � K

(i−1)
3) ⊕ ti−1) � K

(i)
2) ⊕ ui.

By Lemma 1, we have lsb(ti−1 ⊕ui−1) = K
(i−1)
5 � (C

(i−1)
1 ⊕C

(i−1)
2) and lsb(ti ⊕

ui) = K
(i)
5 � (C

(i)
1 ⊕ C

(i)
2). Then the result follows. ut

We will use Corollary 2 to get information about the second round variables
using the output of the fourth round.

6

4 Attack on IDEA

In this section we describe our attack on IDEA using the results of the previous
section. We first give a general outline, then describe the attack in detail.

4.1 The General Outline of the Attack

The first phase of the attack is a precomputation where all possible orderings of

lsb(C
(2)
2 ⊕C

(2)
3) are calculated for some particular sequence of plaintexts. Second

there is a partial decryption phase. In this phase, different key candidates are
tried to partially decrypt some particularly selected plaintext-ciphertext set.
When the right key is tried, it is certain that there will be a match between the
precomputed set and the set obtained by the partial decryption. Otherwise, it
is extremely unlikely that such a match will occur by chance, and this criterion
can be used safely to sieve out the wrong key candidates.

The construction of the precomputed set and the set used for the partial
decryption is based on the results of the previous section. For a given set of 256
plaintexts as in the hypothesis of Theorem 1, we know, from Theorem 2, that in

the second round, the variable lsb(C
(2)
2 ⊕C

(2)
3) can be guessed from the variable

lsb(K
(2)
5 � p(2)). Also from Theorem 1, we know that, when ordered according

to msb8(P2), the sequence of the 256 p(2)s must have the form

(y0|z), (y1|z), . . . , (y255|z).

In the precomputation phase of the attack, we compute and store all possible
256-bit sequences of the form

lsb(k � (y0|z)), lsb(k � (y1|z)), . . . , lsb(k � (y255|z)),

for yi, z as in Theorem 1 and for all possible k values.
On the other hand, we use Corollary 1 or Corollary 2 to make a partial

decryption from the end of the cipher to get the bit sequence lsb(C
(2)
2 ⊕ C

(2)
3),

trying all possible values exhaustively for the key subblocks involved in this
partial decryption. If the bit sequence obtained from such a decryption exists in
the precomputed set, the key subblocks used for that decryption are a possible
candidate. Otherwise, that key can be eliminated. This procedure is repeated
until a single1 candidate key remains.

4.2 Attack on 3-Round IDEA

To attack on 3 rounds of IDEA, we proceed through the following steps:

1. Prepare the sieving set, a set of 256-bit strings, as follows:

S = {f(a, b, c, d, z, K
(2)
5) : 0 ≤ a, b, c, d, z < 28, 0 ≤ K

(2)
5 < 216}

1 Actually, two candidates will remain: The right key and a “conjugate”.

7

where f is a function, mapping a given (a, b, c, d, z, K
(2)
5) to a 256-bit string,

defined bitwise by

f(a, b, c, d, z, K
(2)
5)[i] = lsb(K

(2)
5 � (yi|z))

for yi = (((i � a) ⊕ b) � c) ⊕ d, 0 ≤ i ≤ 255.

2. Take a set of 224 plaintexts P = {(P1, P2, P3, P4)} such that P1, P3 and the
least significant 8 bits of P2 are fixed, and P4 and the most significant 8
bits of P2 take each of the possible 224 values once. Encrypt this set with 3
rounds of IDEA.

3. For each value of K
(1)
2 and K

(1)
4 , take 256 plaintexts from the set P such

that the most significant 8 bits of P2 change from 0 to 255 and (P2 �K
(1)
2)⊕

(P4 � K
(1)
4) are constant. For each candidate value for K

(3)
5 , calculate

lsb(C
(3)
2 ⊕ C

(3)
3 ⊕ (K

(3)
5 � (C

(3)
1 ⊕ C

(3)
2))) (1)

over the selected 256 plaintexts.

At this point, if the key value K
(3)
5 in (1) is correct, the computed lsb(C

(3)
2 ⊕

C
(3)
3 ⊕ (K

(3)
5 � (C

(3)
1 ⊕C

(3)
2)))s are all equal either to lsb(C

(2)
2 ⊕C

(2)
3) or to

lsb(C
(2)
2 ⊕ C

(2)
3) ⊕ 1, by Corollary 1.

4. Sort the 256 bits obtained in Step 3 according to the plaintexts’ msb8(P2),
for 0 ≤ msb8(P2) ≤ 255.

Recall that, by Theorem 2, lsb(C
(2)
2 ⊕ C

(2)
3) equals either lsb(K

(2)
5 � p(2))

or lsb(K
(2)
5 � p(2)) ⊕ 1, and that the p(2) values, when sorted according to

msb8(P2), follow the pattern given in Theorem 1. Therefore, the sorted 256-

bit sequence that corresponds to the right choice of (K
(1)
2 , K

(1)
4 , K

(3)
5) must

be present in the sieving set S.

Check whether the sorted 256-bit sequence is present in S. If not, eliminate

the corresponding key combination (K
(1)
2 , K

(1)
4 , K

(3)
5).2

5. If more than two key combinations survive, return to Step 2 and change the
plaintext set P . Continue until only two combinations remain.

The attack finds the right combination of K
(1)
2 , K

(1)
4 , and K

(3)
5 explicitly.

The correct value of K
(2)
5 is found implicitly from the element of the sieving set

S that matches the remaining 256-bit string.

2 As mentioned above, when the correct key values are tried, we will have lsb(C
(3)
2 ⊕

C
(3)
3 ⊕ (K

(3)
5 � (C

(3)
1 ⊕C

(3)
2))) equal to either lsb(K

(2)
5 � p(2)) or lsb(K

(2)
5 � p(2))⊕ 1.

For the former, the 256-bit sequence obviously has to be in S. If the latter is the case,
note that lsb(K

(2)
5 � p(2))⊕ 1 = lsb(k′

� p(2)), for all p(2), where k′ = 216 +1−K
(2)
5 .

Hence, the sequence again has to be present in S. (This also implies a conjugate key

triple (K
(1)
2 , K

(1)
4 , K

(3)
5

′

) that exists along with the right triple (K
(1)
2 , K

(1)
4 , K

(3)
5)

which cannot be eliminated by sieving in S.)

8

4.3 Attacking the Decryption Operation

A chosen-ciphertext version of this attack is also possible which can be applied on
the inverse cipher (i.e., the decryption operation) to obtain additional subblocks
of the key. When the number of rounds is not an integer (i.e., 2.5, 3.5, etc.) the
attack on the inverse cipher would proceed exactly like the one on the normal
cipher, using the decryption subkeys instead of the encryption ones. When the
number of rounds is an integer, a slight modification would be needed to deal with
the effect of the MA-box half-round at the end. We suggest the following method
on the 3-round IDEA, which makes use of the fact that the MA-box operation
is an involution. The idea here is to obtain a set of 224 chosen ciphertexts for
the output of the first 2.5 rounds of the cipher that conforms to the plaintext
specification of Theorem 1. Once such a set is obtained, the attack can be applied
to the first 2.5 rounds of the cipher from the reverse direction.

We first generate a set C ′ of 224 64-bit blocks in the form of the set P in

Step 2 of the original attack. Then we try the possible values for K
(3)
5 and K

(3)
6

and encrypt C ′ with an MA-box half-round using the guessed K
(3)
5 and K

(3)
6

values. Then we decrypt this set with the 3-round IDEA. If the values tried for

K
(3)
5 and K

(3)
6 are correct, this combined operation of the half-round encryption

and the 3-round decryption will be equivalent to a 2.5-round IDEA decryption,
and the original attack can be applied in the reverse direction, using C ′ instead

of P . If wrong values are tried for K
(3)
5 and K

(3)
6 , no meaningful results will be

obtained.
Note that in the original attack, K

(3)
5 was among the key subblocks discov-

ered. Moreover, seven bits of K
(3)
6 , namely K

(3)
6 [67 . . .73], are also known since

they are in common with the already discovered key subblock of K
(2)
5 . Hence, it

suffices to guess only the remaining nine bits of K
(3)
6 . This makes it possible to

launch the attack with a set of 29 × 224 = 233 ciphertexts.

This decryption attack ends up discovering the key subblocks of K
(3)
5 [51 . . . 66],

K
(3)
6 [67 . . .82], K

(3)
2 [106 . . .121], K

(3)
4 [10 . . . 25], which, together with the 3-round

encryption attack, provides 73 bits of the master key.

4.4 Attack on 3.5-Round IDEA

In the attack on the 3.5-round IDEA, Steps 1 and 2 are identical to that of the
3-round attack, except that the plaintexts are encrypted with 3.5 rounds instead
of 3. Then the attack proceeds as follows:

3. As in the 3-round attack, for every value of K
(1)
2 and K

(1)
4 , take the 256

plaintext blocks from P that keep (P2 � K
(1)
2) ⊕ (P4 � K

(1)
4) constant. For

every value of the round key subblocks K
(4)
1 and K

(4)
2 , do a partial decryption

of the ciphertexts to obtain the C
(3)
1 and C

(3)
2 values. Then calculate, for each

candidate K
(3)
5 ,

lsb(C
(3.5)
2 ⊕ C

(3.5)
3 ⊕ (K

(3)
5 � (C

(3)
1 ⊕ C

(3)
2))). (2)

9

Note that lsb(C
(3.5)
2 ⊕C

(3.5)
3) is either lsb(C

(3)
2 ⊕C

(3)
3) or lsb(C

(3)
2 ⊕C

(3)
3)⊕1,

and the bit computed in (2) equals either lsb(C
(2)
2 ⊕C

(2)
3) or lsb(C

(2)
2 ⊕C

(2)
3)⊕1

for all the ciphertexts. If the choices for K
(1)
2 , K

(1)
4 , K

(4)
1 , K

(4)
2 , and K

(3)
5 are

correct, the derived 256-bit sequence must exist in the set S. Steps 4 and 5 are
executed as in the 3-round attack and the key elimination is carried out. The
remaining key bits are found with an exhaustive search.

4.5 Attack on 4 and 5 Rounds of IDEA

The attack on the 4-round IDEA follows the same logic. The only difference is
in the partial decryption part in Step 3. In this part, we first make a partial

decryption to find out C
(3)
1 and C

(3)
2 using the round key subblocks K

(4)
1 , K

(4)
2 ,

K
(4)
5 , and K

(4)
6 . Then we calculate the 256 values of

lsb(C
(4)
2 ⊕ C

(4)
3 ⊕ (K

(4)
5 � (C

(4)
1 ⊕ C

(4)
2))) ⊕ (K

(3)
5 � (C

(3)
1 ⊕ C

(3)
2))). (3)

By Corollary 2, we have lsb(C
(4)
2 ⊕C

(4)
3 ⊕(K

(4)
5 �(C

(4)
1 ⊕C

(4)
2)))⊕(K

(3)
5 �(C

(3)
1 ⊕

C
(3)
2))) equal either to lsb(C

(2)
2 ⊕C

(2)
3) or to lsb(C

(2)
2 ⊕C

(2)
3) ⊕ 1 for all the 256

ciphertexts. From these bits, the 256-bit sequence is produced by sorting the
bits according to their plaintexts’ msb8(P2); and the key elimination is carried
out as in the aforementioned attacks.

To attack on 4.5 and 5 rounds of IDEA, in Step 3 we first make a decryption
to reach the outputs of round 4, and then continue the same steps as in the
4-round attack. For 4.5 rounds of IDEA, we search for the round key subblocks

K
(5)
1 , K

(5)
2 , K

(5)
3 , and K

(5)
4 , whereas for 5 rounds we search for K

(5)
5 and K

(5)
6

in addition to these subblocks to reach the end of round 4.

5 Complexity of The Attack

To assess the elimination power of the attack, we need to calculate the probability
of a wrong key avoiding elimination by chance. Given a random sequence of 256
bits, what is the probability that this sequence exists in a set of 256 elements
whose elements are again random bit sequences of 256 bits? The probability that
two random 256-bit sequences are equal is 1/2256. The probability that a 256-bit

sequence does not exist in a set of 256 elements is (1−1/2256)(2
56) ≈ e−2−200

≈ 1.
The probability that all wrong keys will be eliminated by sieving in the set S
at the first trial, with nk denoting the number of key bits tried in the attack, is
approximately

(

(

1 −
1

2256

)(256)
)(2nk)

≈ e−2−200+nk

which is ≈ 1 when nk ≤ 128, which will always be the case for the 128-bit key
size of IDEA.

10

Steps 1 and 2 are the same in every attack. In Step 1, we first make 264

precomputations to form the sieving set. We also need 264 bits of memory to store
these computations—equivalent to the storage of 258 IDEA blocks. In Step 2 we
make 224 encryptions.

In Step 3, for the 3-round version of the attack, we try all possibilities for
the round key subblocks,

K
(1)
2 [17 . . .32], K

(1)
4 [49 . . . 64], K

(3)
5 [51 . . . 66].

which altogether make up 34 distinct bits of the master key. For each different

combination of these key bits, we compute lsb(C
(3)
2 ⊕ C

(3)
3 ⊕ (K

(3)
5 � (C

(3)
1 ⊕

C
(3)
2))) over 256 ciphertexts, which makes 234 × 28 = 242 computations in total.

Moreover, each of the 234 256-bit strings computed must be compared against
the sieving set for a possible match. This can be done efficiently by using a
hash table for storing and searching the sieving set. Once the correct key value

is found, the key subblock K
(2)
5 [58 . . .73] can be deduced from the matching

string, providing another distinct 7 bits of the master key.
After the 3-round encryption attack is completed, the attack can be repeated

on the decryption operation as described in Section 4.3, providing the subkey

blocks K
(3)
5 [51 . . . 66], K

(3)
6 [67 . . . 82], K

(3)
2 [106 . . .121], K

(3)
4 [10 . . . 25]. The two

attacks together provide 73 bits of the master key with a complexity of about 241

partial encryptions and the remaining 55 key bits can be found by exhaustive
search. However, there is also the complexity of computing the sieving set S
that needs to be considered. This precomputation phase takes 264 encryptions,
dominating the complexity of the 3-round attack.

Consider the attack on 3.5-round IDEA. In Step 3, we use the round key
subblocks

K
(1)
2 [17 . . . 32], K

(1)
4 [49 . . . 64], K

(3)
5 [51 . . .66], K

(4)
1 [83 . . .98], K

(4)
2 [99 . . . 114]

to find the sequences. Therefore, there are 266×28 = 274 partial decryptions and

266 comparisons. Seven additional master key bits will come from K
(2)
5 [58 . . . 73],

and the remaining 55 bits will have to be searched exhaustively. In this case, the
computational complexity of the attack is dominated by the partial decryption
phase. If we consider the complexity of a partial decryption to be half of the
complexity of an encryption, the computational complexity of the attack is about
273 encryptions.

Consider the attack on the 4-round IDEA. We use the round key subblocks

K
(1)
2 , K

(1)
4 , K

(3)
5 , K

(4)
1 , K

(4)
2 , K

(4)
5 , and K

(4)
6 for obtaining the bit sequences.

Although we are searching seven subblocks, because of the simple cyclic struc-
ture of the key schedule, these subblocks provide only 82 distinct bits of the
master key. Therefore in the inner-most loop we are doing 282 × 28 = 290 partial
decryptions and 282 comparisons against the set S. The main work is about 289

encryptions.
For the 4.5 round IDEA, we additionally search for the round key subblocks

K
(5)
1 [76 . . .91], K

(5)
2 [92 . . .107], K

(5)
3 [108 . . .123], K

(5)
4 [124 . . .11]

11

in Step 3 of the attack. Most of these key bits are among those previously men-
tioned. There are 114 bits to be searched in total. The computational complexity
is about 2114 × 28 = 2122 partial decryptions. The data complexity is 224 chosen
plaintext blocks, which is a significant reduction from the 264 chosen plaintexts
of the best previously known attack [2]. But this reduction is at the expense of
computational complexity, which is higher by a factor of 29.

Finally, for 5 rounds of IDEA, we also search the key subblocks K
(5)
5 [12 . . . 27]

and K
(5)
6 [28 . . . 43]. This brings 5 extra bits to search. The total complexity is

about (2119 × 28) = 2127 partial decryptions. The data complexity is again 224.

Note that the decryption attack described in Section 4.3 on the 3-round
IDEA can also be utilized to obtain additional key bits in higher-round attacks.
However, the gain from those decryption attacks would be marginal. This is due
to the fact that the encryption attacks on the IDEA versions with more than 3
rounds provide more than half of the 128 key bits with a complexity of between
273–2126 encryptions, making the complexity of searching the remaining key bits
in those attacks relatively insignificant.

6 Conclusion

We introduced a new meet-in-the-middle attack against the reduced-round ver-
sions of the IDEA block cipher. The 4- and 4.5-round versions of the attack
provide a significant reduction in the attack’s data complexity over all previ-
ously known IDEA attacks. As for the 5-round version, this is the first attack
developed against 5 rounds of IDEA faster than exhaustive search, to the best
of our knowledge.

It may be possible to generalize the logic of this attack to other ciphers:
Choose a group of plaintexts that will guarantee the occurrence of a certain
kind of event in the upper part of the cipher. Then, from the lower end of the
cipher, search the key bits that would give a partial decryption providing a match
with the events expected to happen in the upper part. The key combinations
which do not give any such match will be discarded as wrong candidates. The
elimination will continue until a single or just a few candidates remain. It is an
interesting question how such events can be found and the sieving sets can be
constructed for other block ciphers.

Acknowledgments

We would like to thank an anonymous referee for his many insightful comments
on the paper, in particular for his suggestion of using the decryption operation
for obtaining additional key bits.

12

References

[1] E. Biham, A. Biryukov, A. Shamir, Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials, LNCS 1592, Proceedings of EURO-
CRYPT’ 99, pp. 12-23, Springer-Verlag, 1999.

[2] E. Biham, A. Biryukov, A. Shamir, Miss in the Middle Attacks on IDEA and
Khufu, LNCS 1636, Proceedings of Fast Software Encryption - 6th International
Workshop, FSE’ 99, pp. 124-138, Springer-Verlag, 1999.

[3] A. Biryukov, J. Nakahara Jr., B. Preneel, J. Vandewalle, New Weak-Key Classes
of IDEA, LNCS 2513, ICICS’2002, pp. 315-326, Springer-Verlag, 2002.

[4] J. Borst, L. R. Knudsen, V. Rijmen, Two Attacks on Reduced IDEA (extended
abstract), LNCS 1223, Advances in Cryptology - Proceedings of EUROCRYPT’97,
pp. 1-13, Springer-Verlag, 1997.

[5] D. Chaum, J.H. Evertse, Cryptanalysis of DES with a Reduced Number of Rounds:
Sequences of Linear Factors in Block Ciphers, LNCS 218, CRYPTO’85, pp. 192-
211, Springer-Verlag, 1986.

[6] J. Daemen, R. Govaerts, J. Vandewalle, Cryptanalysis of 2.5 round of IDEA (ex-
tended abstract), Technical Report ESAC-COSIC Technical Report 93/1, De-
partment Of Electrical Engineering, Katholieke Universiteit Leuven, March 1993.

[7] J. Daemen, R. Govaerts, J. Vandewalle, Weak Keys of IDEA, LNCS 773,
CRYPTO’93, pp. 224-231, Springer-Verlag, 1994.

[8] H. Demirci, Square-like Attacks on Reduced Rounds of IDEA, LNCS 2595,
SAC’2002, pp. 147-159, Springer-Verlag, 2003.

[9] H. Gilbert, M. Minier, A Collision Attack on 7 Rounds of Rijndael, AES Candi-
date Conference 2000, pp. 230-241.

[10] P. Hawkes, Differential-Linear Weak Key Classes of IDEA, LNCS 1403, EURO-
CRYPT’98, pp. 112-126, Springer-Verlag, 1998.

[11] P. Hawkes, L. O’Connor, On Applying Linear Cryptanalysis to IDEA, LNCS
1163, ASIACRYPT’96, pp. 105-115, Springer-Verlag, 1996.

[12] X. Lai, J. L. Massey, A Proposal for a New Block Encryption Standard, LNCS
473, Advances in Cryptology - Proceedings of EUROCRYPT’90, pp. 389-404,
Springer-Verlag, 1991.

[13] X. Lai, J. L. Massey and S. Murphy, Markov Ciphers and Differential Cryptanal-
ysis, LNCS 547, Advances in Cryptology - Proceedings of EUROCRYPT’91, pp.
17-38,Springer-Verlag, 1991.

[14] W. Meier, On the Security of the IDEA Block Cipher, LNCS 765, Advances
in Cryptology - Proceedings of EUROCRYPT’93, pp. 371-385, Springer-Verlag,
1994.

[15] J. Nakahara Jr., P.S.L.M. Barreto, B. Preneel, J. Vandewalle, H.Y. Kim, SQUARE
Attacks Against Reduced-Round PES and IDEA Block Ciphers, IACR Cryptology
ePrint Archive, Report 2001/068, 2001.

A Implementing the Attack

It is desirable to verify the correctness of the attack and our estimates for its
success probability with an experimental implementation, possibly on a reduced
version of IDEA. A major handicap for such an implementation with the 64-bit
IDEA is the size of the sieving set, which would take 264 encryptions for creation
and 264 bits of memory for storage.

13

Implementing the attack on a reduced version of IDEA, possibly with an
8-, 16-, or 32-bit block size, can be a more feasible alternative. However, with
these block sizes, it turns out that the attack looses almost all of its elimination
power: For w denoting the bit length of an IDEA word, i.e., one quarter of a
block, the search string in the attack is 2w/2 bits long, having a domain size of

22w/2

. On the other hand, the sieving set consists of 23.5w such strings, covering
virtually every possibility if we take w = 2, 4, or 8, and hence rendering the key
elimination phase of the attack useless.

At the time of this writing, no practical ways are known for an experimental
testing of the attack, and the authors would gratefully welcome every suggestion
on this issue.

14

