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In this article, we discuss the issues involved in adding a native score management system to
object-relational databases, to be used in querying Web metadata (that describes the semantic
content of Web resources). The Web metadata model is based on topics (representing entities),
relationships among topics (called metalinks), and importance scores (sideway values) of topics
and metalinks. We extend database relations with scoring functions and importance scores. We
add to SQL score-management clauses with well-defined semantics, and propose the sideway-
value algebra (SVA), to evaluate the extended SQL queries. SQL extensions and the SVA algebra
are illustrated through two Web resources, namely, the DBLP Bibliography and the SIGMOD
Anthology.

SQL extensions include clauses for propagating input tuple importance scores to output tuples
during query processing, clauses that specify query stopping conditions, threshold predicates (a
type of approximate similarity predicates for text comparisons), and user-defined-function-based
predicates. The propagated importance scores are then used to rank and return a small number
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of output tuples. The query stopping conditions are propagated to SVA operators during query
processing. We show that our SQL extensions are well-defined, meaning that, given a database
and a query Q, under any query processing scheme, the output tuples of Q and their importance
scores stay the same.

To process the SQL extensions, we discuss two sideway value algebra operators, namely, side-
way value algebra join and topic closure, give their implementation algorithms, and report their
experimental evaluations.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing;
relational databases; H.2.3 [Database Management]: Languages—Query languages

General Terms: Algorithms, Languages, Experimentation, Design

Additional Key Words and Phrases: Score management for Web applications

1. INTRODUCTION

This article proposes SQL and database query engine extensions that add a
“score management functionality” to DBMSs, where the “scores” of existing
database objects are employed to generate scores for query output objects, and
to rank them. Score management appears frequently in Web applications. We
illustrate with an example.

Example 1.1. Assume that a researcher wants to locate the top-10 most
important papers listed at the DBLP Bibliography [Ley] and ACM SIGMOD
Anthology sites that are prerequisite papers to understanding the paper “Data
Models in Database Management” by E. F. Codd [1980]. At present, this task is
performed manually by retrieving the papers cited by Codd’s paper iteratively,
attaching importance scores to them, and eliminating those that are not in the
top-10 prerequisites to understanding the Codd paper, clearly, a time-inefficient
process.

Consider a metadata model for DBLP and Anthology sites where “research
paper,” “Data Models in Database Management,” and “E. F. Codd” are topics
with importance scores, Prerequisites is a relationship among topics (called
associations in the topic map standard [Biezunski et al. 1999], and here referred
to as topic metalinks) with importance scores; and for each topic, there are links
to Web documents containing “occurrences” of that topic, called topic sources.
Then, the user can formulate and evaluate the above-specified query using the
metadata data model.

In this article, we assume that (i) entities (topics) and relationships (met-
alinks) (in an object-relational database) have importance scores, and (ii)
queries request objects with top-k or above-a-given-threshold importance
scores. We propose handling query-based score manipulations natively within
the database query engine, and discuss, for the target area of Web resource
querying, a generic (importance) score management component for DBMSs as
far as SQL and query processing are concerned.

Score functions appear in the literature in the forms of “scores,” “preference
values,” or “probabilistic values”; we generalize these functions and their evalu-
ations as sideway functions and sideway/importance values, respectively (“side-
way” in the sense that these functions and values are generated not necessarily
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Table I. Topics, Metalinks, and Sources Relations in the Metadata Database

Tid TName TType TDomain Imp
T01 Edward F. Codd Author Database 0.9
T08 Data models database management Paper title Database 0.8

(a) Topics relation

Mid AuthorId PaperId
M01 T01 T08

(b) ResearchPaperOf metalink relation

Tid URL
T01 http://www.informatik.uni-trier.de/∼ley/db/conf/sigmod/Codd80.html

(c) Sources relation

by Web content generators, but by a third party—possibly a data extraction
tool). The terms importance score and sideway value are used interchangeably
throughout this article.

We present the score management extensions in a Web database context
which we think illustrates best the need for such extensions. We choose as
the target area Web resource querying, and, thus, queries have the ability to
compare text documents/strings. For Web resource modeling, topics and met-
alinks constitute metadata (i.e., information about Web resources) representing
the advice of data creators, whereas topic sources constitute (URLs to) data, for
example, HTML, XML, ps, pdf, text documents. Topics, metalinks, and sources
[Biezunski et al. 1999] can be maintained and queried from an object-relational
database; the purpose of maintaining topics and metalinks in a database is to
be able to pose complex queries, and to quickly locate and rank the associated
topic sources on the Web resource.

Example 1.2. Consider the Web resources DBLP Bibliography [Ley] and
ACM SIGMOD Anthology. Assume that information about papers (e.g., paper
titles, index terms, author names, etc.) in these resources are collected as
topics, and stored into the Topics relation, as illustrated in Table I(a). As an
example, the tuple with topic id T08 is the 1980 paper of E.F. Codd [1980].
And, the importance of the tuple with Tid T01 is 0.9.

We choose the data model of Table I as our running example for its simplic-
ity; in practice, topics relation is likely to form an inheritance hierarchy with
separate authors, articles, etc. relations, each with a large number of additional
attributes, etc.. In this article, we assume the following minimal data model of
metadata, represented as relations of the object-relational model:

—One Topics(Tid, TName,TType, TDomain, Imp) relation having topic id, topic
name, topic type, topic domain, and topic importance attributes (and possibly
other attributes as dictated by the application),

—One Sources(Tid,URL) relation with key (Tid, URL) (and possibly other at-
tributes as dictated by the application), and

—One Metalink relation for each relationship type among topics, with a met-
alink id attribute Mid and topic id attributes of topics involved in the relation-
ship (as well as other attributes as dictated by the application). Metalinks
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may or may not have importance scores. As an example, ResearchPaperOf
relation of Table I does not have importance scores; however, RelatedTo
Papers relation (discussed later) does have importance scores.

These minimal requirements are sufficient to illustrate our SQL and query
engine extensions.

Data extraction techniques [Grishman 1997; Agichtein et al. 2000; Agichtein
and Gravano 2000, 2003; Brin 1998] can be employed to obtain topics and
metalinks with importance scores. We have extracted RelatedToPapers and
PrerequisitePapers metalinks for the Anthology (about 15,000) papers [Li
2003; Al-Hamdani 2003], and used them in the experiments of this arti-
cle. (This article does not describe the data extraction process, and assumes
that the metadata is extracted from Web resources and maintained in a
database.)

Querying Web metadata stored in a database has two requirements. First,
the query language should allow approximate text-similarity comparisons as
the Web contains text documents. Second, importance scores of the metadata
(i.e., input tuples) need to be used to rank query output topics (tuples), and
return either the high-ranking topics above a given threshold, or the top-k
highest-ranking topics. We refer to the mechanism that propagates the scores
of input topics and metalinks to the output topics and metalinks as the score
management mechanism. Presently, such mechanisms, if any, are built into
applications directly, and outside of database query engines, which is waste-
ful (each application builds its own score management subsystem) and inef-
ficient (due to the loose coupling between the application and the DBMS as
far as the score management is concerned). In this article, we discuss the is-
sues involved in adding a native score management system to a database query
engine that allows top-k and threshold-based SQL queries with approximate
text-similarity predicates. In more detail, the main contributions of this article
are, after extending database relations with sideway value functions and impor-
tance scores, to (i) add to SQL text-similarity predicates and score-management
clauses with well-defined semantics, (ii) propose an algebra to process the ex-
tended SQL queries efficiently, (iii) discuss logical query trees and algebraic
optimization for such queries, and (iv) present and evaluate the implemen-
tation algorithms for the algebra operators. Below we elaborate more on our
approach.

Topic names in the metadata database are arbitrary phrases, which implies
the need for efficient approximate text processing and comparison techniques
to be incorporated into SQL query processing. We introduce one type of approx-
imate similarity predicates into SQL, namely, threshold predicates. A threshold
predicate compares the text similarity of two text values, and returns true
when the evaluated text similarity is above a given threshold; otherwise, it
returns false. In addition, a threshold predicate returns an approximate simi-
larity score, which, when the predicate is true, is used for modifying the score
of the involved tuple. Thus, threshold predicates are integrated with the score
management system, and used for importance score propagation and modifica-
tion during query processing.
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For Web (metadata) databases, the database query engine should return
ranked answers to users’ queries, necessitating SQL extensions that specify
the ranking of output tuples (objects). Our approach is to propagate unambigu-
ously input tuple importance scores of base relations to output tuples, and to
use the computed output importance scores in ranking the output tuples. The
procedure for importance score propagation and modification within a query
is to be specified by the user in the SQL query, and employed by the database
system for efficient query processing.

Example 1.3 (Importance Score Modification). Consider the metadata of
Table I, and assume that the user asks for all authors of database articles
with names similar to E. Codd. And the similarity between Edward F. Codd
and E. Codd is judged to be 0.7. Then the tuple T01 is returned to the user
with the revised importance score of 0.9 ∗ 0.7 = 0.63, where 0.9 is the base
importance score of the tuple T01.

To return only the “best” answers in a short time, the SQL query output
sizes need to be explicitly controlled by users. For this task, we employ the
propagated importance scores of input tuples, and provide two approaches:

(a) For the final output size control, users specify a ranking threshold k (i.e.,
output only the top-ranking k (i.e., top-k) tuples [Carey and Kossmann
1997, 1998; Chaudhuri and Gravano 1999; Chang and Hwang 2002]).

(b) For intermediate output size controls during query evaluation, and for final
output size controls, users specify a sideway value threshold Vt (i.e., output
all the tuples with importance scores above the threshold Vt).

We refer to these two conditions as query stopping conditions, which consti-
tute a user-guided and system-enforced use of importance scores.

We also provide users with the power to modify importance scores in
application-dependent ways. For this purpose, UDF (user-defined-function)
predicates are defined where, if the predicate is satisfied, output of the UDF
modifies the importance scores of tuples.

The existence of importance score modifications and query stopping condi-
tions necessitate the design and evaluation of new join and selection algorithms.
In this article, we concentrate on the join evaluation algorithms; selection eval-
uation algorithms are discussed elsewhere [Al-Hamdani and Özsoyoǧlu 2003]

Finally, as illustrated in Example 1.1 with the prerequisite relationship, a
recursive topic closure operator is useful for user queries. Such an operator
serves to retrieve topics related to each other via a particular metalink type,
or, more generally, via a regular expression of metalink types.

In more detail, the contributions of this article are as follows:

—Extend SQL with score management and text-similarity-based comparison
functionality:
—clauses that specify unambiguously the propagation and modifications of

importance scores of input relations to query output relations in automated
ways;

—clauses that specify query stopping conditions;
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—threshold predicates (in the where clause)—if the threshold predicate is
satisfied, the output of the similarity score used in the predicate modifies
the importance scores of output tuples;

—UDF (user-defined-function) predicates (in the where clause)—if the UDF
predicate is satisfied, the output of the UDF modifies the importance scores
of output tuples.

Note that the only relational algebra operators that manipulate scores are
selection, join, and Cartesian product. SQL queries with aggregate functions
and the SQL operator having are not discussed here, and constitute future
work.

—Show that the above-listed SQL extensions are well-defined, in the sense that,
given a database D, the output of a query on D stays the same, regardless of
the query processing scheme.

—Present the sideway value algebra (SVA) with two new logical operators,
namely, SVA join and topic closure, designed to evaluate the extended SQL
queries and to support textual approximate similarity comparisons and re-
cursive closure operations.

—Give implementation algorithms for the SVA join and the SVA topic closure
operators. In particular, the SVA join employs a nested loops-based evalua-
tion approach where importance scores and textual approximate similarity
among tuple components are exploited for early termination. The closure
operator adapts a graph traversal algorithm for its evaluation.

—Experimentally evaluate the SVA join and the SVA topic closure algorithms
using real data.

In Section 2, we present the basics of the metadata model and Web queries
with examples, and define new SQL extensions. Section 3 introduces the SVA
operators for selection, join, and topic closure, and presents logical query trees
with these operators. In Section 4, we specify the execution semantics of the ex-
tended SQL, and prove that the extended SQL queries are well-defined. Section
5 discusses query processing techniques for the SVA join. In Section 6, we
present topic closure evaluation algorithms. Sections 7 and 8 report the ex-
perimental SVA join and topic closure results. In Section 9, we review the re-
lated work in the literature. Section 10 concludes the article. The electronic
Appendix A gives the SVA equivalence rules, while electronic appendix B gives
proofs of lemmas and theorems both are available online in the ACM Digital
Library.

2. EXAMPLE QUERIES AND SQL EXTENSIONS

2.1 Metadata-Based Web Queries

Below we illustrate the need for score management and approximate text-
similarity support in databases, with examples from research paper digital
libraries (DBLP and ACM SIGMOD Anthology) as Web resources. However,
one can easily envision other Web resource metadata for which a database na-
tively supporting score management and text-similarity comparisons would be
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equally useful. Some examples are (a) Web-based news articles of news agen-
cies, (b) Web-based archeological sites, (c) the Library of Congress Web site
[Library], (d) disease-specific (e.g., prostate cancer) Web sites, etc. Moreover,
native score management and text-similarity comparison support would also
be useful in non-Web-based application frameworks: as mentioned in Carey and
Kossmann [1997], there exist applications posing queries with similarity-based
ranking requirements to underlying multimedia or text databases.

Example 2.1 (Threshold Predicates). Find the topic ids, topic names, and
URLs of the 20 highest topic-importance-ranked papers having titles (topic
names) with similarity above 0.9 to “query processing”. Employ a product-based
importance propagation function that uses only topic importance values.

select T.Tid, T.Tname, S.URL
from Topics T, Sources S
where T.TType = “paper title” and T.TName ∼=(threshold 0.9) “query processing”

and T.Tid = S.Tid
propagate importance as product function of T
stop after 20 most important

Topics relation has attributes Tid, TName, TType, and Imp; Sources relation
has attributes Tid and URL, storing URLs for the sources of each topic in the
Topics table. The predicate “T.TName ∼=(threshold 0.9)“query processing”” states
that the topic (“paper title”) name of T is similar to “query processing” with
similarity above 0.9. We assume that the similarity between a “paper title”
and the phrase “query processing” is evaluated by information retrieval tech-
niques, for example, by using the vector space model and the TF-IDF weighting
scheme [Salton 1989] (explained in Section 5.1) to represent the topic names.
The “propagate importance” clause specifies the importance propagation func-
tion for output tuples. In this example, the clause states that the importance
scores for output tuples are computed from the importance scores of the base
relation Topics, using a “product” function revised with similarities.

Assume that there are three papers with titles “query processing: a survey,”
“query processing in a P2P environment with extraordinary network band-
widths,” and “string processing for C++ applications,” and with importance
scores 0.9, 0.7, and 1, respectively. Also assume that the similarity function
returns the results 0.9, 0.2, and 0.1 for these titles. In this case, the first topic
will have the highest score (0.9 ∗ 0.9 = 0.81). The second and third topics will
have the scores 0.14 (= 0.7 ∗ 0.2) and 0.1 (= 1 ∗ 0.1), respectively.

The importance score (sideway) function of base relations (denoted by fin) has
the range [0, 1]. During SVA operations, for a given output tuple, we materialize
the importance score function of the SVA operator, that is, keep it as a (new)
column while processing queries.

Example 2.2 (Join with a User-Defined Function). Find titles of pairs of
conference and journal papers such that journal paper is an extension of the
conference paper. The user-defined function Extension(T1, T2) returns the sim-
ilarity of the papers’ sources, and we assume that T1 is an extension of T2 if they
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have at least 50% similarity. Employ a product-based importance propagation
function and retrieve the top-100 pairs.

select T1.TName, T2.TName
from Topics T1, Topics T2
where T1.TType = “conference paper title” and T2.TType = “journal paper

title” and Extension(T1.Tid, T2.Tid) ≥sv 0.5
propagate importance as product function of T1, T2
stop after 100 most important

Here, the predicate “Extension(T1.Tid, T2.Tid) ≥sv 0.5” constitutes a user-
defined-function (UDF) predicate (distinguished from an ordinary predicate by
the superscript sv). We assume that the UDF function Extension(Tid, Tid) is
registered to the DBMS beforehand, and its output modifies the importance
scores of output tuples by the value v returned by the UDF if v is greater than
0.5. While evaluating this query, the system propagates and/or modifies the im-
portance scores as specified in the importance propagation clause. In particular,
importance scores of selected tuples are determined by multiplying them with
the score returned by the UDF. The actual implementation method for evalu-
ating the UDF function, that is, computing content similarity, is “expensive”
[Chen 2001; Li 2003], that is, it may require (a) access to actual information
resources, such as the above query that needs to do so to compare the contents
of two papers, or (b) submitting additional queries to the database.

Example 2.3 (Topic Closure Query). Given the relation Request(PaperId)
containing user-selected paper IDs, the user is interested in finding those ACM
SIGMOD Anthology papers that are recursively prerequisites of papers in Re-
quest with importance values above 0.7. For topic closure, we use a shorthand
SQL-like syntax:

select T.TName, S.URL
from Request, Topics T, PrerequisitePapers Prereqs, Sources S
where T.Tid in PrerequisitePapers*(Request,T,{Prereqs}) and T.Tid = S.Tid
topic closure importance computation as product function within a
path
and as max function among multiple paths
stop with threshold 0.7

PrerequisitePapers is a metalink type representing the prerequisite paper re-
lationship, and PrerequisitePapers is the relation instance that contains Prereq-
uisitePapers metalink instances. * is the Kleene’s star. We refer to the predicate
“T.Tid in PrerequisitePapers∗(Request,T,{Prereqs})” as the topic closure predi-
cate. Note that a given paper can have multiple (topic) sources on the Web in
terms of a pdf file, a postscript file, an HTML document, or an XML document.
Finally, another possible query is to request the top-20 highest importance-
valued prerequisite papers of Request, which is specified by replacing the stop
with threshold clause with the stop after 20 most important clause.

For those database relations that have importance scores (not all may have),
we have two ways of specifying tuple (topic/metalink) importance scores: (i) base
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relation tuples have importance scores explicitly specified as a tuple component
(all the examples in this article use this approach), (ii) base relation has an
importance (sideway value) function attached, which, when evaluated using
a given tuple from the relation, the function returns the importance score of
the tuple. Regardless, once the query processing starts, all importance score
functions are materialized, and each (intermediate or final output) tuple (object)
gets a new tuple component containing the tuple’s importance score.

2.2 SQL Extensions

2.2.1 New Predicates. As observed from examples of Section 2.1, we em-
ploy new SQL where clause predicates which, in addition to holding truth values
as typical predicates, are also used for importance score modification as dictated
by the score propagation clauses (e.g., see Examples 2.1 and 2.2). In this work,
we define two particular types of such predicates, namely, threshold predicates
and UDF predicates.

The threshold predicate is illustrated in Example 2.1 by “T.TName
∼=(threshold 0.9) “query processing”,” and has the syntax “X ∼=(threshold t)Y” where
X and Y are either text-valued variables instantiated by tuple component val-
ues or text-valued constants, and t is a real number within the range [0, 1]. The
threshold predicate with an instantiation x of X and y of Y is satisfied (returns
True) if the similarity between x and y (i.e., Sim(x, y) where Sim() is a similarity
function) is above the threshold t; otherwise it is not satisfied.

Example 2.4. Consider Example 2.1, in which we modified importance
scores with a product function. Then, the importance values of the output tu-
ples for the selection operator with the selection formula “T.TName ∼=(threshold 0.9)
“query processing” ” is computed as fin* Sim(T.TName, “query processing”)
where fin “query processing” denotes the importance values of input tuples,
and Sim() denotes the similarity function.

User-defined-function (UDF) predicates in SQL queries are illustrated in Ex-
ample 2.2 by “Extension(T1.Tid, T2.Tid) ≥sv 0.5.” The syntax is “UDF θ c” where
UDF is a user defined function that returns a real value in [0, 1], θ is a compar-
ison operator from the set {<sv, >sv, ≤sv, ≥sv, =sv, �=sv}, and c is a real constant
in [0, 1]. The superscript symbol sv in the comparison operator states that the
UDF value, when the associated UDF predicate is true, modifies the importance
score of the output tuple during query processing.

2.2.2 New Clauses. We use the following SQL extensions for score man-
agement:

(i) The basic importance propagation clause

“propagate importance as 〈ImpAgg〉 function of 〈argument list〉”
specifies the formula for propagating importance scores of query input re-
lations to the output relation (see Example 2.1). ImpAgg is an aggregate
function type; in this article, we use the aggregate function product. As
discussed later in Section 4.3.1 (Rule 4), the function ImpAgg is a mono-
tonically decreasing aggregate function, that is, with an enlarged input, it

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.
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returns a value less than or equal to its previous value. Another aggregate
function with this property is min; on the other hand, the functions max
and numeric-average do not satisfy this property. The argument list is a
sublist of relations listed in the from clause of the SQL query. In Example
2.1, ImpAgg function is product.

(ii) For topic closures, the topic closure (importance computation) clause

“topic closure importance computation as 〈FPath〉 function
within a path

and as 〈FPathMerge〉 function among multiple paths”

specifies how to compute the derived importance scores of topics encoun-
tered during topic closures (see Example 2.3), where FPath and FPath-
Merge are aggregate functions. In this article, we use product as FPath.
As discussed later in Section 4.2 (Rule 2), FPath is a monotonically de-
creasing aggregate function of its input. The function FPathMerge, on the
other hand, is an aggregate function that always produces a value upper-
bounded by the maximum value in its input (Rule 3). Thus, possible can-
didates for FPathMerge include product, max, min, and numeric-average.

(iii) The query stopping clause “stop after k most important” specifies the
ranking (top-k) threshold.

(iv) The query stopping clause “stop with threshold Vt” specifies the sideway
value threshold.

In this article, all four new SQL clauses as defined above are also allowed
in nonaggregate nested SQL subqueries, and have execution semantics similar
to ordinary nested SQL queries (as discussed in Section 4). In particular, if the
nested subquery is not correlated to the outer query block, it is separately eval-
uated and its output can be viewed as a materialized input relation for the outer
query block. If the nested subquery is correlated to the outer block, whenever the
other formulas in the outer block are satisfied, the occurrences of the correlated
variables in the nested subquery are replaced by the corresponding variable in-
stantiations of the outer block, and the nested subquery is evaluated as a stan-
dalone SQL query several times, that is, once for each correlated variable set
instantiation. In the uncorrelated case, the output of the (nonaggregate) nested
subquery can be viewed as a materialized relation as far as the outer query eval-
uation is concerned. In the correlated case, while assigning outer block instan-
tiations to nested subquery variables, the importance scores are also passed
to the nested subquery for evaluation. In Section 3.4, we provide an example
nested query; in Section 4.3.2, we discuss the query execution semantics for
nested subqueries with the query stopping clause stop after k most important.

3. SVA OPERATORS FOR EVALUATING EXTENDED SQL QUERIES

For the RA (relational-algebra) operators selection and join, there is an SVA
counterpart extended with an output sideway value function fout and the output
threshold β, which is either the integer-valued ranking threshold or the real-
valued sideway value threshold Vt in the range [0, 1]. And we introduce a new
SVA operator, SVA topic closure. In this section, we define and illustrate the
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Fig. 1. Logical query tree of Example 2.1.

SVA selection, SVA join, and SVA topic closure operators with example queries
and their logical query trees.

In the logical query tree examples discussed next, we use the following
notation: operators with superscript * are SVA operators; operators without
superscript * are relational algebra (RA) operators; a unary RA operator with-
out * in its superscript carries (if any) into its output tuples the importance
scores of its only operand relation; a binary RA operator without a superscript
* carries (if any) into its output tuples the importance scores of either its left
(hand side) relation or its right (hand side) relation, indicated (if there is a need)
by superscript L or R, respectively.

3.1 SVA Selection Operator

In Example 2.1, we gave a query example where topics with names similar to
“query processing” over a specified threshold are selected during the query eval-
uation. The notation ∼=(t) in the SVA operator denotes the threshold predicate
with the threshold of t.

The logical query tree of Example 2.1 is shown in Figure 1.

Example 3.1. Find the topic IDs of the five highest topic-importance-
ranked papers having index terms with similarity to “query processing” above
0.9. Employ min as the importance propagation function that uses all involved
importance values.

select distinct Indx.PaperId
from Topics T, IndexedBy Indx
where T.TType = “Index Term” and T.TId in Indx.TermIdSet and

T.TName ∼=(Threshold 0.9) “query processing”
propagate importance as min function of T, Indx
stop after 5 most important

The logical query tree of Example 3.1 is shown in Figure 2. We assume that
IndexedBy is a metalink type that specifies the relationship between index

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.
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Fig. 2. Logical query tree of Example 3.1.

terms and papers (obtained from keyword/index term list specified in the body
of each paper). The signature of the metalink type is IndexedBy: SetOf Index
TermId → PaperId. Due to the clause “propagate importance,” this query
chooses paper ids on the basis of the min of the importance values of index
terms (topics) and their IndexedBy type metalinks. The function Sim() in
Figures 1 and 2 computes the text similarity of two strings, and returns a
value in the range [0, 1]. Here, Sim() is used to modify the importance scores
of output tuples according to their TName similarity to the string “query pro-
cessing” (see Table I). The logical query tree shows the SVA selection operator
which is denoted as σ ∗

C, fout,β(R).

Definition (SVA Selection). The selection operator σ ∗
C, fout, β

(R) takes as input
a relation R with a sideway value function fin, a selection condition C, an output
sideway value propagation function fout, and the output threshold β where β is
either a positive integer k as the ranking threshold, or the real-valued sideway
value threshold Vt in the range [0, 1]. The operator σ ∗ returns, in decreasing
order of output importance scores, either (i) top-k fout-ranking output tuples
that satisfy the selection condition C (when β is k), or (ii) all tuples of R with an
fout-sideway value greater than Vt that satisfy the selection condition C (when
β is Vt). If the output threshold β is 0.0, it is not applied, that is, the operator
is assumed to have no stopping condition and returns all produced tuples.

3.2 SVA Join Operator

Definition (SVA Join). The SVA join operator is (L) �∗
A θB, fout, β

(R) takes as input
two relations L and R with sideway value functions flin and frin, respectively,
a join condition θ on attributes A and B of relations L and R, respectively,
a sideway value propagation function fout for the output tuples, and an output
threshold β. The join operator produces joined tuples of L and R with importance
scores of output tuples computed as specified by fout and satisfying the output
threshold β.
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Fig. 3. Logical query tree of Example 3.2.

SVA join in Example 3.1 (Figure 2) is exact, that is, no similarity compu-
tations are involved. SVA join in the example below is approximate, with a
threshold predicate as a join condition.

Example 3.2 (Join with a Threshold Predicate). Assume that topics table
allows “journal paper title” and “conference paper title” in topic type field. Find
the journal-conference paper pairs with similar titles (i.e., topic name similarity
is above 0.98) and return only those pairs that have a derived importance score
above 0.95. Employ a product-based importance propagation function that uses
all of the involved importance scores.

select T1.Tid, T1.TName, T2.Tid, T2.Tname
from Topics T1, Topics T2
where T1.TType = “journal paper title” and T2.TType = “conference paper

title” and T1.TName ∼=(Threshold 0.98)T2.TName
propagate importance as product function of T1, T2
stop with threshold 0.95

Note that this query may be posed to see the most important works published
both at a conference and in a journal and with highly similar titles.

In Figure 3, the sideway value threshold of 0.95 is propagated to all of the
three operators, namely, the two SVA selections and one SVA join. By employing
the semantics of propagation to be discussed in Section 4, the similarity score
revises the fout value of the joined tuples.

3.3 SVA Topic Closure Operator

Next we define a recursive operator that takes into account the importance
scores of its input tuples. Consider the following query and its logical query
tree shown in Figure 4.

Example 3.3. Find the topic IDs, titles, and URLs of five highest
importance-scored papers such that the selected papers are either (i) papers
with titles similar to “Query Evaluation Techniques for Large Databases” with
a similarity above 0.85, or (ii) the prerequisites (recursively) of the papers
found in (i).

select T2.Tid, T2.TName, S2.URL
from Topics T1, Topics T2, PrerequisitePapers M, Sources S2
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Fig. 4. Logical query tree of Example 3.3.

where T1.TName ∼=(Threshold 0.85) “Query Evaluation Techniques for Large
Databases” and T1.TType = “PaperTitle” and
T2.Tid in PrerequisitePapers*(T1.Tid, T2, {M}) and T2.Tid = S2.Tid

propagate importance as product function of T1
topic closure importance computation as product function within a
path
and as min function among multiple paths
stop after 5 most important

In the above query, prerequisites of the paper “Query Evaluation Techniques
for Large Databases” are located recursively by following the metalinks of type
PrerequisitePapers. For the topic closure predicate evaluation, we introduce
the topic closure operator, denoted as TClosure∗

R, {M }, FPath, FPathMerge, β
(X), which

computes the topic closure X+ of a set X of topics with respect to a regular
expression R of metalink types (and, thus, with respect to the set of axioms
characterizing the metalink types in R), a set of metalink relations M, and an
output threshold β.

Definition (Topic Closure). The operator TClosure∗
R, {M }, FPath, FPathMerge, β

(X)
takes as input (1) a topic relation, namely, the relation X of topics with a side-
way value function fX, (2) a set of metalink relations M each with a side-
way value function fM, and (3) four parameters: (a) the regular expression
R, (b) a path-based “derived” importance score computation function FPath
that specifies how to compute the derived importance scores of newly reached
topics with respect to a single path, (c) the function FPathMerge that spec-
ifies how to merge the derived importance scores of a given topic obtained
through different paths, and (d) the output threshold β. TClosure∗ computes
the closure X+of X with respect to 〈R, {M}, fX, {fM}, FPath, FPathMerge, β〉
where each new topic in the closure is represented as an output tuple, and has
a derived importance score satisfying the output (ranking or sideway value)
threshold β. If the output threshold β is 0.0, it is not applied, that is, the
operator is assumed to have no stopping condition and returns all produced
tuples.
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R is a regular expression of metalink types. For example, the regular expres-
sion PrerequisitePapers∗IndexedTerms finds the index terms in all the prereq-
uisite papers (of a given paper topic).

Next we illustrate the notion of paths that satisfy R with an example.

Example 3.4. Let A, B, C, D, and T denote single topics. The metalinks
A →RelatedTo B, B →RelatedTo C, and C →RelatedTo T constitute a path P = {A, M1,
B, M2, C, M3, T} where all nodes are single topics and all metalinks M1, M2,
and M3 have the type RelatedTo (i.e., R = RelatedTo∗). As another example,
metalinks AB →Pre C, C →Pre DE, and DE→Pre T form a path P = {AB, M1, C,
M2, DE, M3, T} that starts with a set of topics AB, followed by a single topic C,
then a set of topics DE, and ends with a single topic T. The path P satisfies R =
Prerequisite∗ since all of its metalinks M1, M2, and M3 are of type Prerequisite.

FPath is the derived importance score computation function with respect
to a single path. In this article, we use the product function as FPath. As an
example, assume that the topic t is reached from a topic x in X using a path
P = 〈x m1 a m2 t〉 where a is a topic with importance score va, m1 and m2 are
metalinks with importance scores vm1 and vm2, respectively, and the metalink
types of m1 and m2 satisfy the regular expression R. Assume FPath is Product.
Then, the derived importance score of t with respect to P, denoted by Impd(t,
P, R), is computed as the product of importance scores in P that satisfies R,
that is, vx*vm1*va*vm2*vt, where va and vt are the importance scores of x and
t, respectively. The derived importance score of t, denoted by Impd(t, R), is the
importance score of t with respect to R and all paths leading to t.

The intuition for the semantics of derived topic importance scores is as fol-
lows: assume topic t is reached through path P. The derived importance score
of t in the closure should be a function of the length and the type of path P, and
less than or equal to the importance score of t. As the length of P increases, the
derived importance score of t should decrease because t is farther away from
(and is less related to) the topics in X, the original set of topics listed by the user.
Thus, Impd(t, P, R) with respect to path P should be a monotonically decreasing
function of the length of path P (i.e., path-monotone).

FPathMerge is one of Product, NumAve, Min, Max, etc., specifying how to
compute the derived importance score Impd (t, R) of topic t in X+ in terms of
the Impd(t, P, R) scores obtained with respect to each path P.

In Example 3.3, the topic closure importance computation clause specified
the use of product function as FPath, and min function as FPathMerge, as shown
in the corresponding query tree.

Finally, we specify the execution semantics of TClosure∗
R, {M }, FPath,

FPathMerge, β(X) procedurally as follows:

(a) Locate metalink paths P from a topic in X to a topic t not in X, where P
“satisfies” the regular expression R, and compute Impd(t, P, R) scores.

(b) Compute the derived importance score of t as sv = Impd(t, R), and if sv
satisfies the sideway value threshold β then add the new topic t to the
closure of X. That is, if β is a positive integer k as the ranking threshold,
then sv satisfies β when sv is among the top-k output sideway values. If β
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Fig. 5. Logical query tree of Example 3.5: (a) temporary table materialization for inner query,
(b) query tree for the outer query.

is the real-valued sideway value threshold Vt in [0, 1], then sv satisfies β

when sv > Vt.

3.4 SVA Operators in Nested Queries

Consider the nested query example below, and its query tree given in Figure 5.

Example 3.5. Find five highest topic-importance-ranked journal papers
having titles similar to “query processing” above 0.9, and then find their 10
most important related papers and the associated URLs. Employ a product-
based importance propagation function.

select T2.Tid, T2.Tname, S2.URL
from Topics T1, Topics T2, RelatedToPapers M, Sources S2
where T1.Tid in (select T.Tid

from Topics T
where T.Ttype = “journal paper title” and

T.TName ∼=(Threshold 0.9) “query processing”
propagate importance as product function of T
stop after 5 most important) and

T2.Tid in RelatedToPapers*(T1.Tid, T2,{M}) and T2.Tid = S2.Tid
topic closure importance computation as product function within a
path

and as min function among multiple paths
stop after 10 most important

In this example, first the inner query block is evaluated, and an intermediate
relation including topic IDs and importance scores (generated automatically)
is materialized. Then, this table is used just like base relation with importance
scores by the outer query block in a join operation (that implements the set
membership), and the final query output is computed. We assume the execution
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semantics that intermediate relations generated by inner blocks are implicitly
included in the “propagate importance” clause of outer query, and their scores
are propagated. Thus, the importance scores are always propagated from the
inner block to the outer block. In the above example, the join semantics enforce
that the importance scores of the intermediate relation are propagated, and
that T1 and T2 scores are suppressed.

4. EXECUTION SEMANTICS OF THE EXTENDED SQL

Importance score computations (as defined through the SQL extensions of
Section 2.2) are functional specifications, superimposed on an SQL query which
is logic-based and (mostly) nonprocedural. Therefore, there is a mismatch be-
tween functional importance score computations and nonprocedural SQL query
specifications. Moreover, importance scores are (a) directly modified by thresh-
old and UDF predicates, and (b) used to choose the final output tuples. Thus,
the question arises as to whether the SQL extensions of Section 2.2.2 lead to
unambiguous query specifications and unique query outputs.

Definition. An SQL query Q is well-defined if, for a given database D, the
output of Q is unique.

That is, under any query processing scheme, the output of Q(D) stays the
same. In this section, we show that, with the SQL extensions introduced in
Section 2.2.2, SQL queries remain well-defined. In other words, input relation
importance scores propagate unambiguously and uniquely to intermediate re-
lations and to the final output of the query, which is also unique. This constitutes
the specification of query semantics (of the SQL extensions) pertaining to the
propagation of importance scores and stopping conditions.

Next, we enumerate the algebra operators used in logical query trees, and
discuss which algebra operators modify and propagate importance scores of
their operand relations, and how.

(a) projection, rename, union, set difference, cartesian product, STOP, GROUP-
BY operators: These operators do not have predicates, and, thus, do not
modify input tuple scores. However, depending on the needs of the query
plan, they may propagate or suppress importance scores of one of their
operand relations. Note that two tuples that are identical in every tuple
component but tuple importances are viewed as two distinct tuples; if they
are unioned, both tuples will be in the output. Similarly, projection will ma-
terialize importance scores into its output as a column (if the user chooses
to retain importance scores in the output of the projection); thus, if two pro-
jected tuples are identical in all tuple components except their importance
scores, both will be retained in the output of the projection.

(b) aggregation operators: When an aggregate function, say, summation on re-
lation R over attribute A (e.g., SUM(R, A)) executes, it aggregates multiple
tuples into a single output tuple. Then, the question of how to compute the
importance score of the aggregated output tuple from the importance scores
of input tuples arises. A simple solution is to attach to each aggregation
operator a new “importance score computation function.” Such a function
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would have no constraints, other than the fact that its input is defined in
terms of the input tuples of R, and its output needs to be in the range
[0, 1]. In this article, we do not deal with aggregate operators.

(c) join and selection operators: Through the use of the basic importance propa-
gation clause, and threshold and UDF predicates, these two operators may
modify and propagate the importance scores of their operand relations;
hence the introduction of the SVA selection and the SVA join operators in
Sections 3.1 and 3.2, respectively. In Section 4.1, we define the execution
semantics of these two operators, and the conditions under which the query
engine decides to generate the appropriate operator (RA or SVA), and then
discuss their correctness (i.e., that they are well-defined).

(d) topic closure operators: This is a new operator. Through the use of the topic
closure importance computation clause and topic closure predicates, this
operator also modifies the importance scores of its input tuples; its correct-
ness is discussed in Section 4.2.

The second correctness issue which is orthogonal to the issue of score prop-
agation within a query tree is the propagation of the two query stopping condi-
tions into the SVA operators in the query tree. SVA operators are designed to
modify the scores of their input tuples, and the query processing times will be re-
duced drastically if the query stopping conditions, which are query-wide, can be
correctly propagated to SVA operators, and, hence, become “operator-stopping”
(i.e., operator-wide) conditions. This is novel since, with the exception of the
STOP operator [Carey and Kossmann 1997], none of the algebra operators in
the literature contain operator-stopping conditions. In Section 4.3, we study the
conditions for propagating the query-wide sideway value threshold Vt and
the query-wide ranking threshold (i.e., the top-k condition) into the SVA join,
the SVA selection, and the topic closure operators.

4.1 Importance Propagation with Threshold and UDF Predicates

In this section, we assume that SQL queries are extended with threshold pred-
icates, UDF predicates, and the basic importance propagation clause, and dis-
cuss the query execution semantics.

Threshold predicates are used by the DBMS as follows. Assume that, during
query processing, the threshold predicate P is part of an SVA selection or join
operator O, and the evaluation of P for a certain output tuple t of O generates
a similarity value v. Then v is used to modify the importance score of t. That is,
the similarity values generated by threshold predicates are used in the compu-
tation of importance scores for SVA operator output tuples. Consider the where
clause of an SQL query with threshold predicates. During query processing,
those predicates in the where clause that compare a single attribute value to
a constant, such as the predicate “T.TName∼=(threshold 0.9) “join algorithms” ” will
be predicates to an SVA selection operator in the logical query tree, and those
predicates that compare two attribute values will be predicates to an SVA join
operator in the logical query tree. In both cases, the importance score propa-
gation for the output tuples of the selection or the join operator is extended by
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the application of a function that involves the value of the similarity function
employed in the threshold predicate.

Assume that the SQL query Q uses the basic importance propagation
clause (but not the topic closure clause), and has regular, threshold, and UDF
predicates (but not topic closure predicates, which are discussed in the next
section). Consider

Q: select. . .
from R, S, T, V
where. . .

propagate importance as product function of R, S

That is, when propagating importance scores of relations R and S for the
query at hand, the system will use a product function, and the tuple importance
scores of T and V are suppressed, that is, will not be used. We show below
that, given an algebra expression E corresponding to query Q on database D,
importance scores for the output tuples of E are unambiguously computed and
the output of E is unique.

Next we discuss join and selection operators, and the conditions under which
the query engine decides to generate an appropriate version (RA or SVA) of the
operator. Consider the join operator J in E, with operands E1 and E2 that
denote either base or intermediate relations, or equivalently the corresponding
algebra expressions in E. We evaluate the alternatives:

(i) Neither E1 nor E2 is R or S, and neither has at least one of R or S as
an argument: in this case, neither of the operands E1 and E2 have tuple
importance scores (i.e., they are suppressed). Then, the join is an RA join,
and the output tuples of the join operator do not have importance scores.

(ii) Only one of E1 or E2 is R or S, or has at least one of R or S as an operand,
and the join condition involves no score-modifying (i.e., threshold or UDF)
predicates: let E1 be the operand involving R or S. Then E1 has tuple
importance scores, and E2 doesn’t. And output tuples of J inherit their
importance scores from E1. In this case, the join operator is an RA join
with the provision that it propagates the importance scores of E1 into the
output.

(iii) Only one of E1 or E2 is R or S, or has at least one of R, S or both as an
operand, and the join condition involves either a threshold or UDF predi-
cate, or both: let E1 be the operand involving R or S (or both). Then E1 has
tuple importance scores, and E2 doesn’t. The output importance scores for
the operator J are computed as the product of the tuple importance scores
of E1, similarity values generated by those join predicates that are also
threshold predicates (if any), and the values of UDFs for the correspond-
ing UDF predicates (if any). In this case, the join operator is an SVA join.

(iv) E1 and E2 are either R and S, respectively, or each has at least one of R or S
as an argument: if Ei, 1 ≤ i ≤ 2 , is R (or S) then the tuple importance scores
of Ei are the same as R (or S); otherwise they are computed recursively by
considering the operators in E1 and E2. The output importance scores for
the operator Jare computed as the product (i.e., the ImpAgg function) of
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the tuple importance scores of E1 and E2, the similarity values generated
by those join predicates that are also threshold predicates (if any), and the
UDF values of UDF predicates (if any). In this case, the join operator is an
SVA join.

Consider the selection operator L in E, with an operand E1 that denotes
either a base or intermediate relation, and a selection condition C applied to
E1. We evaluate the alternatives:

(i) E1 is either R or S, or has at least one of R or S as an argument, and the
selection condition C involves either a threshold or UDF predicate, or both:
if E1 is R (or S) then the tuple importance scores of E are the same as R (or
S); otherwise they are computed recursively by considering the operators
in E1. The output of the selection operator L contains those tuples that
satisfy C. The output tuple importance scores for operator L are computed
as the product of the tuple importance scores of E1, the similarity values of
threshold predicates, and the UDF values of UDF predicates. In this case,
the selection operator is an SVA selection.

(ii) E1 is either R or S, or has at least one of R or S as an argument, and
the selection condition C involves no score-modifying (i.e., threshold or
UDF) predicates: if E1 is R (or S) then the output tuple importance scores
of E1 are the same as R (or S); otherwise they are computed recursively
by considering the operators in E1. The output of the selection operator
L contains those tuples that satisfy C. And, output tuples of S inherit
their importance scores from E1. In this case, the selection operator is an
RA selection with the provision that it simply propagates the input tuple
importance scores into its output tuples.

(iii) E1 is neither R nor S, and neither has at least one of R or S as an argument:
in this case, E1 has no tuple importance scores (i.e., they are suppressed).
Hence, output tuples of the selection operator L do not have importance
scores. In this case, the selection operator is an RA selection.

Finally, during the query plan generation for Q, the initial algebra expression
E of Q can be transformed into other equivalent algebra expressions. One can
specify a set T of algebraic transformations involving RA and SVA operators,
and prove that the output of Q stays the same under T. Thus, we have the
following lemma.

LEMMA 1. Nonaggregate SQL queries extended with the basic importance
propagation clause, threshold predicates, and UDF predicates are well-defined.

Hence, we have presented unambiguously the query execution semantics due
to a single basic importance propagation clause, and arbitrarily many threshold
and UDF predicates.

4.2 Importance Propagation with Topic Closure Predicates

As illustrated in Example 2.3, the topic closure operator is a recursive opera-
tor that employs a regular expression (in Example 2.3, the regular expression
is “PrerequisitePapers*”) to locate new topics with desired importance scores.
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While different metalink types employ different axioms [Özsoyoǧlu et al. 2000,
2004], the topic closure operator translates into a “transitive closure-like” oper-
ator that traverses over paths of metalinks, and computes importance scores of
the newly reached topics that are reached over one or more paths. To compute
unambiguously the propagated importance scores of the newly reached top-
ics, we employ the topic closure (importance computation) clause (as defined in
Section 2.2.2(ii)), which is self-explanatory. To have well-defined queries, we
use three rules.

Rule 1. Each topic closure predicate is evaluated by a single SVA topic
closure operator.

Rule 1 eliminates the use of multiple SVA operators to evaluate a single
topic closure predicate, and avoids the specification of topic closure operator
interactions within one SQL query.

Definition (Monotonically Decreasing Function). Let f be an aggregate
function that takes a set of reals in [0, 1] and returns a real in [0, 1]. Let S
be a nonempty set of reals in [0, 1] and v be a real in [0, 1]. f is a monotonically
decreasing function if f(S ∪ {v}) ≤ f(S).

FPath is a (derived) importance score computation function for a topic t
reached via a given path.

Rule 2. The function FPath defined in the topic closure clause is a mono-
tonically decreasing function.

Rule 2 guarantees that, during the evaluation of the topic closure operator,
the search for topics over a metalink path always comes to an end. That is, a
topic obtained over a path that includes topic t (and, thus, is “reached” after t is
reached) always has a lower propagated importance value than the propagated
importance value of t.

FPathMerge function (one of Product, NumAve, Min, Max, etc.) specifies how
to compute the (derived) importance score of topic t with respect to multiple
paths leading to t.

Rule 3. Assume that the input of FPathMerge is the set S = {v1, . . . , vn}
where vi is a real in the range [0, 1], 1 ≤ i ≤ n. Then FpathMerge(S) ≤ Max(S).

Rule 3 guarantees that, during topic closure computations, the search for
topics over multiple and possibly merging paths comes to an end.

LEMMA 2. SQL queries extended with a topic closure importance computa-
tion clause and employing Rules 1–3 are well-defined.

4.3 Query Stopping Clauses

In Section 2.2.2, we have defined two SQL query stopping clauses, namely,
threshold and top-k clauses, that specify stopping conditions over the query,
whose utility is to significantly lower the query processing times. These stopping
conditions are enforced by SVA operators (selection, join, and topic closure) in
a query tree via the output threshold β.
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Next we discuss how the query stopping conditions (i.e., the sideway value
threshold Vt or the top-k condition) are propagated to the SVA operators of
the logical query tree (i.e., the query execution semantics of the query stopping
clauses). In summary, we show below that (i) for the query threshold stopping
clause, all SVA operators in the tree enforce the stopping condition, and (ii) for
the top-k query stopping clause, only those SVA operators, for which the “score-
conservative top-k propagation policy” holds, enforce the stopping condition.

4.3.1 Stop-with-Threshold Clause. The stop-with-threshold Vt clause di-
rectly propagates to all SVA operators of the query when the basic importance
propagation clause function is a monotonically decreasing aggregate function.

Rule 4. Basic importance propagation clause function f is a monotonically
decreasing function.

This rule guarantees that, after propagating β = Vt to SVA operators in
the query tree, a tuple in the output of a low-level SVA operator and with a
score lower than β = Vt can be safely eliminated from the output since, if kept
in the output of the SVA operator, its score would not increase, and it would
not appear in the final query output. Note that the product function used in
Section 2.2.2 satisfies Rule 4.

Clearly, such a propagation drastically reduces the intermediate output sizes
and query evaluation time. Please note that, before propagating the threshold
Vt , we assume that the stop-with-threshold Vt clause is enforced with a single
STOP operator at the root of the logical query tree with β = Vt . After prop-
agating β to all SVA operators in the query tree, the STOP operator becomes
redundant, and is removed from the query tree.

LEMMA 3. Consider an SQL query Q with the stop-with-threshold Vt clause
and its query tree with a single STOP operator at the root and having β = Vt.
Then, accompanied with Rule 4, the threshold Vt propagates to all the SVA
operators in the query, and Q stays well-defined.

Thus, for an extended SQL query with a stop-with-threshold Vt clause, all
the SVA operators in the corresponding logical query tree inherit the threshold
Vt stopping condition, and the query stays well-defined.

4.3.2 Stop-After-k-Most-Important Clause. We first discuss the construc-
tion of the initial logical query tree. First, a query tree is constructed with
RA and SVA operators in which each SVA operator contains a fout function as
discussed in Section 4.1, but with no stopping condition, that is, each output
threshold β is set to zero. Second, a STOP operator with the top-k threshold
(i.e., the query stopping condition) is added as the root. In this section, our goal
is to propagate the top-k condition of the STOP operator to lower-level SVA
operators as β values whenever possible.

The stop-after-k-most-important clause specifies the size of the final query
output (i.e., the top-k query), and can not easily propagate to intermediate SVA
operators of a logical query tree during query processing. This is because such a
propagation can prune away some of the intermediate results too early, which
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may otherwise be included in the final top-k results [Carey and Kossmann
1997, 1998]. On the other hand, applying the top-k stopping condition only
at the uppermost SVA operator would eliminate the opportunity of pruning
away intermediate tuples, which can never appear in the final output. Here, we
revise the conservative strategy proposed by Carey and Kossmann [1997], and
propagate the top-k stopping condition only to those SVA operators that do not
overprune the intermediate results.

Definition (Nonreductive Predicate) [Carey and Kossmann 1997]. Consider
a predicate p of form x = y where x is an expression computable from an input
relation R, and y is an expression involving one or more new relations to be
added into the logical query tree. Predicate p is called a nonreductive predicate
with respect to R if it can be inferred that x cannot be null and, for each x, there
exists at least one y satisfying p.

Intuitively, given a relation R as an input to an operator, a nonreductive
predicate with respect to R is a predicate that, when used in the operator,
returns all the tuples of R in the output of the operator.

Definition (Score-Conservative Top-k Propagation Policy). The top-k condi-
tion is propagated to an SVA operator V as a stopping condition only when all
operators P that directly or indirectly consume the output O(V ) tuples of V
(i) have nonreductive predicates with respect to O(V ), and (ii) propagate tuple
importance scores of O(V ), but do not further modify them (i.e., each P is either
an RA operator, or an SVA operator with fout = fin where fin denotes the scores
of O(V )).

Condition (i) guarantees that, once a tuple is included in the output of an
SVA operator V , it will not be dropped by any other upper-level operators in
the logical query tree. Note that condition (i) alone is not adequate for our
query evaluation framework due to the score propagation and modification
mechanism: assume that an SVA operator which is an ascendant of V revises
its input tuple scores by some function f , and a tuple t is already pruned
away by V . In this case, it is still possible that t revised by f could have had
a higher revised score than the top-k tuples reported in the output O(V ) of
V , causing a false-drop of tuple t. Thus, condition (ii) is also needed in our
policy.

Example 4.1. In Figure 1, the top-k stopping condition is propagated to the
SVA selection operator (as it has the β value of 20), due to the score-conservative
top-k propagation policy. We assume that every topic has at least one source,
and, thus, the join operator above the selection is nonreductive. Moreover,
the join is an RA join, which does not revise the scores of tuples returned by
the selection, but only propagates them. On the other hand, in Figure 2, the
top-k condition is only propagated to the SVA join operator, but not the SVA
selection, which has the β value of 0.0. In this case, propagating top-k to SVA
selection violates the score-conservative policy since SVA join is both reductive
and score-revising. Finally, note that, in Figure 4, the top-k condition (i.e., β = 5)
is propagated to the topic closure operator, according to the score-conservative
top-k propagation policy.

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.
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Note that the score-conservative top-k propagation policy does not guarantee
the uniqueness of the top-k output, as there may be more than one tuple with the
same score that are candidates to occur in the top-k output result. That is,
there may be n more tuples in the database having the same score with the kth
tuple in the output. In this case, for the sake of providing well-defined query
results, we include all of these tuples in the final query output and return (k + n)
tuples.

A final subtle issue for propagating top-k stopping condition to SVA operators
is the need to reapply the top-k output threshold β after an SVA operator V in the
query tree: assume that the top-k stopping condition of a query Q is propagated
to an SVA-operator V for which the score-conservative top-k propagation policy
holds. In this case, the operator V will produce at most k tuples and stop, during
the query evaluation. But, although the reduction in the intermediate output
cardinality is disallowed by our policy, the increase is left unspecified, that
is, we have not yet specified the semantics when these k tuples produced by
V , say, are joined with more than one tuple in a join later in the query tree.
To handle this case, we assume that a STOP operator [Carey and Kossmann
1997], which first sorts its input (if necessary) and then returns the top-k (or
k + n as discussed above) tuples, still remains as the outermost query operator
regardless of the top-k propagation to SVA operators [Carey and Kossmann
1997]. This guarantees that only the top-k tuples are retained for the final
output, but still allows potential reductions in the intermediate output sizes
and query evaluation time.

Example 4.2. In Figure 1, the uppermost RA join operator can increase the
number of tuples, if each of the k tuples generated by the SVA selection joins
with more than one Sources tuples. In this case, the STOP operator at the top of
the tree guarantees that only the k (or k +n) (and no more) tuples are returned
as the query output.

We use the following query execution semantics for an extended SQL query
with (i) a stop-after-k-most-important clause, and (ii) no nested subqueries hav-
ing the new SQL clauses. The query processor first creates all possible query
trees (through applicable algebraic transformations) in which no SVA operator
contains the top-k stopping condition. In each query tree, a STOP operator is
placed as the root due to the reasons discussed above. The query processor then
propagates the top-k condition to the lowest possible SVA operator(s) that sat-
isfies the score-conservative top-k propagation policy, in each query tree. As a
result, in each query tree, only such SVA operators will be aware of the top-k con-
dition as an operator-wide stopping condition. The query processor then chooses
the query tree with the lowest cost to construct the query plan to execute.

In the case of SQL queries having nested subqueries with their own stop-
after-k-most-important clauses, the above construction is revised as follows.
Consider each subquery independently and materialize it (for subqueries with
correlated variables, instantiate the correlated variables when their instantia-
tions satisfy the outer query block). Thus, each subquery can be considered as
an independent query with its own top-k condition propagated down the tree
properly. Thus, we have the following:
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LEMMA 4. In any SQL query Q, the clause stop-after-k-most-important ac-
companied with score-conservative top-k propagation policy propagates to SVA
operators of Q during query processing, and Q stays well-defined.

From Lemmas 1–4, we have the following:

THEOREM 1. SQL queries as defined in Section 2.2 and satisfying Rules 1–4
are well-defined.

5. SVA JOIN EVALUATION ALGORITHMS

5.1 Text Similarity Metrics

For those functions that require the similarity comparison ∼=, we assume that a
vector space based similarity model is employed [Salton 1989]. The vector space
model first creates a vocabulary (W) of all words (i.e., terms) included in the
document collections, and then represents each document with a vector v of |W|
terms. The vector entries are real numbers representing term weights. Let vt de-
note the vector v element for term t. We use the weighting scheme TF-IDF, which
assigns a zero weight for those terms that do not appear in the document, and
computes the weights of the other terms using the formula vt = (log (TFv, t) + 1) *
log(IDFt), where TFv,t (term frequency) is the number of occurrences of term t
in the document represented by v, and IDFt is the inverse document frequency
that is defined as the ratio of the number of all documents to the number of
documents including t. We focus on attributes with short phrases such as topic
names. The TF-IDF values are normalized and the similarity of two documents
represented with vectors v and u is the cosine of the angle between them, which
is defined as Cosine (u, v) = ∑

t in Wvt * ut.
We assume that term vectors that correspond to string-based attributes of

tuples, as well as the vocabulary, are computed a priori. In this section, we
assume that vocabulary is small enough to fit in the main memory, whereas all
other input and output relations may be arbitrarily large.

Since pipelining is preferable for threshold-based query processing algo-
rithms [Ramakrishnan and Gehrke 2000], and the nested-loop join algorithm
does not disrupt pipelining [Graefe 1993], next we discuss block-nested loops-
based SVA join algorithms. Moreover, the nested-loop join is appropriate with
arbitrary join conditions. A set of nested-loops-based algorithms for processing
joins between textual attributes have also been presented in Meng et al. [1998].
We discuss this in Section 9.

In the algorithms below, we assume input relations are sorted in decreasing
order of tuple importance scores, and using a sort-merge algorithm might seem
like a more reasonable choice than using a block-nested loops join algorithm.
However, note that our SVA join condition does not only involve equality; rather,
in addition to score-revising threshold and UDF predicates, it also involves the
computation of an fout function and an inequality comparison with the threshold
value Vt. In this case, each tuple from one relation will be compared with several
tuples from the other relation, and sort-merge algorithm will almost degenerate
to nested loops. That is, it is very unlikely that there will be a single scan in
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Fig. 6. NLoopSVT algorithm.

each relation (unless the threshold value is extremely high or the tables are
very small, in which case the choice of the join algorithm becomes immaterial)
as it is in general sort-merge cases. Thus, the “merge” pointer in the second
relation may need to rewind to earlier tuples—perhaps even requiring older
blocks to be reread in some cases—per tuple in the first relation. Of course,
the simple early-termination heuristics discussed below for the nested loops
join are equally applicable to sort-merge; but again, performance will not be
drastically different from the nested loops approach.

5.2 Nested-Loops-Based Sideway-Value-Threshold Join Algorithms

We now discuss SVA join algorithms that return joined tuples with derived
values above a specified sideway value threshold. We assume that the input re-
lations are sorted in decreasing order of tuple importance scores. We sketch two
algorithms for join conditions specifying (i) an arbitrary (user-defined) predi-
cate θ over the join attributes, or (ii) an approximate match in terms of the
textual similarity of the join attributes.

Definition (Monotone fout). Let svt denote the importance score of tuple t.
Given relations R and S with tuples r and s, respectively, let fout(r, s) denote the
importance score of the joined output tuple r.s. Then, ∀r1, r2 ∈ R and ∀s1, s2 ∈
S, if fout(r1, s1) ≤ fout(r2, s2) whenever svr1 ≤ svr2 and svs1 ≤ svs2, the function
fout is said to be monotone with respect to input importance scores of R and S.

Functions product, numeric average, and geometric average are monotone
with respect to their input importance scores.

Given a query involving a join with a monotone fout function, we improve the
nested-loop join algorithm by enforcing new stopping conditions while process-
ing the inner and outer loops, as shown in the NLoopSVT algorithm in Figure 6.
In the NLoopSVT algorithm, the inner loop exits whenever the fout() value of the
output tuple r.s is below the threshold Vt, where r is in R and s is in S. Similarly,
the outer loop exits at the ith iteration whenever the fout() value of the output
tuple ri.s1 is below the threshold Vt, where ri is in R and s1 is the first tuple
in S.

In an ordinary block-nested loops (BNL) join [Ramakrishnan and Gehrke
2000], assuming that the size of R is M pages with p tuples per page, the size
of S is N pages with q tuples per page, and the memory has B + 2 buffer pages,
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we can read B pages of the outer relation R, and scan the inner relation S by
using one of the remaining two buffer pages, leaving the last page to collect
the output tuples. In this case, the disk access cost of the BNL algorithm is
M + (M*N/B) [Ramakrishnan and Gehrke 2000]. In the worst case, the disk
access cost of the NLoopSVT algorithm is the same as the disk access cost of
the BNL algorithm. However, in the expected case, the disk access cost of the
NLoopSVT algorithm will be reduced depending on how large Vt is. Assume that
we revise the allocation of buffer pages as B/2 pages each to the relations R
and S; the importance scores in R and S are uniformly distributed, and fout()
is the product function, which is monotone. Thus, the tuples in the first B/2
blocks of R have importance scores in the range of [(1 − B/(2M)), 1]. Similarly,
the tuples in the first B/2 blocks of S have importance scores in the range of
[(1 − B/(2N)), 1]. During the first outer loop iteration, the inner loop will ter-
minate in the jth iteration when the lowest expected importance score of a join
tuple in the buffer is equal to (or ε less than) the sideway value threshold Vt.
That is, (1 − B/(2M)) * (1 − j * B/(2N)) = Vt. Rearranging the above equality,
we have j = N

B/2 ∗ (1 − Vt) − ( 2N−B
2M ). Assuming N  B and M ≈ N, the above

equality reduces to j = (N/(B/2)) * (1 − Vt). That is, in the expected case, for
Vt = 0.9, the inner loop terminates with 10% of the disk block accesses from S.
Since R importance scores are sorted and decreasing in value, for any outerloop
tuple of R, S will always be accessed at most for the first bS = (N/(B/2)) * (1 −
Vt) blocks. And, since the above computations are symmetric for R and S, in the
expected case, NLoopsSVT algorithm will terminate with bR = (M/(B/2)) * (1 −
Vt) disk block accesses from R as well. Thus, the expected number E of disk
accesses is E = (B/2) * bS + (B/2)(bS − (B/2)) + (B/2)(bS − 2(B/2)) + · · · +
(B/2)(bS − (bR − 1) * (B/2)). Assuming bS = bR = b, we have E = (B/2) * b2 − (B/2)2

* ((b2 − b)/2). This, as shown in the experimental results section, is significantly
less than the cost of the BNL algorithm.

When the join condition specifies an approximate matching (based on the
similarity of the text-valued join attributes being above a given threshold tsim),
we cannot directly make use of the similarity function sim(r, s), as it is not
monotone, and thus makes fout nonmonotone. However, we can still use the
NLoopsSVT algorithm of Figure 6 with provisions: (a) the functions fout (ri, s1)
and fout (ri, sj) in the outer and the inner while loop conditions are replaced by
svri * svs1 and svri * svsj , respectively, where svri, svs1 and svsj are the importance
scores of tuples ri, s1 and sj; (b) in the inner while loop, we check if fout (ri, sj) =
svri * svsj * sim(ri.A, sj.B) ≥ Vt and sim(ri.A, sj.B) ≥ tsim where A in R and B in
S are the join attributes. If so, the tuple ri.sj is output.

Note that, so far, the join algorithm has not employed the similarity function
in improving its running time. We now summarize an algorithm that uses the
vector-space model and the similarity function in improving the efficiency of
the join algorithm.

LEMMA 5. Let ur = 〈u1u2 · · · ux〉 be the term vector corresponding to the join
attribute A of tuple r of R, where ui represents the weight of the term i in A.
Assume that the filter vector fS = 〈w1 · · · wx〉 is created such that each value wi
is the max weight of the corresponding term i among all vectors of S. Then, if
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Fig. 7. NLoopSim-SVT algorithm.

Cosine (ur, fS) <Vt, then r cannot be similar to any tuple s in S with similarity
above Vt.

In this article, the value Cosine (ur, fS) is called as the maximal similarity
of a record r in R to any other record s in S. The maximum value of a term for a
given relation is determined while creating the vectors for the tuples, and the
filter vector for each relation may be formed as a one-time cost. In Figure 7, we
summarize the NLoopSim-SVT algorithm which makes use of the sorted order of
relations R and S by svr∗ Cosine (ur, fS), and svs, respectively (also one-time
costs). Note that, with both while loop conditions, false drops are possible; that
is, a tuple r in R and a tuple s in S may satisfy the while loop conditions, only to
be eliminated from the output in the if statement within the inner while loop
(the if condition tests the values of the actual fout() and sim() functions). On the
other hand, while loop conditions do not allow false dismissals; that is, a join
tuple that is in the output will be added to the output.

5.3 Nested-Loops-Based Ranking-Threshold (Top-k) Join Algorithms

It is easy to give an SVA join algorithm with top-k output importance scores.
Assume that (i) input relations are sorted with respect to importance scores, and
(ii) the fout() function is monotone. The algorithm NLoopsTop-k begins in a nested-
loop-like manner, and computes the first k (but not top k yet) joined output
tuples, referred to as the “Top-k-Set.” And the importance score of the kth joined
tuple becomes the lower bound (minSV); that is, no tuple with an importance
score below this lower bound can be in the top-k output. The algorithm proceeds
in a nested-loops manner, and updates the lower bound and the current Top-
k-Set whenever it computes a join output with a new importance score larger
than the minimum importance score of Top-k-Set.

Similar to the algorithm NLoopSim-SVT, the algorithmNLoopTop-k can be
revised for a ranking-threshold algorithm NLoopSim-Top-k with approximate
matching conditions; to save space, it is not presented here.
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6. SVA TOPIC CLOSURE ALGORITHM

For the sake of simplicity in presentation, we now summarize TClosure algo-
rithms that compute the topic closure X+ for the simpler case where the regular
expression R is a single metalink type M (however, experimental evaluations
of Section 8 use arbitrary regular expressions). Each metalink V →M Tid is
represented by a tuple in table M, where V is a set of topic identifiers, Tid is a
topic identifier, and M is a metalink type.

Definition (LHS-Decomposability). A metalink of type M is left-hand side-
decomposable if the axioms of M allow replacing any metalink instance of type
M having multiple topics on its left-hand side (LHS) with multiple metalink
instances, each having a single topic on its LHS.

As an example, if LHS-decomposibility holds for metalink type M then a
metalink instance A, B → C, D of type M can be replaced without loss by A → C,
D of type M and B → C, D of type M. We assume in this section that if a metalink
type is LHS-decomposable then each metalink with V in the left-hand side is
decomposed into multiple metalinks with a single topic in the left-hand side.

Next, we discuss separately the algorithms for sideway value threshold-
based and ranking-based topic closures.

6.1 Sideway-Value-Threshold-Based Topic Closure

We create an index MIndex for all metalink instances of all metalink types; and
the TClosure algorithm uses only MIndex to find the closure of a given set of
topics. We assume that all metalinks are right-hand side decomposed.

MIndex has five attributes: MType, Tid1, Imp(Tid1), ParentList, and
ChildList, where MType specifies a metalink type, Tid1 contains the topic iden-
tifier of the topic from which the metalink originates, and Imp(Tid1) is the im-
portance score of the topic Tid1. ParentList is a list of topic identifiers of topics
from which emanate metalinks of type MType to the topic Tid1. ChildList is a
list of triplets 〈Tid2, Imp(Tid2), Imp(Mid)〉 where the triplet 〈Tid2, Imp(Tid2),
Imp(Mid)〉 represents a metalink that has Mid as its metalink identifier, the
topic with Tid1 as its antecedent node, the topic with Tid2 as its consequent
node, the type MType as its metalink type, Imp(Tid2) as the importance score
of the topic with Tid2, and Imp(Mid) as the importance score of the metalink.

The key for MIndex is the two attributes MType and Tid1. Therefore,
the MIndex entries with the key (MType, Tid1) contains all metalinks of
type MType that have the topic with Tid1 as its antecedent. The entries of
MIndex are sorted by (MType, Tid1) so that the metalinks of the same type are
together within the index.

Example 6.1. Figure 8 illustrates graphically a Metalinks relation with
RelatedTo and Pre(requisite) metalink instances between five topics. T1 →Pre

T2 denotes that (learning) T2 is a prerequisite to (learning) T1 [Özsoyoǧlu et al.
2004]. Assume that the only axiom for both RelatedTo and Pre metalink types
is transitivity (thus, none of the metalinks in Figure 8 is redundant). Table II
shows the tuples of the index MIndex for the Metalinks relation of Figure 8.
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Fig. 8. Graphical representation for non-LHS-decomposable metalink instances in Example 6.1.

Table II. MIndex Table

ChildList 〈Tid2, Imp(Tid2),
MType Tid1 Imp(Tid1) ParentList Imp(Mid)〉 triplets
Pre T1 0.9 {} 〈T3, 0.85, 0.95〉, 〈T4, 0.95, 0.9〉
Pre H1 Avg(0.9, 0.95) = 0.925 {T3, T4} 〈T5, 0.7, 0.9〉
RelatedTo T1 0.9 {} 〈T2, 0.8, 0.6〉

Table III. HIndex Table for the
Non-LHS-Decomposable Metalink in Figure 8

Tid NodeList 〈TidList, Hid〉
T3 〈{T3, T4}, H1〉
T4 〈{T3, T4}, H1〉

While creating MIndex, for those metalinks that are not LHS-decomposable,
we create a second index H(yper)Index to maintain all nodes that are not
decomposable; and the topic closure algorithm uses HIndex to compute the
closure of a given set of topics. The HIndex table has two attributes Tid and
NodeList, where Tid is the topic identifier of a topic t within the nondecompos-
able node, and NodeList is a list of pairs 〈TidSet, Hid〉 where the pair 〈TidSet,
Hid〉 represents the Tid’s of the nondecomposable (hyper) node (which contains
Tid), and Hid is a new topic identifier for the node. Table III illustrates HIndex
for a nondecomposable node {T3, T4}. We generate a new entry in MIndex for
each nondecomposable node with the identifier Hid as its Tid1 value, and with
a set of topic IDs that it contains as its “ParentList.” For example, in Table
II, the entry with the Tid1 value of H1 and the ParentList value of {T3, T4}
represents the nondecomposable (hyper) node H1 in the HIndex table.

In this section, to simplify the presentation, we assume that the metalink
type M has only the transitivity axiom, and may or may not be LHS-
decomposable. And the product function is used to compute FPath = Impd(t, P,
R).

The topic closure of a set X of topics with respect to R as a single metalink
type M and a sideway value threshold Vt is computed as follows: for each topic
t in the topic closure X+, we create a triplet of the form 〈t.Tid, Impd(t, R = M),
{p | p is a path of type M from a topic or topics in X to t}〉. We use a set-valued
variable DiscoveredTids to contain the topics already in the closure, but not
yet checked for paths emanating from them. We construct X+ by repetitively
computing X(0), X(1), . . . , X(i) where 1 ≤ i. In the first iteration, for each topic
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t in X, a triplet 〈t.Tid, Impd(t, R), {t}〉 is created in X(1) and the topic identifier
Tid of t is added into DiscoveredTids.

In each iteration of the closure algorithm, a topic t1 is removed from
DiscoveredTids, and all metalinks that emanate from t1 are visited. A triplet
〈t2, Impd(t2, R), t2.paths〉 for the consequent topic t2 of each visited metalink
is added into the currently computed topic closure X(i), if the triplet does not
exist in X(i). If the triplet exists then new paths are added into t2.paths, and
Impd(t, R) is recomputed. The topic t2 is then added into DiscoveredTids. If
the metalink type M, for which the topic closure is to be computed, is not
LHS-decomposable then the algorithm checks if topic t1 is in the LHS of a
metalink of type M. The algorithm uses HIndex to find all HIndex entries that
contain topic t1 as a member of their LHS set of topics. For each such HIndex
entry, if all of its LHS topics are in the currently computed topic closure X(i)

then new (hyper)paths are created and new derived importance scores are
computed for every metalink that emanates from the HIndex entry. When
DiscoveredTids is empty, the algorithm stops, and X+ = X(i). We refer to this
algorithm as the ThresholdTClosure algorithm.

Example 6.2 (Topic Closure Computation for a LHS-Decomposable Metalink
Type). We use the MIndex instance in Table II. Assume that we want to com-
pute the topic closure for the set X = {T1} with SV threshold Vt = 0.4 using the
metalink type M = RelatedTo. Also, assume that the average function is used
for FPathMerge. Since X = {T1}, X(1) = {〈T1, 0.9, {T1}〉} and DiscoveredTids =
{T1}. Note that the RelatedTo metalink type is LHS-decomposable. In the first
iteration, topic T1 is removed from DiscoveredTids. Topic T2 has a path T1.T2,
obtained using the metalink T1(0.9)→RT(0.6) T2 (0.8), and its derived importance
score is Impd(T2, RelatedTo) = 0.9 ∗ 0.6 ∗ 0.8 = 0.43. Therefore, the triplet 〈T2,
0.43, {T1.T2}〉 is added into X(1). After the first iteration, X(2) = {〈T1, 0.9, {T1}〉,
〈T2, 0.43, {T1.T2}〉} and DiscoveredTids = {T2}. Next, the algorithm terminates
since there is no RelatedTo metalink emanating from topic T2; therefore, Dis-
coveredTids becomes empty, and the output of the closure operator is {〈T1, 0.9〉,
〈T2, 0.43〉}. Clearly, if we have more axioms (in addition to transitivity) then
the output of the closure will have additional tuples. For example, when the
axiom “if A →Pre B then A →RelatedTo B” holds, then all topics will be included
into the closure.

Example 6.3 (Topic Closure Computation for a Non-Left-Hand-Side Decom-
posable Metalink). In Figure 8, {(T1 →Pre T3), (T1 →Pre T4)}→Pre T5 forms a
hyperpath of type Pre from topic T1 to topic T5. Assume that we want to com-
pute the topic closure for a set of topics X = {T1} with a sideway value threshold
Vt = 0.7 using the metalink type M = Pre, and (a) FPathMerge is max, and (b)
the geometric average is used to compute the derived importance score of a hy-
pernode. Using the MIndex instance in Table II, we compute X+ as {〈T1, 0.9〉,
〈T3, 0.727〉, 〈T4, 0.769〉}. T5 is not included into the output because its derived
importance score is below the threshold.

During closure computations, a metalink instance (i.e., a tuple in MIndex)
can be visited more than once if there are multiple paths to the left-hand-side
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topic node of the metalink. To avoid visiting the same metalink more than once,
we use the parent-child relationship between topics. A topic node with Tid1 is
in the parent list of another topic node with Tid2 in the metalink M if there is
a metalink Tid1 →M Tid2. In the ThresholdTClosure algorithm, we use a set-
valued variable PostponedTids to add the restriction that a topic node cannot
be “processed” until all nodes in its parent list are processed.

The algorithm ThresholdTClosure needs to maintain all paths from the set
of input topics X to a given topic instance a in order to compute the derived
importance score of a using a generic function. However, some functions, such
as max, need to maintain only a single path to compute the derived importance
score of a given topic. That is, using the max function, the derived importance
score of a topic can be computed by finding the path with the maximum derived
importance score. One can give an algorithm ThresholdTClosureMax that does
not maintain the path information for any topic, and computes the derived im-
portance score of a topic x by comparing its “current” derived importance score
with respect to that of the “currently visited” path P. Clearly, ThresholdTClo-
sureMax is much more efficient than ThresholdTClosure.

6.2 Ranking-Based Topic Closure

We briefly summarize the RankingTClosureMax algorithm that computes the
top-k-ranked topic closure using product as FPath and max as FPathMerge.
The algorithm finds the topics with the k highest derived importance scores in
the topic closure of a set X of input topics. It first computes the initial candi-
date top-k-ranked topics from the input topics X. Then, in each iteration i, it ex-
tracts the ith top-ranked topic from the current k − i + 1 candidate top-ranked
topics and updates the current candidate topics by processing all emanating
metalinks from the ith topic. Therefore, the algorithm needs k iterations in
order to compute the top-k-ranked topic closure of a set X of input topics.

The RankingTClosureMax algorithm maintains two lists X+ and Candidate-
Topics of size at most k. The algorithm requires at most �(k * |X|) time to com-
pute the initial CandidateTopics list, where |X| is the size of the input topic set
X. Then, the algorithm iterates k times in order to compute the top-k-ranked
topic closure, and, in each iteration, it finds the next top k topics and updates
the CandidateTopics list by applying the metalinks that emanate from a given
top-k topic.

7. EXPERIMENTAL RESULTS: EVALUATING THE SVA JOIN OPERATOR

To evaluate the four SVA-join algorithms discussed in Sections 5.2 and 5.3, we
first extracted all the titles of journal and conference papers from the DBLP
[Ley] data set into two different files, R and S—R with more than 91,000 journal
paper titles (12 Mbytes), and S with more than 132,000 conference paper titles
(18 Mbytes). Next, we eliminated the stopwords (i.e., removed words like the,
a, of, etc.) from the text in each title, stemmed them, and created the word list
(vocabulary) for the whole collection (including about 43,000 words). The word
list was kept in the main memory. Then, we created the vectors for each record
of R and S, which were added to paper title records in files R and S.
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Topic importance scores for papers were computed based on the rankings of
the journals or conferences in which they appeared. For this purpose, we used
the ranking list provided at CiteSeer [2003]. We split this list into 10 bins, giving
the importance score 1 to those venues ranked in the top 10%, score 0.9 to those
ranked in the 11–20% slice, and so on. It turned out that some of the publica-
tion venues encountered in the DBLP data set were not found in CiteSeer’s list.
These were assigned the importance score 0.6, since the average impact estima-
tion score of DBLP venues that appear in CiteSeer list falls into the bin with the
score 0.6. Note that we may perhaps have overestimated the importance scores
of these venues (and the papers published in them), as these unlisted venues
are potentially less-known and less-important ones. As supporting evidence for
this claim, we found out that of 210,000 journal/conference papers in our test
set, less than 5% were published in those venues. As another observation, a
considerable number of the papers listed in DBLP are published in the venues
ranked in the top 10% of CiteSeer, resulting in the score attachment of 1. Thus,
our importance score assignment was not uniform, but depended on the prop-
erties of real data published at the DBLP site. As a final remark, it could be
argued that not all papers published at the same venue have the same impor-
tance scores; however, our intention in this section is not to develop a method
for measuring paper importance, but rather to provide experimental evaluation
of a data set that approximately fits to real-life application constraints.

Below, we provide the experimental evaluations of the SVA-join algorithms
in terms of the number of comparisons for a given query. The number of compar-
isons gives an idea about the number of tuples read from each relation. Results
involving disk-accesses and execution times were clearly symmetric with the
number of comparisons made, and not reported here.

All experiments were performed on a dual-processor Pentium III PC with
1-GB main memory running WindowsNT 4.0. The input and output buffer
sizes held 10,000 tuples. The algorithms were implemented in C programming
language.

7.1 Evaluating NLoopSVT and NLoopTOP-K

These algorithms join tuples of R and S on the basis of an arbitrary join condi-
tion (predicate) θ , and return the joined tuples that are over a given threshold Vt
or ranked in the top-k results. For the following experiments, fout() is specified
as the product of the importance scores of joined tuples. We assume that join
condition θ is a user-defined function that requires further (and presumably
expensive) processing of the tuples, as illustrated in Section 3.2. For instance,
such a function may state that a conference paper tuple is to be joined with a
journal paper if they have at least one author in common and the conference pa-
per is published at most 2 years before the journal paper. Clearly, this predicate
can be specified as a UDF (syntax omitted to save space).

To evaluate a join with an arbitrary condition θ , an ordinary block-nested
loops algorithm compares each and every tuple, computes the importance scores
for those tuples satisfying the user-defined function, and finally retrieves the
ones that are above the specified threshold or in the specified top-k set. On the
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Figs. 9 and 10. Performance values of BNL versus NLoopSVT and NLoopTop-k, respectively.

other hand, NLoopSVT and NLoopTop-k evaluate the arbitrary predicate only for
those tuples with derived importance scores that satisfy the query constraints.
In Figures 9 and 10, we demonstrate the performance of these algorithms, com-
pared against the “blind” BNL approach. Note that the savings of the proposed
algorithms increase as the SV threshold value increases or, inversely, as the
k value decreases. For instance, when the SV threshold value is 0.9, the num-
ber of tuple comparisons performed by NLoopSVT is approximately 600 million,
1/20 of the BNL approach, which makes 12 billion comparisons. For this case,
NLoopSVT reads only 27% of R and 60% of S from the disk, whereas BNL reads
all tuples of the relations. The saving in terms of execution time also matches
well with the 1/20 ratio of tuple comparisons, that is, 3 min versus 1 h. Note
that the percentages of tuple readings from each relation show that tuples with
high importance scores dominate the DBLP data set, as we have mentioned
before, and savings would increase for those cases where only a few tuples can
exceed the SV threshold.

7.2 Evaluating NLoopSim-SVT and NLoopSim-Top-k

These algorithms perform similarity-based (approximate) joins. In the following
experiments, the tuples of R and S are joined if their titles are similar with a
similarity value greater than a specified threshold (90%). In this case, fout()
is specified as the product of the importance scores of joined tuples and this
derived value is further multiplied with the similarity value of tuples, obtained
using the cosine similarity measure.

Figures 11 and 12 illustrate the performance superiority of NLoopSim-SVT and
NLoopSim-Top-kwith respect to the BNL. Note that, as discussed before, a blind
BNL would compare all pairs, leading to almost 12 billion tuple comparisons.
For the special case of similarity-based predicates, we employed an inverted in-
dex while computing the similarity of the tuples that were read and buffered (in
a similar fashion to the probing phase of hash-join [Ramakrishnan and Gehrke
2000]). More specifically, we created an in-memory inverted index [Salton 1989]
for the tuples of outer relation on the fly, and compared tuples of inner relation
that only had common words in their titles. Thus, for all of the algorithms, the
results reported in the figures indicate the number of accesses to the in-memory
inverted index during the comparison, that is, BNL accesses to the index
900 million times, also implying the same number of similarity comparison
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Figs. 11 and 12. Performance values of BNL versus NLoopSim-SVT and NLoopSim-Top-k algorithms,
respectively.

computations, although it read the blocks of the both relations entirely several
times. We observe that SVA algorithms again considerably reduce the cost of
the join operation. For instance, to retrieve tuple pairs with titles that are 90%
similar and have a derived importance score greater than 0.9, BNL achieves
a total of 900 million computations, whereas NLoopSim-SVT makes only 50 mil-
lion computations. This improvement is due to the fact that similarity-based
algorithms are tailored to exploit the vector-space model to its greatest extent.

To summarize, for arbitrary predicates and monotone SV functions, algo-
rithms NLoopSVT and NLoopTop-kimprove the performance of BNL considerably.
For the special case of text similarity-based joins, the algorithms were further
optimized (e.g., by using the maximal similarity filter heuristic), and more gains
were obtained.

8. EXPERIMENTAL RESULTS: EVALUATING THE SVA TOPIC
CLOSURE OPERATOR

We evaluated the performance of the TClosure algorithms using all the articles
in the ACM SIGMOD Anthology between 1969 and 2001. All of the articles,
available as pdf files, were parsed, and indices were constructed and used to
extract metalinks between papers, such as the RelatedTo, Prerequisite, and
WrittenBy metalinks. In Al-Hamdani [2003], we provided a more detailed de-
scription of the metadata extraction process from the ACM Anthology.

Using topics and metalinks, disk-based index files were constructed. And, in
order to efficiently retrieve tuples from two index files (MIndex and HIndex),
a memory-based sparse index table was employed. In implementations of topic
closure algorithms, we used max as the FPathMerge function. We evaluated the
performances of the Threshold-based and Top-k-based TClosure algorithms in
terms of the number of disk accesses and the size of the output result X+.

We employed a finite state automaton (FSA) that corresponded to a given
regular expression R. As an example, the FSA in Figure 13 corresponds to the
regular expression R = PRE∗.RT.RT∗ (where PRE and RT are Prerequisite and
RelatedTo metalinks, respectively).

8.1 Data Generation

All ACM SIGMOD Anthology articles (14,891 papers) were converted
from pdf files into plain text files. Then, DBLP bibliography information
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Fig. 13. FSA for regular expression R = PRE∗.RT.RT∗.

[Ley] was used to extracted the titles, authors, publication venue (conference
or journal), and the publication year for each paper in the ACM Anthology. We
also extracted the abstract, index terms, body, and references for each paper
using its text file. The TF-IDF vectors were used to represent each component
of each paper (i.e., the title, abstract, index terms, and body) and to created the
corresponding index files. We also created index files for authors, references,
and the publication venue of the papers.

8.1.1 Topic Extraction. We extracted two types of topics, papers and au-
thors, and computed their importance scores.

(1) Paper importances. The importance score of a given paper can be computed
in multiple ways, such as the following:
(a) Publications that get referenced by highly “important” papers are

more important (residual effect). PageRank [Brin and Page 1998]
algorithm can be used to recursively compute the importance
scores of papers using the importance scores of papers that cite
them.

(b) The notion of hubs and authorities (i.e., the HITS algorithm of Kleinberg
[1998, 1999]) among papers can be used to compute importances of
papers.

(c) Citation count: how many times a paper is cited by other important
papers.

(d) Publication venue: for example, SIGMOD versus CIKM. The impor-
tance score of a conference or journal influences the importance of a
paper.

(e) Temporal distributions of citations with respect to duration.
(f) Citation venue: for example, survey journal versus research paper.
(g) Citations by “important” authors’ work are more significant.
(h) Importance of an author influences importances of his/her papers.

In this article, we compute importance scores of papers using (i) cita-
tion counts, (ii) publication venue, and (iii) importance scores of the most
important papers that refer to the given paper.

(i) Citation count. For a given paper P, let CitationCount(P) be the number
of times paper P is cited by other papers. Using the number of citations,
paper P is as important as those papers that have the same number
of citations and more important than the papers that have fewer ci-
tations. Now, let PapersWithCitations(i) be the number of papers that
were cited i times. We computed the importance of a given paper P
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with respect to its citation count as follows:

ImpPaperCitationCount(P ) =

√√√√√
CitationCount(P)∑

i=0
PapersWithCitations(i)

No. of papers

(ii) Publication venue. The importance score of a given conference or jour-
nal was computed using the total number of papers it had and the
total number of citations to its papers. We computed the unnormalized
conference importance scores using the following formula:

ImpConfU (V)= (#citations of Conference V)/
√

#papers in ConferenceV .

Let ImpConfMax be the unnormalized importance score of a confer-
ence with the highest unnormalized importance score. By applying
the ConfMinImp factor, where 0 ≤ ConfMinImp ≤, we found the im-
portance scores for a given conference or a journal as follows:

ImpConf(V) = ConfMinImp + (1.0 − ConfMinImp)

∗
√

ImpConfU(V)/ConfImpMax .

We used ConfMinImp = 0.4 in the experiments.
(iii) Adding the citation effect of the most important citation. For a given

paper P in conference V, let Pmaxcit be any paper that cites paper P with
the highest importance score. We computed the importance score of a
paper P using

ImpPaper(P ) = (1 − MaxCitFactor) ∗ [(ConfFactor ∗ ImpConf(V))

+ (1.0 − ConfFactor) ∗ ImpPaperCitationCount(P)]

+ MaxCitFactor ∗ Imp(PmaxCit),

where 0 ≤ MaxCitFactor ≤ 1.0 and 0 ≤ ConfFactor ≤ 1.0. In the exper-
iments, we used MaxCitFactor = 0.2 and ConfFactor = 0.7.

(2) Author importances. The importance score for an author can be computed
in multiple ways:
(a) the most important paper of the author,
(b) the weighted average of the most important k papers of the author;
(c) the weighted average of the most important m% papers of the author;
(d) the weighted average of the most important papers of the author in

every y years.
We computed the importance score of an author using 20% of his/her most

important papers. For the ACM Anthology, the importance scores of (a) 106
conferences, journals, and books, (b) 14,891 papers, and (c) 13,208 authors,
were computed and stored in files. The papers were stored in a file of 222-kB
size, and the authors were stored in a file of 198-kB size.

8.1.2 Metalink Extraction. Three types of metalinks and their importance
scores were extracted, namely, RelatedTo, Prerequisite, and WrittenBy.
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(1) RelatedTo metalink instance extraction. A paper Pi is related to a paper
Pj if the similarity Sim(Pi, Pj) is above a given threshold value Vt (in the
experiment, we used Vt a value of 0.4). We computed the similarity be-
tween two papers using a weighted function of their title similarity SimTitle,
index terms similarity SimIndexTerms, abstract similarity SimAbstract, body
similarity SimBody, author similarity SimAuthor, and references similarity
SimReferences.

We used the TF-IDF vectors with the cosine similarity measure [Salton
1989] to compute the similarities between two paper’s titles, abstracts, in-
dex terms, and bodies. Each of these similarities was referred to as a similar-
ity factor. We first removed the stopping words from the terms of a similarity
factor, and then used Porter’s [1980] algorithm to stem the terms.

We computed the author similarity between two papers using the “Level-
0-author-overlap” relationship (i.e., common authors between two papers)
and the “Level-1-author-overlap” relationship (i.e., two different authors,
each of different papers Pi and Pj, are coauthors in a third paper Pk). We
used the following formula to compute the author similarity between two
papers:

SimAuthor(Pi, Pj) = L0Weight ∗ SimLevel-0-Author(Pi, Pj)

+ (1 − L0Weight)SimLevel-1-Author(Pi, Pj),

where 0 ≤ L0Weight ≤ 1.
The reference similarity between two papers Pi and Pj was computed

using the bibliographic coupling (the number of common citations between
the two papers [Kessler 1963]) and cocitation (cocitation frequency with
which two papers appear as citations in the same document [Small 1973])
between the two papers. We computed the reference similarity as follows:

SimReferences(Pi, Pj) = BibWeight ∗ Simbib(Pi, Pj)

+ (1 − BibWeight) Simcoc(Pi, Pj),

where 0 ≤ BibWeight ≤ 1. In the experiment, we used L0Weight and Bib-
Weight values of 0.7 and 0.6, respectively.

Finally, we used the following formula to compute the importance score
of the RelatedTo metalink instance between two papers Pi and Pj:

Imp (RelatedTo(Pi, Pj)) = Sim(Pi, Pj)

= WTitle ∗ SimTitle(Pi, Pj) + WIndexTerms ∗ SimIndexTerms(Pi, Pj)

+ WAbstract ∗ SimAbstract(Pi, Pj) + WBody ∗ SimBody(Pi, Pj)

+ WAuthor ∗ SimAuthor(Pi, Pj)

+ WReferences ∗ SimReferences(Pi, Pj),

where WTitle + WIndexTerms + WAbstract + WBody + WAuthor + WReferences = 1.0.

There is also the issue of choosing the right values for weights
WIndexTerms, WAbstract, WBody, WAuthor, and WReferences. In Li [2003], an experi-
ment was performed to locate the similarity weights that produce the high-
est precision queries using 1000 papers. The experiment showed that the
similarity factor weights with the highest precision were WTitle = 0.143225,
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WIndexTerms = 0.0607289, WAbstract = 0.183921, WBody = 0.151375, WAuthor =
0.202429, and WReferences = 0.2583211. Therefore, we used these weights in
computing the importance scores for RelatedTo metalinks.

We normalized the similarity values for each similarity factor, say F (e.g.,
F = title), using the maximum similarity SimFmax(Pi) between a paper Pi
and all other papers. RelatedTo metalink is reflexive; therefore, for any
two papers Pi and Pj, Imp(RelatedTo(Pi, Pj)) = Imp(RelatedTo(Pj, Pi)). To
maintain the reflexivity property, we normalized the similarity values for a
given similarity factor SimF between papers Pi and Pj using the minimum
of SimFmax(Pi) and SimFmax(Pj). Thus,

SimF Normalized(Pi, Pj) = SimF (Pi, Pj)/min(SimFmax(Pi), SimFmax(Pj)).

(2) Prerequisite metalink instance extraction. We used the citation information
to extract Prerequisite metalinks. A paper Pi is a prerequisite to a paper Pj,
written as Pre(Pi, Pj), if paper Pi appears in the references of paper Pj. We
used the occurrences of the cited papers to compute the importance scores
for their prerequisite metalinks. Let Omax(Pj) be the number of occurrences
of the most cited reference in the body of a given paper Pj, and O(Pi, Pj) be
the number of occurrences of a reference Pi in the body of paper Pj. Then,
the importance score for the prerequisite metalink instance Pre(Pi, Pj) was
computed using the formula

Imp(Pre(Pi, Pj)) = (O(Pi, Pj) + 1)/(Omax(Pj) + 1). (1)

We added 1 to the number of occurrences and to the maximum occurrences
so that all the importance scores were greater than zero. Another alterna-
tive was to compute the importance scores using the following formula:

Imp(Pre(Pi, Pj)) = MinPreFactor + (1 − MinPreFactor) ∗ O(Pi, Pj)/Omax(Pj),
(2)

where 0 ≤ MinPreFactor ≤ 1.
In our implementation, we evaluated both Formulas (1) and (2).

(3) WrittenBy metalink instance extraction. One can construct WrittenBy
metalink importance scores using the importance scores of the authors
of papers. However, in the experiments, we assumed that the WrittenBy
metalink type did not have importance scores (or, more correctly, for each
paper Pi and author Aj, Imp(WrittenBy, Pi, Aj) was assumed to be 1.0).

Using the papers in the ACM Anthology [ACM SIGMOD Anthology],
we extracted 40,486 RelatedTo metalinks, 30,772 Prerequisite metalinks,
and 34,244 WrittenBy metalinks. The total size of the metalink file was
1.8 MB.

8.2 Metalink Index Generation

We created the index file MIndex with the key 〈Tid, MType〉 for all metalink
types, stored as a paged file on secondary storage. Each MIndex page contained
data about metalinks of the same type MType (MIndex is ordered by topics
identifiers Tids), and was of size at most PageSize (we used PageSize of 1 KB).
Index entries for the metalinks for a given key 〈Tid, MType〉 were maintained in
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Fig. 14. Disk-based index table.

the same page; if there was not enough space in the current page then they were
stored in the next page. HIndex to index hypernodes was initialized similarly.

A main memory-based sparse index was created to access any entry 〈Tid,
MType〉 in MIndex (see Figure 14). In the sparse index, we divided 〈Tid, MType〉
entries into blocks (we used 1000 blocks). Each block corresponded to one or
more pages in the MIndex file. The sparse index file contained the first 〈Tid,
MType〉 in a given block and its physical address in MIndex. In order to retrieve
all metalinks of type MType and emanate from Tid, we first used the sparse
index to find the physical address of the first page with key 〈Tid, MType〉 in
the MIndex file. If a given block in the sparse index corresponded to more than
one page in the MIndex file then we may have needed to access more than one
page in order to retrieve the metalinks for the specified key.

In the implementation, a disk-based metalink index MIndex with a page size
of 1 kB was used to maintain all extracted metalinks. MIndex contained 2768
pages and had the size of 2.785 MB. We used a memory-based sparse index of
size 1000; therefore, the first 768 blocks in the sparse index corresponded to
three metalinks pages and the remaining 232 blocks corresponded to 2 pages.
Thus, 1000 pages could be accessed using a single disk access; 1000 pages could
be accessed using two disk accesses, and 768 pages required three disk accesses.
In order to access the metalinks emanating from a given topic t, we needed a
single disk access if topic t was in the first page in a given sparse index block,
two disk accesses if it was in the second page, and three disk accesses if it
was in the third page. Assuming that all pages contained the same number of
metalinks and they were uniformly accessed, the expected average number of
disk accesses (avgDA) to locate metalinks emanating from a given topic t was
1.92.

8.3 Experiments

In the experiments of this section, the behavior of TClosure algorithms was
evaluated using different values for the regular expression, input topic size,
sparse index size, and page size.
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Fig. 15. Threshold-based TClosure algorithm using different regular expressions.

8.3.1 Regular Expressions. We used three regular expressions, namely,
PRE∗.RT, PRE∗.RT∗.WB, and PRE.RT regular expressions to evaluate the per-
formances of TClosure algorithms.

—Observation 1 (Figure 15 and Figure 16): Among the three regular expres-
sions, the regular expression PRE.RT had the lowest number of disk accesses,
and the smallest closure (i.e., X+) for both top-k and threshold-based TClo-
sure algorithms.

—Observation 2 (Figure 15): For the threshold-based TClosure algorithm, the
increase in both the number of disk accesses and the size of output topics X+

was nonlinear with respect to the decrease in the sideway value threshold
Vt. When the sideway importance value Vt was large then there was a small
difference between the numbers of disk accesses using different regular ex-
pressions. But the difference became very large when Vt was small.

—Observation 3 (Figure 16): For all three regular expressions, the increase in
the number of disk accesses was linear with respect to the increase in top-k
topics for the top-k-based algorithm.
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622 • G. Özsoyoǧlu et al.

Fig. 16. Top-k-based TClosure algorithm using different regular expressions.

—Observation 4 (Figure 15): Among the three regular expressions, the regular
expression PRE∗.RT∗.WB has the highest number of disk accesses and the
largest closure (i.e., X+) size for the threshold-based algorithm.

—Observation 5 (Figure 16): For the top-k algorithm, the regular expression
PRE∗.RT had the highest number of disk accesses when k was less than 250.
The reason for such a behavior is that the importance scores for the WrittenBy
metalinks were 1.0, forcing the algorithm to locate topics with the highest
importance using fewer disk accesses.

8.3.2 Input Size, Page Size and Sparse Index Size.

—Observation 6 (Figures 17 and 18): When the number of input topics de-
creased then both the number of disk accesses and the sizes of the output
topics were decreased almost linearly.

—Observation 7 (Figures 17 and 18): When the page size or sparse index size
was changed then the number of disk accesses were changed with almost a
constant rate for both top-k and threshold-based algorithms.

When the page size was increased from 1 to 2 kB then the number of
disk-based pages in the MIndex file was decreased from 2768 to 1340 pages.
Therefore, the expected number of disk accesses per requested metalink was
decreased from 1.92 to 1.25 (1000 pages could be accessed using one disk
access and 340 required two disk accesses). Thus, the expected number of
disk accesses per traversed metalink was decreased by the ratio of 1.25/1.92 =
0.65. Figures 17 and 18 illustrate that the number of the disk accesses per
metalink instance was decreased by the ratio of 0.55 to 0.67 for threshold-
based algorithms and by the ratio of 0.62 to 0.65 for top-k algorithms.

When the size of the sparse index was reduced from 1000 to 500 blocks
then the expected number of disk accesses per traversed metalink instance
was changed from 1.92 to 3.29 (since there were 2768 pages; 500 pages re-
quired one disk access, 500 pages required two disk accesses, 500 pages re-
quired three disk accesses, 500 pages required four disk accesses, 500 pages
required five disk accesses, and 268 pages require six disk accesses).
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Fig. 17. Threshold TClosure algorithm using different values for the input size, page size, sparse
index size.

Therefore, the expected rate became 3.29/1.92 = 1.7. As expected, and
Figures 17 and 18 illustrate that the number of the disk accesses per re-
quested metalink was increased by the ratio of 1.72 to 2.1 for threshold-based
algorithms and by the ratio of 1.76 to 1.88 for top-k algorithms.

8.3.3 Different Formulas for Pre Metalink Importance Scores. We evalu-
ated the performances of TClosure algorithms using different metalink impor-
tance score computations. We used the following two formulas to compute the
importance scores of Prerequisite metalinks:

(F1) Imp(Pre(Pi, Pj)) = (O(Pi, Pj) + 1)/(Omax(Pj) + 1)
(F2) Imp(Pre(Pi, Pj))=MinPreFactor+(1−MinPreFactor) ∗ O(Pi, Pj)/Omax(Pj)

where 0 ≤ MinPre ≤ 1.

—Observation 8 (Figures 19 and 20): For both top-k and threshold-based TClo-
sure algorithms, formula F2 with MinPre of 0.5 had the highest number of
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Fig. 18. Top-k TClosure algorithm using different values for the input size, page size, sparse index
size.

disk accesses and formula F2 with MinPre of 0.2 had the lowest number of
disk accesses.

—Observation 9 (Figures 19 and 20): The differences between the number of
disk accesses using different formulas were very small when the sideway
threshold Vt was large (or when k was small).

9. RELATED WORK

9.1 Web Data Extraction, Web Querying, and Web Metadata Models

Automatically extracting entities and relationships about entities from Web
documents would be very useful for Web resource querying [Özsoyoǧlu and Al-
Hamdani 2003]. DIPRE [Brin 1998] employs a handful of training tuples of a
structured relation R (which represents a specific meta-relationship among en-
tities in the data) to extract all the tuples of R, from a set of HTML documents.
DIPRE uses the training tuples to generate new patterns, and uses the newly
generated patterns to extract more tuples, and so on. Snowball [Agichtein and
Gravano 2000; Agichtein et al. 2000], an extension to DIPRE, improves the qual-
ity of the extracted data by including automatic patterns and tuple evaluation.
One of the key improvements is that Snowball’s patterns include named-entity
tags. In addition, Snowball eliminates unreliable tuples and patterns by using
strategies to estimate the reliability of the extracted tuples and patterns. The
Proteus information extraction system [Grishman 1997; Grishman et al. 2002]
divides the extracted text into sentences and into tokens, performs a lexical
lookup for each token, and determines its parts-of-speech and features. Next,
finite-state patterns are used to recognize names, nouns, verbs, and other spe-
cial forms. Then the scenario pattern matching is used to extract events and
relationships for a given relation. Proteus also uses an inference process to
locate implicit information and make it explicit, and combines all the informa-
tion about a single event using event emerging rules. The extracted events and
phrases are used to update the database. QXtract [Agichtein and Gravano 2003]
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Fig. 19. Threshold-based TClosure algorithm using different formulas for Prerequisites impor-
tance scores.

uses automated query-based techniques to retrieve documents that are useful
for extracting a target relation from a large collection text documents. The field
of (meta)data extraction from the Web, while promising, has a long way to go
at this stage.

There have been a number of articles about querying the Web via a database-
style query language; for a comprehensive survey, see Florescu et al. [1998]. Our
work is distinguished from these works in that our focus is on (i) a metadata
model for a Web resource (as opposed to the whole Web), and (ii) generic SQL
extensions, and the associated query processing, for score management and
text support. The SQL extensions, the associated query processing, and the
proposed SVA operators are not necessarily restricted to metadata databases
and Web querying; they can also be equally valuable for databases/applications
dealing with score manipulations.

There have been extensive research and standardization efforts on infor-
mation representation models for the Web. Two well-publicized metadata
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Fig. 20. Top-k TClosure algorithm using different formulas for Prerequisites importance scores.

standards for Web pages are Dublin Core and the Warwick framework. As
summarized in Kobayashi and Takeda [2000], Dublin Core specifies a set of
15 metadata elements (e.g., title, creator, subject, etc.) for Web pages. More re-
cent and more comprehensive proposals to add semantics to the Web include
Topic Maps, the Resource Description Framework (RDF), and the Semantic
Web effort. A Topic Map data model, as described in Biezunski et al. [1999],
is similar to the Entity-Relationship model specialized for the abstract domain
of topics and topic-related information. Our metadata model can be seen as a
subset and an application of the Topic Map model, stripped of many details,
stored in an object-relational DBMS, and enriched with the notion of impor-
tance scores. The Resource Description Framework [Lassila and Swick 1999] is
a graph-based information model designed to describe Web information sources
by attaching metadata specified in XML. In Lacher and Decker [2001], RDF and
Topic Maps are shown to be equivalent in expressive power in that each is able
to express the other. Semantic Web [Semantic Web; Berners-Lee 2000] is an
RDF schema-based effort to define a semantic-based architecture for Web re-
sources, with multiple layers that include a schema layer, a logical layer, and a
query language. RQL [Karvounarakis et al. 2001] is a declarative language to
query portal catalogs that are created according to the RDF standard in the con-
text of the C-Web project. The RQL query engine attempts to optimize a query
at the rewriting stage, and then leaves the job to the underlying ODBMS. In
comparison, we propose a set of language extensions and evaluation algorithms
that are integrated into the query engine. And we propose new operators for
text similarity joins and topic closure.

9.2 Function Evaluation, Text Similarity Joins, and IR-Style Solutions

The notion of user-defined functions (UDF) has been around for quite a long
time (i.e., SQL table functions [Reinwald and Pirahesh 1998], etc.), and can
perhaps be used for application-based score management. In comparison, we
propose a database-centric, native approach to score management: the SQL
language and a query engine which, together, make use of input tuple scores in
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an embedded manner to answer queries, viewing scores as a native and internal
property of a database schema. In this respect, our algebra combines function
and score manipulation with traditional query processing in a new and unique
way.

As a particular sort of score-generating predicates, we consider IR-style text
similarity functions, which we assume to be natively embedded as threshold
predicates in the system, as opposed to implementing them as user-defined
functions. Today’s commercial DBMSs provide full-text indexing and rele-
vance ranking features for querying single text attributes (e.g., Oracle 9i Text
[Oracle Corp. 2003], IBM DB2 Text Extender [IBM Corp. 2003], SQL Server
2000 Full-Text Search [Microsoft Corp. 2003]). In contrast, we allow similarity
computations and comparisons not only as selection predicates, but also as join
conditions. And, as mentioned before, the scores returned by SVA operators are
employed during intermediate stages of query processing to limit the output
space, and used to revise final output tuple scores dynamically; this has not
been proposed in a commercial DBMS or a research prototype.

An earlier work that make use of text-similarity as a join condition was
presented by Meng et al. [1998]. This work described three nested-loops-based
algorithms to find top-k documents of a relation that are most similar to each
document from another relation. These three algorithms are distinguished in
their use of an inverted index, that is, the first algorithm directly compares
document vectors from both relations, whereas the second one builds an in-
verted index for one of the relations, and the third one employs inverted indices
for both of the relations. The underlying document representation model is the
vector space model as used in our work. Our work differs from Meng et al.
[1998] in that (a) our emphasis is on importance score handling, (b) our thresh-
old predicates join tuples representing metadata (with relatively shorter text
fields compared to entire documents), and (c) we make use of a maximal simi-
larity filter as an early termination heuristic. Additionally, Meng et al. [1998]
algorithms retrieve top-k (most similar) tuples for each tuple in the “other” re-
lation whereas our top-k algorithms simply retrieve top-k (most similar) tuple
pairs from the (implicit) Cartesian product of two relations in a global manner.
Note that the inverted index-based approaches are also applicable to our sim-
ilarity join algorithms; but Meng et al. [1998] reported that these approaches
can only be efficient when one of the relations is very small (so that the index
can fit into the main memory). In Section 7, we made use of an in-memory in-
verted index for the blocks of the outer relation (R) read into the memory during
the nested-loops-based join processing.

Cohen [1998] described a new language, called WHIRL, that uses IR-based
methods for similarity joins provided as built-in predicates in a data integra-
tion system. Our work has benefited from WHIRL, which also makes use of
the maximal similarity heuristic (though in the context of the A* search algo-
rithm proposed for query processing). However, our study emphasizes a gen-
eral framework for handling scores during query processing, and threshold
predicates in selection and join conditions are only one particular way of gen-
erating such scores, in addition to UDFs or other possible score-generating
predicates.
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More recently, database solutions that make use of IR techniques (and vice
versa) have attracted research interest. A number of works have proposed al-
lowing free-form keyword search over relational databases (e.g., DBXplorer
[Agrawal et al. 2002], Discover [Hristidis and Papakonstantinou 2002], BANKS
[Bhalotia et al. 2002; Hristidis et al. [2003]). These works fundamentally differ
from ours in that they were intend to provide a free-form keyword search func-
tionality over databases by automatically identifying and assembling (joining)
a set of separate tuples that constitute a query answer as a whole. Other than
relying on IR-based similarity computation techniques (employed for evaluat-
ing our threshold predicates), our work does not have many common points with
the above-listed works. For instance, BANKS provides browsing and keyword
search for online databases by modeling the database as a graph where nodes
are tuples and edges are connections, such as the primary-foreign key relation-
ships. An answer to a keyword query is a subset of this graph, which is modeled
as a Steiner tree, with a set of nodes (tuples) including specified keywords and
a central informative (root) node. These output tuple trees are also assigned
scores according to node weights, edge weights, and the notion of prestige (sim-
ilar to the famous Page-rank). Clearly, BANKS is not a competitive approach
with respect to ours, but indeed can be complementary as it can operate on our
metadata database just like any other ordinary database (possibly by turning
off our extended SQL and using its own graph-based algorithms).

9.3 Ranked Query Evaluation

The topic of top-k queries has been the subject of extensive research recently.
Carey and Kossmann [1997] introduced the stop after operator, which is an ex-
plicit and declarative way of restricting the cardinality of a query result in SQL.
If the input stream is sorted, the scan-stop operator simply returns the first k
tuples arriving as input (in a pipelined manner) and then closes down its input
stream. In the case of unsorted input, the input stream must first be sorted to
produce the top-k tuples. Our work is distinguished from Carey and Kossmann’s
[1997] work in that, instead of using a generic operator that simply reduces the
output size of all other operators, SVA operators themselves are aware of the
cardinality limitation (the SV threshold or the top-k value), and they only pro-
duce the requested tuples. SVA operators with top-k stopping conditions can be
used in accordance with the conservative and aggressive strategies proposed by
Carey and Kossmann [1997] (as top-k cannot propagate deeper in the operator
tree safely). In this article, we adapted the conservative approach for defining
our query semantics with top-k stopping condition. In a followup article Carey
and Kossmann [1998], additional strategies were proposed for processing stop
after queries. In contrast, SV threshold-based stopping conditions, which are
unique to our work, safely propagate to all intermediate operators in the query
tree (see Section 4). Thus, SVA operators with threshold-based stopping condi-
tions can be used anywhere in place of their counterparts in relational algebra.

In a similar fashion to our SVA operators with top-k stopping conditions,
top-k selection and join algorithms have been proposed. Two such works on
top-k selection were Chaudhuri and Gravano [1999] and Chang and Hwang
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[2002], and the latter also supported expensive predicates. We have discussed
the processing of SVA selection operator elsewhere [Al-Hamdani and Özsoyoǧlu
2003]. An early algorithm for top-k join was provided in Fagin [1999], and it was
further optimized by Güntzer et al. [2000]. These algorithms assume equi-join
conditions. More recently, join algorithms that support user-defined (arbitrary)
join predicates have also been proposed, such as the J* algorithm [Natsev et al.
2001]. In comparison, we give nested-loops-based algorithms for top-k versions
of the SVA join, and define a max filter heuristic for joins involving textual sim-
ilarity (threshold) predicates. Our algorithms exploit score distributions and/or
the similarity filter, and improve the performance considerably. Optimization of
top-k predicates were also discussed in Mahalingam and Candan [2001], where
the varying query outputs with respect to the different binding order of top-k
predicates were taken into account.

Ranked-join operators by Ilyas et al. [2003, 2004] have similarities (and dif-
ferences) with our work. In an earlier study [Ilyas et al. 2002], the authors
proposed to encapsulate two previously existing rank join algorithms (namely,
NRA and J*) in a physical join operator, with the focus of providing a ranked-
join operator which can be used in pipelining query plans with join hierarchies.
To this end, the NRA algorithm was modified to work in an incremental and
pipelining manner. In a followup work [Ilyas et al. 2003], the authors proposed
a new-rank join algorithm and two physical join operators that implement the
new algorithm by using variants of the ripple join. Most recently [Ilyas et al.
2004], the authors introduced “interesting rank expressions,” extended dynamic
programming-based query optimization to generate candidate plans that em-
ploy the rank-join operator, and proposed a probabilistic model to estimate the
input cardinality (and subsequently the cost) of rank-join operators for query
optimization purposes.

Both our work and the work of Ilyas et al. [2002, 2003, 2004] have con-
centrated on supporting score-aware operators in the query engines; however,
the two approaches significantly differed in various aspects: first, we defined
a general framework for a set of algebraic operators (namely, selection, join,
and closure) which can (i) modify scores with newly introduced threshold pred-
icates involving textual similarities, (ii) compute and propagate scores with
respect to UDF predicates, and (iii) enforce stopping conditions based on ei-
ther a threshold or a top-k constraint. For our extended-SQL queries, we have
discussed the semantics of algebraic expressions involving our SVA operators
interleaved with ordinary RA operators, and have shown that the proposed
extensions are well-defined. In comparison, Ilyas et al. [2002, 2003, 2004] fo-
cused on defining a rank-join operator for pipelining query plans and opti-
mization and cost evaluation issues for queries with a sequence of rank-join
operators.

In comparing our SVA join operator and the rank-join operator of Ilyas et al.
[2002] the most important distinction is our use of the threshold and UDF
predicates, which arbitrarily change (increase or decrease) the scores of output
tuples, making the results of Ilyas et al. not directly applicable to our SVA join
algorithms. Put another way, output tuple scores of SVA join are dependent on
tuple component values that are involved in score-modifying predicates, which

ACM Transactions on Database Systems, Vol. 29, No. 4, December 2004.
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is not the case in Ilyas et al.’s [2003] rank-join framework. In comparison, the
rank-join [Ilyas et al. 2003] applies the same output score generation function
and only to the scores of joining tuples. Another difference is that we allow
the SVA operator itself to be aware of the top-k stopping condition (whenever
allowed by our score-conservative policy) to reduce the intermediate output size
in complex query trees. In contrast, in Ilyas et al.’s work, a Scan-Stop(k) [Carey
and Kossmann 1997] operator is applied on top of the uppermost rank-join
operator, and the join operators themselves do not know the top-k constraint.
Having said this, adapting the physical join operators as proposed by Ilyas et al.
for our SVA join algorithms is a future research direction.

9.4 Transitive Closure

SQL/TC is an extension to SQL to express generalized transitive closure queries
[Dar and Agrawal 1993]. A directed graph G instance can be represented using
a relation R with two columns S and T, where there is a tuple in R with values
s and t for S and T if and only if there exists an edge from node s to node t
in graph G. The transitive closure TC(G) of the graph G corresponds to the
transitive closure TC of relation R with respect to S and T. Each edge in graph
G has a value, and the value of an edge in TC(G) is derived from the values of
the edges in the corresponding path-set. Dar et al. [1991] presented polynomial
algorithms for transitive closure with restricted paths. SQL/TC has a complex
syntax, and does not support computing the topic closure with top-k predicates,
regular expressions, or hypernodes.

SQL’99 supports recursive queries using a “WITH RECURSIVE” statement
[Eisenberg and Melton 1999; Lewis et al. 2003]. A recursive query is composed
of two parts: the definition of a recursive relation and the query against the
definition. The recursive queries employ a complex syntax to express the topic
closure operator, and do not deal with closure with top-k predicates, regular
expressions, and hypernodes.

9.5 Other Work

In our earlier work, we described the topic-based metadata model in more detail
as well as some practical approaches for constructing such databases (e.g., the
DBLP metadata database) [Altingövde et al. 2001; Özel et al. 2004]. This article
extends our preliminary results for the SVA framework [Özsoyoǧlu et al. 2002]
as follows: first, SVA algebra operators are defined more completely, and illus-
trated with logical query tree examples. Second, threshold and UDF predicates
for SQL are introduced. Third, the semantics of SQL extensions (correctness
notion for “well-defined” queries) are defined, and proven correct. Last, but not
least, complete experimental evaluations of the SVA join and topic closure are
reported, for which the importance scores of topics and metalinks are computed
from real world data, rather than synthetic data.

Very recently, Al-Khalifa et al. [2003] proposed a score-based framework for
querying structured text in XML databases. This work also extended common
algebraic operators and defines new ones for score manipulation; however, its
focus was on providing IR-style ranked querying facilities for XML documents.
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10. CONCLUSIONS

In this article, we have proposed a native score management and approximate
text-similarity support to databases, to be used for Web resource querying on
metadata extracted from the Web resource a priori. To this end, we have pro-
posed SQL language extensions, algebraic extensions, and query processing
algorithms that implement the proposed extensions.

Future work will include (i) adding new (e.g., “top-k”) predicates to SQL ex-
tensions, and (ii) removing the closed-world assumption in a controlled manner,
and adding focused crawler executions (at the Web information resource) dur-
ing query evaluation time to those SVA operator evaluations that do not have
“sufficiently large” number of output tuples.

An electronic appendix to the article is available in the ACM Digital Library.
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