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of a given order
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(Received 12 September 2003; revised 28 October 2004; accepted 1 November 2004)

A new method is given for computing the set of all stabilizing controllers of a given order for

linear, time invariant, scalar plants. The method is based on a generalized Hermite–Biehler

theorem and the successive application of a modified constant gain stabilizing algorithm to

subsidiary plants. It is applicable to both continuous and discrete time systems.

1. Introduction

An analytic method of determining the set of all sta-
bilizing constant gains for linear, time invariant, scalar
plants was derived in Özgüler and Koçan (1994) for con-
tinuous-time systems. The solution was based on a gen-
eralization of Hermite–Biehler theorem to the case of
signature computation. The main advantage of the
method in comparison with other analytic methods
such as D-decomposition or Routh–Hurwitz criterion
based methods is that it replaces the (finite number of)
checks for stability required in such methods with
a certain check of sign sequences.
In Datta et al. (2000), a computational characteriza-

tion of all stabilizing proportional-integral (PI) and
proportional-integral-derivative (PID) controllers was
derived. This method is also based on the results
reported in Özgüler and Koçan (1994), (see Brualdi
2000). The computational method of Datta et al.
(2000) has been extended to compute all stabilizing
PID gains for discrete-time systems in Xu et al. (2001).
Alternatively, in Munro and Söylemez (2000) and
Söylemez et al. (2003) the limiting values of propor-
tional, derivative and integral action terms of the set
of stabilizing PID controllers are calculated using
a Nyquist plot based approach. Because of the structural
differences between PID and first-order controllers,
direct application of these methods to first-order
controllers is not possible although in both types

of controllers only three parameters are involved.

The quest for an analytic design method for first-order

controllers (phase-lead, phase-lag) has been around for

decades. Many classical control textbooks such as

Phillips and Harbor (2000) and Dorf and Bishop

(2001), contain attempts to deductively obtain a first-

order stabilizing controller. In Phillips and Harbor

(2000), for example, an analytic method for designing

a first-order controller is suggested although the authors

emphasize that the design is not guaranteed to succeed

and it may lead to an unstable system. In this paper,

we solve the problem of determining the set of all stabi-

lizing controllers of a given degree for an arbitrary

plant. We will solve the problem for first-order and

second-order controllers and show how to extend the

algorithm to higher-order controllers. The method

developed is based on the application of a modified pro-

portional controller algorithm to a number of auxiliary

plants.
There are several classical solutions to the problem of

finding the set of all stabilizing proportional

controllers, i.e. given coprime polynomials q(s) and

p(s) with real coefficients, determine the set of all �
such that �ðs,�Þ ¼ qðsÞ þ �pðsÞ has degree in s equal to

the degree of q and is Hurwitz stable. However, exten-

sions of these methods to higher order controllers

is not obvious.

(i) Root-locus method: This is the most widely used gra-

phical solution to the problem of finding the set of all

stabilizing proportional controllers. However, as

the order of the controller increases the number*Corresponding author. Email: ozguler@ee.bilkent.edu.tr
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of parameters increases accordingly. Hence, it is
difficult to use this method to solve the problem
at hand.

(ii) Routh–Hurwitz criterion: With a first-order
controller, an example can show that solving the
problem with this method is very difficult because
we have to solve a highly non-linear set of inequal-
ities.

(iii) Neimark D-decomposition: First let us briefly
describe this method (Neimark 1999). Let

qðj!Þ ¼ ~hhð!Þ þ j! ~ggð!Þ, pðj!Þ ¼ ~ff ð!Þ þ j! ~eeð!Þ

where ~hh, ~gg, ~ff , and ~ee are real and even
polynomials of !. Then, �ðj!,�Þ ¼ ~hhð!Þ þ � ~ff ð!Þ�
þj!½ ~ggð!Þ þ � ~eeð!Þ�. If �ðs,�Þ has a j!-axis zero,
then as � is real, ~hhð!Þ þ � ~ff ð!Þ ¼ 0 and
~ggð!Þ þ � ~eeð!Þ ¼ 0. Eliminating � from these two
equalities, we have

!½ ~ggð!Þ ~ff ð!Þ � ~hhð!Þ ~eeð!Þ� ¼ 0: ð1Þ

Consequently, if �ðs,�Þ has a j!-axis zero, then (1)
holds for some ! 2 ½0,1Þ. Let the roots in
! 2 ½0,1Þ of equation (1) be !i, i ¼ 1 . . . , ~kk and
define

�i ¼
� ~hhð!iÞ= ~ggð!iÞ if ~ff ð!iÞ 6¼ 0

� ~ggð!iÞ= ~eeð!iÞ if !ið!iÞ 6¼ 0:

(
ð2Þ

If ~ff ð!iÞ ¼ 0 and !i ~eeð!iÞ ¼ 0, then let �i ¼ 1. The
values �i so defined satisfy �ðj!i,�iÞ ¼ 0 for
i ¼ 1, . . . , ~kk. We have so far shown that �ðs,�Þ
has a j!-axis zero for some � if and only if
� 2 f�i, i ¼ 1, . . . , ~kkg. By the continuity of the
roots of �ðs,�Þ with respect to �, the follow-
ing description of the solution set is immediate:
Let f!ig be the roots in ½0,1Þ of equation (1) and
let f�ig be as defined in equation (2). Let the
distinct values of �i, i ¼ 1, . . . , ~kk be ordered as

1 > �i1 > � � � > �i ~kk > �1

and let �i0 :¼ 1 and �i ~kkþ1
:¼ �1 for convenience.

Then for l ¼ 1, . . . , ~kk the interval ð�il ,�ilþ1
Þ is in

the solution set if and only if at one point � in
ð�il ,�ilþ1

Þ the polynomial �ðs,�Þ is Hurwitz stable.
Since the union of all candidate intervals cover R,
this is a complete description of the solution set.
Thus the method requires the determination of
roots of equation (1), �i and at most kþ 1 applica-
tions of some stability criterion such as Routh or
Hurwitz at the interior point of each interval.

Since the number of parameters increases for a

higher-order controller, a direct application of

this method to determine higher order controllers

is not obvious.

The paper is organized as follows. In } 2, some

preliminary results are presented. In } 3, an improved

proportional controller algorithm is given. The algo-

rithm is comparable with the one given in Munro et al.

(1999) and offers several advantages over the ones

given in Özgüler and Koçan (1994) and Datta et al.

(2000). An algorithm for determining stabilizing first-

order controllers is presented in } 4. It is then applied

to plants with interval type uncertainties in } 5. In } 6,
we give an algorithm for the computation of second-

order controllers and show how to extend this algorithm

to higher-order controllers. Finally, } 7 contains some

concluding remarks.

2. Preliminaries

Given a set of polynomials  1, . . . , k 2 R½s� not all zero

and k>1, their greatest common divisor (with highest

coefficient 1) is unique and it is denoted by

gcd , f 1, . . . , kg. If gcd , f 1, . . . , kg ¼ 1, then we

say ð 1, . . . , kÞ is coprime. The derivative of  is

denoted by  0. Let C denote the set of complex numbers

and let C�, C0 and Cþ denote the points in the open left

half, j!-axis and the open right half of the complex

plane, respectively. Then, the set H of Hurwitz stable

polynomials are H ¼ f ðsÞ 2 R½s�:  ðsÞ ¼ 0 ) s 2 C�g:
The signature �ð Þ of a polynomial  2 R½s� is the differ-

ence between the number of its C� roots and Cþ roots.

Given  2 R½s�, the even–odd components (a, b) of  (s)
are the unique polynomials a, b 2 R½u� such that

 ðsÞ ¼ aðs2Þ þ sbðs2Þ. It is possible to state a necessary

and sufficient condition for the Hurwitz stability of  
in terms of its even–odd components (a, b). This

result is known as the Hermite–Biehler theorem

stated in Proposition 1 below in a slightly modified

form. Let us define the signum function S:R !

f�1, 0, 1g by

Sr ¼

�1 if r < 0

0 if r ¼ 0

1 if r > 0:

8>><
>>:

Proposition 1 (Gantmacher 1959, §XV, 14): A non-zero

polynomial  2 R½s� is Hurwitz stable if and only if its

even–odd components (a, b) are such that b 6� 0 and at

the distinct real negative roots v1 > v2 > � � � > vk of b

Computation of all stabilizing controllers 15
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the following holds

deg ¼

Sbð0Þ½Sað0Þ � 2Saðv1Þ

7þ 2Saðv2Þ þ � � � þ ð�1Þk2SaðvkÞ�;deg odd

Sbð0Þ½Sað0Þ � 2Saðv1Þ þ 2Saðv2Þ þ � � �þ

ð�1Þkþ1
Sað�1Þ�;deg even:

8>>>>><
>>>>>:

ð3Þ

The following is a generalization of Proposition 1 to
not necessarily Hurwitz stable polynomials.

Lemma 1 (Özgüler and Koçan 1994): Let a non-zero
polynomial  2 R½s� have the even–odd components
(a, b). Suppose b 6� 0 and (a, b) is coprime. Then,
�ð Þ ¼ r if and only if at the real negative roots of odd
multiplicities v1 > v2 > � � � > vk of b the following holds

r ¼

Sbð0�Þ½Sað0Þ � 2Saðv1Þ

þ2Saðv2Þ þ � � � þ ð�1Þk2SaðvkÞ�; deg odd

Sbð0�Þ½Sað0Þ � 2Saðv1Þ

þ2Saðv2Þ þ � � � þ ð�1Þkþ1
Sað�1Þ�; deg even

8>>>>><
>>>>>:

ð4Þ

where bð0�Þ :¼ ð�1Þm0bðm0Þð0Þ, m0 is the multiplicity
of u¼ 0 as a root of b(u), and bðm0Þð0Þ denotes the value
at u¼ 0 of the m0th derivative of b(u).
The following result, which is used in Algorithm 3,

determines the number of real negative roots of a real
polynomial.

Lemma 2: A non-zero polynomial  2 R½u�, such that
 ð0Þ 6¼ 0, has r real negative roots without counting the
multiplicities if and only if the signature of the polynomial
 ðs2Þ þ s 0ðs2Þ is 2r. All roots of  negative, and distinct
if and only if  ðs2Þ þ s 0ðs2Þ 2 H.

Proof: We first assume that ð , 0Þ is coprime.
Suppose that  (u) has r real negative distinct roots
u1 > u2 > � � � > ur. Since  0ðuÞ is the derivative of
 (u), it follows that between any two consecutive real
negative roots ui and uiþ1 of  (u) there is an odd
number of real negative roots of  0ðuÞ:
vi1 > vi2 > � � � > vij, where j is an odd integer. Since

S ðvi1Þ ¼ S ðvi2Þ ¼ � � � ¼ S ðvijÞ,

it follows that

2S ðvi1Þ � 2S ðvi2Þ þ � � � þ ð�1Þj2S ðvijÞ ¼ 2S ðvi1Þ:

In the interval ð�1, urÞ,  
0ðuÞ must have an even

number or real roots otherwise  (u) have a real root

in this interval contradicting the fact that  (u) has r
real negative roots. Assume that  ð0Þ > 0. If  0ðuÞ has
an even number, k, of real roots v01, v02, . . . , v0k, between
0 and u1, then  

0ð0�Þ > 0 and

2S ðv01Þ � 2S ðv02Þ þ � � � þ ð�1Þk2S ðv0kÞ ¼ 0:

Finally, S ð0Þ ¼ 1, S ðv11Þ ¼ �1, S ðv21Þ ¼ 1, . . . ,
S ð�1Þ ¼ ð�1Þr. Using these facts in equation (4) of
Lemma 1, we get

S 0ð0�Þ½S ð0Þ � 2S ðv01Þ þ � � � � 2S ðv11Þ þ � � �

þ ð�1ÞrS ð�1Þ�

¼ S ð0Þ � 2S ðv11Þ þ 2S ðv21Þ

� 2S ðv31Þ þ � � � þ ð�1ÞrS ð�1Þ ¼ 2r:

If  0ðuÞ has an odd number of roots between 0 and u1,
then  0ð0�Þ < 0. In this case, we obtain again the
same result

S 0ð0�Þ½S ð0Þ � 2S ðv01Þ þ � � � þ 2S ðv11Þ � � � �

þ ð�1ÞrS ð�1Þ�

¼ �½S ð0Þ � 2S ðv01Þ þ 2S ðv11Þ

� 2S ðv21Þ þ � � � þ ð�1Þr þ 1S ð�1Þ� ¼ 2r:

Similar arguments apply in the case  ð0Þ < 0 to give
the same result; namely

S 0ð0�Þ½S ð0Þ � 2S ðv01Þ þ � � � þ 2S ðv11Þ � � � �

þ ð�1Þrþ1
S ð�1Þ� ¼ 2r:

Therefore, by Lemma 1, signature of  ðs2Þ þ s 0ðs2Þ
is 2r. Conversely, suppose that the signature
of  ðs2Þ þ s 0ðs2Þ is 2r. Using the second equation of
(4) in Lemma 1, it follows that  (u) changes sign exactly
r times for u<0. Hence,  (u) has r real negative roots.

Now, let us examine the case of non-coprime
pair ð , 0Þ. Since complex roots of  (u) and  0ðuÞ
do not affect the signature of  ðs2Þ þ s 0ðs2Þ, we
consider only the case of common real negative roots.
Assume that  (u) and  0ðuÞ have a common real
negative root u1, then  ðuÞ ¼ ðu� u1Þ 1ðuÞ and
 0ðuÞ ¼  1ðuÞ þ ðu� u1Þ 

0
1ðu1Þ. Since u1 is also a root

of  0ðuÞ, it follows that u1 is a root of  1(u). This
shows that whenever ð , 0Þ are not coprime,  (u)
has a root of multiplicity greater than 1. Let  (u) have
a real negative root u1 with multiplicity greater than 1.
Repeating the same analysis as above, using the fact
that u1 is also a root of  0ðuÞ, and that S ðu1Þ ¼ 0, it fol-
lows that  (u) has r real negative roots without counting

16 K. Saadaoui and A. B. Özgüler
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the multiplicities if and only if the signature of
 ðs2Þ þ s 0ðs2Þ is 2r.
If  (u) has all its roots real, negative, and distinct,

then r ¼ deg . By the part we have just proved, signa-
ture of  ðs2Þ þ s 0ðs2Þ is 2r which is the degree
of  ðs2Þ þ s 0ðs2Þ. Hence,  ðs2Þ þ s 0ðs2Þ 2 H. The
converse follows by Hermite–Biehler theorem. œ

3. Proportional controllers

We now describe a slight extension of the constant
stabilizing gain algorithm of Özgüler and koçan
(1994). Given a plant gðsÞ ¼ pðsÞ=qðsÞ, where p, q 2 R½s�
are coprime with m ¼ deg p less than or equal to
n ¼ deg q, the set Arðp, qÞ: ¼ f� 2 R: �g½�ðs,�Þ� ¼
�½qðsÞ þ �pðsÞ� ¼ rg is the set of all real � such that
�ðs,�Þ has signature equal to r.
Let (h, g) and (f, e) be the even–odd components

of q and p, respectively, so that qðsÞ ¼ hðs2Þ þ sgðs2Þ,
pðsÞ ¼ f ðs2Þ þ seðs2Þ. Let d: ¼ gcd f f , eg so that f ¼ d �ff ,
e ¼ d �ee, for coprime polynomials �ff , �ee 2 R½u�. Then, the
polynomial �ppðsÞ: ¼ �ff ðs2Þ þ s �eeðs2Þ ¼ pðsÞ=dðs2Þ is free of
C0 roots except possibly a simple root at s¼ 0. Let
(H,G) be the even–odd components of qðsÞ �ppð�sÞ. Also
let Fðs2Þ: ¼ pðsÞ �ppð�sÞ. By a simple computation,
it follows that

HðuÞ ¼ hðuÞ �ff ðuÞ � ugðuÞ �eeðuÞ

GðuÞ ¼ gðuÞ �ff ðuÞ � hðuÞ �eeðuÞ

FðuÞ ¼ f ðuÞ �ff ðuÞ � ueðuÞ �eeðuÞ:

9>>=
>>; ð5Þ

By an appropriate choice of d(u), it can be ensured that
Gð0�Þ > 0, where Gð0�Þ: ¼ ð�1Þm0Gðm0Þð0Þ with m0

being the multiplicity of u¼ 0 as a root of G(u).
If G 6� 0 and if they exist, let the real negative zeros
with odd multiplicities of G(u) be fv1, . . . , vkg with the
ordering v1 > v2 > � � � > vk, with v0: ¼ 0 and
vkþ1: ¼ �1 for notational convenience, and let the
real negative zeros with even multiplicities of G(u) be
fu1, . . . , ulg.
The following algorithm determines whether Arðp, qÞ

is empty or not and outputs its elements when it is
not empty:

Algorithm 1:

Step 1. Consider all the sequences of signums

I ¼
fi0, i1, . . . , ikg for odd r�m

fi0, i1, . . . , ikþ1g for even r�m

(

where i0 2 f�1, 0, 1g and ij 2 f�1, 1g for
j ¼ 1, . . . , kþ 1.

Step 2. Choose all sequences that satisfy

r� �ðpÞ ¼

i0 � 2i1 þ � � � þ 2ð�1Þkik

for odd r�m

i0 � 2i1 þ � � � þ 2ð�1Þkik

þð�1Þkþ1ikþ1 for even r�m:

8>>>>>><
>>>>>>:

Step 3. For each sequence of signums I ¼ fijg that

satisfy Step 2, let

�max ¼ max �
H

F
ðvjÞ

� �
for all vj

for which ijSFðvjÞ ¼ 1

and

�min ¼ min �
H

F
ðvjÞ

� �
for all vj

for which ijSFðvjÞ ¼ �1:

The set Arðp, qÞ is non-empty if and only if for at

least one signum sequence I satisfying Step 2,

�max < �min holds.

Step 4. Arðp, qÞ is equal to the union of intervals

ð�max,�minÞ for each sequence of signums I
that satisfy Step 3. The set of points

ÂA :¼ f�ðH=FÞðujÞ, j ¼ 1, . . . , l: FðujÞ 6¼ 0g
must be excluded from Arðp, qÞ as they corre-

spond to values of � for which qðsÞ þ �pðsÞ
has zeros on the jw-axis.

From a computational point of view, application of

Algorithm 1 is expensive. The main disadvantage

comes from checking condition 2. In order to find

the suitable signum sequences, we have to check condi-

tion 2 for 2kþ2 different candidate signum sequences in

case p(s) has no roots in C0 and n�m is even. In case

p(s) has no roots in C0 and n�m is odd, the number

of sequences is 2kþ1. Therefore, the number of

sequences explodes exponentially as k increases. Since

some sequences that satisfy condition 2 fail to satisfy

condition 3, it is possible to improve Algorithm 1.

In order to reduce the number of arithmetic operations

needed in Algorithm 1, we have to first identify

the signum sequences for which condition 3 holds

then proceed to check condition 2. We now show

that two different signum sequences I1, I2 cannot

correspond to the same interval. Let us define the

Computation of all stabilizing controllers 17
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following sets:

Jþ
1 : ¼ j : ij 2 I1, ijSFðvjÞ ¼ 1

� �
J�

1 : ¼ j : ij 2 I1, ij SFðvjÞ ¼ �1
� �

Jþ
2 : ¼ j : ij 2 I2, ijSFðvjÞ ¼ 1

� �
J�

2 : ¼ j : ij 2 I2, ijSFðvjÞ ¼ �1
� �

:

Since I 1 6¼ I 2, it follows that J
þ
1 6¼ J þ

2 and J�
1 6¼ J �

2 .
Using condition 3 in Algorithm 1

max
j2J�

1

H

F
ðvjÞ 6¼ max

j2J �
2

H

F
ðvjÞ

and/or

min
j2J þ

1

H

F
ðvjÞ 6¼ min

j2Jþ

2

H

F
ðvjÞ:

In both cases I 1 and I2 correspond to two different
intervals as the endpoints of the intervals are different.

Algorithm 2:

Step 1. Calculate

�j ¼

�
H

F
ðvjÞ, j ¼ 0, . . . , k for odd r�m

�
H

F
ðvjÞ, j ¼ 0, . . . , kþ 1 for even r�m

8>><
>>:
and sort the distinct �j’s in ascending order

���0 < ���1 < � � � < ���kþ2 < ���kþ3

where ���0 ¼ �1 and ���kþ3 ¼ 1.

Step 2. Identify all the sequences of signums

I ¼
fi0, i1, . . . , ikg for odd r�m

fi0, i1, . . . , ikþ1g for even r�m

(

where i0 2 f�1, 0, 1g and ij 2 f�1, 1g for
j ¼ 1, . . . , kþ 1, that correspond to the intervals
ð ���j, ���jþ1Þ for j ¼ 0, . . . , kþ 2.

Step 3. For each signum sequence I j from Step 2, if

r� �ðpÞ ¼

i0 � 2i1 þ 2i2 � 2i3 þ � � � þ 2ð�1Þkik

for odd r�m

i0 � 2i1 þ 2i2 � 2i3 þ � � � þ ð�1Þkþ1ikþ1

for even r�m

8>>><
>>>:

holds, then ð ���j, ���jþ1Þ 2 Arðp, qÞ:

In Step 2 above it is easy to identify the signum
sequences that lead to different intervals. Since �j s are
ordered in ascending order and SFðvjÞ, j ¼ 1, . . . , kþ 1
are known, we can determine J� and Jþ for a parti-
cular interval ð ���i, ���iþ1Þ. This is equivalent to determining
whether ij¼ 1 or ij ¼ �1 for j ¼ 0, 1, . . . , kþ 1 and
therefore identifying I for that particular interval.
Algorithm 2 is similar to Neimark D-decomposition
described in the introduction with the advantage that
the application of some stability criterion at one interior
point of each interval is replaced by Step 3. Using
Neimark D-decomposition the problem can be solved
with Oðn3Þ arithmetic operations whereas Algorithm 2
requires only Oðn2Þ arithmetic operations.

The algorithm above is easily specialized to determine
all stabilizing proportional controllers cðsÞ ¼ � for the
plant g(s). This is achieved by replacing r in Step 3 of
the algorithm by n, the degree of �ðs,�Þ. In case of
plants with no unstable zeros and having
a relative degree less than or equal to 2, and only in
case of such plants (see Remark 3.2 in Saadaovi
(2003)), Anðp, qÞ may contain an infinite interval on
the real axis. The algorithm above identifies such cases
by outputing ðH=FÞðvkÞ ¼ 1 or ðH=FÞðvkþ1Þ ¼ 1,
depending on whether the relative degree is odd or even.

Remark 1: By Step 3 of Algorithm 2, a necessary
condition for the existence of an � 2 Arðp, qÞ is that
the odd part of ½qðsÞ þ �pðsÞ� �ppð�sÞ has at least

�rr ¼ max 0, b
jr� �ðpÞj � 1

2
c

� �

real negative roots with odd multiplicities. When solving
a constant stabilization problem, this lower bound is

�rr ¼ max 0, b
n� �ðpÞ � 1

2
c

� �
:

œ

Remark 2: The above algorithm can be modified (Datta
et al. 2000) to give a linear program for determining the
values of two parameters instead of only one. This is
possible whenever we can modify the characteristic
equation such that these parameters appear only in the
even part. œ

4. First-order controllers

A first-order controller

cðsÞ ¼
�2sþ �3
sþ �1

18 K. Saadaoui and A. B. Özgüler
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applied to a plant transfer function gðsÞ ¼ pðsÞ=qðsÞ gives
the closed loop characteristic polynomial

�0ðs,�1,�2,�3Þ ¼ ðsþ �1ÞqðsÞ þ ð�2sþ �3ÞpðsÞ

¼ q0ðsÞ þ �3p0ðsÞ

where

q0ðsÞ ¼ ðsþ �1ÞqðsÞ þ �2spðsÞ

p0ðsÞ ¼ pðsÞ:

)
ð6Þ

Multiplying �0ðs,�1,�2,�3Þ by �pp0ð�sÞ (recall that �pp0ðsÞ
denotes p0ðsÞ after division by the greatest common
factor of its even–odd parts), we obtain

 1ðs,�1,�2,�3Þ ¼ �0ðs,�1,�2,�3Þ �pp0ð�sÞ

¼ s2Gðs2Þ þ �1Hðs2Þ þ �3Fðs
2Þ

þ s½Hðs2Þ þ �1Gðs
2Þ þ �2Fðs

2Þ�: ð7Þ

Note that �1,�2 appear in the odd part and �1,�3 appear
in the even part. (As pointed out in Xu et al. (2001), it is
no longer possible to exploit the results given in Datta
et al. (2000) and proceed.)
The reasoning behind the algorithm which determines

the set of parameters �1,�2,�3 of a stabilizing first-order
controller can be explained as follows. Suppose �0(s) is
Hurwitz stable for some �1,�2,�3 2 R. By Remark 1,
it follows that the odd part HðuÞ þ �1GðuÞ þ �2FðuÞ of
 1(s) has at least r1 ¼ bðn� �ðp0Þ=2Þc real negative
roots with odd multiplicities. Suppose
HðuÞ þ �1GðuÞ þ �2FðuÞ has r1 real negative roots with
odd multiplicities. By Lemma 2, �½�1ðsÞ� ¼ 2r1, where

�1ðsÞ ¼ H1ðsÞ þ �1G1ðsÞ þ �2F1ðsÞ

¼ q1ðsÞ þ �2p1ðsÞ ð8Þ

and

H1ðsÞ ¼ Hðs2Þ þ sH 0ðs2Þ

G1ðsÞ ¼ Gðs2Þ þ sG0ðs2Þ

F1ðsÞ ¼ Fðs2Þ þ sF 0ðs2Þ

q1ðsÞ ¼ H1ðsÞ þ �1G1ðsÞ

p1ðsÞ ¼ F1ðsÞ:

In order to find the suitable ranges of �1 and �2, we
modify �1(s) as follows. Let B: ¼ gcdfF ,F 0g so that
F ¼ B �FF ,F 0 ¼ B ~FF

0
(the prime notation is still kept in F 0

althought strictly speaking, F 0 is not the derivative

of a polynomial) for coprime polynomials �FF , ~FF
0
2 R½u�.

Also let �pp1ðsÞ: ¼ �FFðs2Þ þ s ~FFðs2Þ. By a simple computa-
tion, it follows that

 2ðsÞ ¼ �1ðsÞ �pp1ð�sÞ ¼ H2eðs
2Þ þ �1G2eðs

2Þ þ �2F2eðs
2Þ

þ s½H2oðs
2Þ þ �1G2oðs

2Þ�,

where

H2eðuÞ ¼ HðuÞ �FFðuÞ � uH 0ðuÞ ~FF 0ðuÞ

G2eðuÞ ¼ GðuÞ �FFðuÞ � uG0ðuÞ ~FF 0ðuÞ

F2eðuÞ ¼ FðuÞ �FFðuÞ � uF 0ðuÞ ~FF 0ðuÞ

H2oðuÞ ¼ H 0ðuÞ �FFðuÞ �HðuÞ ~FF 0ðuÞ

G2oðuÞ ¼ G0ðuÞ �FFðuÞ � GðuÞ ~FF 0ðuÞ:

9>>>>>>>>=
>>>>>>>>;

ð9Þ

Once more by Remark 1, since �½�1ðsÞp1ð�sÞ� ¼

2r1 � �½p1ðsÞ� the odd part of �1ðsÞ �pp1ð�sÞ should have
at least r2 ¼ bðj2r1 � �ðp1Þj � 1Þ=2c real negative roots

with odd multiplicities . Now the set of �1 2 R which
achieves r2 real negative roots with odd multiplicities

in H2oðuÞ þ �1G2oðuÞ can be determined by applying
Algorithm 2 to

q2ðsÞ ¼ H2ðsÞ ¼ H2oðs
2Þ þ sH 0

2oðs
2Þ

p2ðsÞ ¼ G2ðsÞ ¼ G2oðs
2Þ þ sG0

2oðs
2Þ:

The algorithm below traces the above steps backwards
by repetition of the steps (i)–(iii) below:

(i) Pick a value of �1 such that the number of real nega-

tive roots with odd multiplicities of H2oðuÞ þ �1G2ouÞ is
r2 or greater.

(ii) Determine using Algorithm 2 all �2 2 R such that
�½�1ðsÞ� ¼ 2r1. By Lemma 2 and Remark 3, this is

equivalent to determining values of �2 such that
HðuÞ þ �1GðuÞ þ �2FðuÞ has r1 real negative roots with

odd multiplicities.

(iii) For every �2 determined, find using Algorithm 2

again, all �3 such that �1(s) is Hurwitz stable.

Algorithm 3:

Step 1. Partition the real axis into intervals (or union
of intervals) such that the number of real
negative roots with odd multiplicities of
H2oðuÞ þ �1G2oðuÞ is constant in each interval.

Step 2. Fix r1 ¼ bðn� �ðp0ÞÞ=2c.
(a) Find admissible range of �1 from the

intervals found in the first step.
(i) Fix an �1 in the admissible range.

Computation of all stabilizing controllers 19
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(ii) Apply Algorithm 2 to q1ðsÞ and p1ðsÞ. (This

calculates admissible values of �2 such that

HðuÞ þ �1GðuÞ þ �2FðuÞ has r1 real negative
roots with odd multiplicities.)
A. Fix an �2 from the range determined in

2.(a.ii).
B. Apply Algorithm 2 to q0ðsÞ and p0ðsÞ.

(This calculates all admissible values of �3
a such that �0 is in H.)
C. Increment �2 and go to Step 2(a.ii.B).

(iii) Increment �1 and go to Step 2(a.ii).
(b) If r1 < degðHÞ, then increment r1 by one and

go to Step 2(a).

Algorithm 2 is repeatedly used on three auxiliary

plants:

g0ðsÞ ¼
p0ðsÞ

q0ðsÞ
¼

pðsÞ

ðsþ �1ÞqðsÞ þ �2spðsÞ

g1ðsÞ ¼
p1ðsÞ

q1ðsÞ
¼

F1ðsÞ

H1ðsÞ þ �1G1ðsÞ

g2ðsÞ ¼
p2ðsÞ

q2ðsÞ
¼

G2ðsÞ

H2ðsÞ

to give the admissible values of ð�1,�2,�3Þ.

Remark 3: In Step (ii) above, only values of �2 leading
to HðuÞ þ �1GðuÞ þ �2FðuÞ having r1 real negative roots

with odd multiplicities are calculated. If

HðuÞ þ �1GðuÞ þ �2FðuÞ has a real negative root u0 of

even multiplicity, then u0 is also a root of

H 0ðuÞ þ �1G
0ðuÞ þ �2F

0ðuÞ with odd multiplicity. This

corresponds to a conjugate pair of roots (with odd mul-

tiplicity) of �2(s) on the jw-axis. Values of �2 leading to

this situation are excluded from the solution set by

Algorithm 2. If HðuÞ þ �1GðuÞ þ �2FðuÞ has a real nega-

tive root u1 with odd multiplicity (not a simple root),

then �2(s) has a conjugate pair of roots (with even multi-

plicity) on the jw-axis. We can easily modify Step 3 in

Algorithm 2 such that values of �2 leading to the latter

situation are included in the solution set. œ

Example 1: Consider determining proper first-order

controllers to stabilize the plant gðsÞ ¼ pðsÞ=qðsÞ, where

qðsÞ ¼ s5 þ 3s4 þ 29s3 þ 15s2 � 3sþ 60,

pðsÞ ¼ s3 � 6s2 þ 2sþ 1:

The roots of q0ðsÞ are f�1:2576� j5:1476,
�1:5574, 0:5363� j1:0414g and those of p0ðsÞ are

f�0:2705, 0:6587, 5:6119g so that this is an unstable
and non-minimum phase plant. Using

HðuÞ ¼ �u4 � 49u3 � 142u2 � 339uþ 60

GðuÞ ¼ �9u3 � 194u2 � 43u� 123

FðuÞ ¼ �u3 þ 32u2 � 16uþ 1:

A necessary condition for the existence of a stabilizing
first-order controller is that HðuÞ þ �1GðuÞ þ �2FðuÞ
has at least r1 ¼ bðn� �ðp0ÞÞ=2c ¼ 3 real negative roots
with odd multiplicities. As gcdðF ,F 0Þ ¼ 1, we multiply
�1(s) by p1ð�sÞ. For r1¼ 3, �ð�1Þ � �ðp1Þ ¼ 6 and the
odd part of �1ðsÞp1ð�sÞ must have at least r2 ¼
bðj2r1 � �ðp2Þj � 1Þ=2c ¼ 2 real negative roots with odd
multiplicities. Using Algorithm 1, �1 2 ð�2:2917,
0:3088Þ. Similarly, for r1 ¼ 4, we find r2 ¼ 3 and
�1 2 ð0:3088, 3:6000Þ. Now let us follow the steps of
Algorithm 3 for a fixed value of �1 from the above
intervals. For �1 ¼ 1, we have

q1ðsÞ ¼ �s8 � 4s7 � 58s6 � 174s5 � 336s4 � 672s3

� 382s2 � 382s� 63

p1ðsÞ ¼ �s6 � 3s5 þ 32s4 þ 64s3 � 16s2 � 16sþ 1:

Using Step 2(a.ii) in Algorithm 3, the range of admissi-
ble values of �2 for which HðuÞ þ �1GðuÞ þ �2FðuÞ has
four negative distinct roots is �2 2 ð�3:1602, 1:3297Þ.
With �2 ¼ 1, we obtain

q0ðsÞ ¼ s6 þ 4s5 þ 33s4 þ 38s3 þ 14s2 þ 58sþ 60

p0ðsÞ ¼ s4 � 6s3 þ 2sþ 1:

Step 2(a.ii.B) in Algorithm 3 gives the solution
�3 2 ð�17:0988, � 11:5621Þ for �1 ¼ �2 ¼ 1.Application
of Algorithm 3, with a 0.05 increment of �2 in
Step 2(a.ii.C) and a 0.1 increment of �1 in Step 2(a.iii),
results in the set of stabilizing (�1,�2,�3) values shown
in figure 1.

5. Uncertain systems

The method described in the previous sections can
be applied to plants with interval type uncertainty.
Let g(s) be the transfer function of an uncertain system

gðsÞ ¼
pðsÞ

qðsÞ
¼

Pm
i¼0 xis

iPn
j¼0 yjs

j
ð10Þ

where n > m, xm 6¼ 0, yn 6¼ 0 and xi 2 ½xi�, xiþ�, i ¼
1, . . . ,m and yi 2 ½yi�, yiþ� j ¼ 1, . . . , n. Let pk(s) and
ql (s), k, l ¼ 1, 2, 3, 4 be the four Kharitonov polynomials
corresponding to p(s) and q(s), respectively.

20 K. Saadaoui and A. B. Özgüler
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Let pkðsÞ, k ¼ 1, 2, 3, 4 be the four Kharitonov segments
of p(s), i.e.

p�1ðsÞ ¼ ð1� �Þp1ðsÞ þ �p2ðsÞ

p�2ðsÞ ¼ ð1� �Þp1ðsÞ þ �p3ðsÞ

p�3ðsÞ ¼ ð1� �Þp2ðsÞ þ �p4ðsÞ

p�4ðsÞ ¼ ð1� �Þp3ðsÞ þ �p4ðsÞ

q�1ðsÞ ¼ ð1� �Þq1ðsÞ þ �p2ðsÞ

q�2ðsÞ ¼ ð1� �Þq1ðsÞ þ �p3ðsÞ

q�3ðsÞ ¼ ð1� �Þq2ðsÞ þ �p4ðsÞ

q�4ðsÞ ¼ ð1� �Þq3ðsÞ þ �p4ðsÞ

where � 2 ½0, 1�. The four Kharitonov segments qlðsÞ,
l ¼ 1, 2, 3, 4 of q(s) can be defined similarly. Let gsegðsÞ
denote the family of 32 segment plants

gsegðsÞ ¼ gklðs, �Þjgklðs, �Þ ¼
p�kðsÞ

qlðsÞ

�

or gklðs, �Þ ¼
pkðsÞ

q�l ðsÞ
, k, l ¼ 1, 2, 3, 4, and � 2 ½0, 1�

�
:

It is well known (Barmish 1994) that the family g(s) is
stabilized by a particular controller, if and only if the
32 segment plants gseg are stabilized by the same control-
ler. Let ~ggsegðsÞ denote the family of 16 segment plants

~ggsegðsÞ ¼ gklðs, �Þjgklðs, �Þ ¼
p�kðsÞ

qlðsÞ
,

�

k, l ¼ 1, 2, 3, 4, and � 2 ½0, 1�
o
:

It is shown in Ho et al. (1998) (Munro and Söylemez
2000) that ‘the entire family g(s) is stabilized by a
particular PID controller, if and only if each segment
plant gklðsÞ 2 ~ggsegðsÞ is stabilized by that same PID
controller’. In reaching this result the structure of the
PID controller was used to reduce the 32 segment
plants to only 16. Since we are considering first-order
controllers, the numerator and denominator of the
controller are convex directions (Barmish 1994). It is
shown in Barmish (1994) that stabilizing an interval
plant g(s) by a first-order controller is equivalent to
stabilizing 16 vertex plants; namely,

gvðsÞ ¼ gklðsÞ j gklðsÞ ¼
pkðsÞ

qlðsÞ
, k, l ¼ 1, 2, 3, 4

� �
:

0.5

1

1.5

2

2.5

3

-10
-5

0
5

10
-30

-25

-20

-15

-10

5

α1

α2

α3

Figure 1. Stabilizing set of ð�1,�2,�3Þ values for example 1.
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The stabilizing controller, if any, can be determined

by first calculating �1 which is the intersection of

�1s found for the 16 plants mentioned above. We

can then apply the algorithm of the previous

section for the 16 vertex plants to find �2 and �3.
The following example is from Saadaoui and Özguler

(2003).

Example 2: Consider a proper first-order controller

to stabilize the interval plant gðsÞ ¼ pðsÞ=qðsÞ where

qðsÞ ¼ s5 þ y4s
4 þ y3s

3 þ y2s
2 þ y1sþ y0

pðsÞ ¼ s3 þ x2s
2 þ x1sþ x0

and

x0 2 ½�1, � 2� x1 2 ½2, 2�, x2 2 ½�6, � 5�

y0 2 ½60, 65�, y1 2 ½�5, � 3�, y2 2 ½14, 15�

y3 2 ½29, 29�, y4 2 ½3, 4�:

We get the following Kharitonov polynomials

q1ðsÞ ¼ s5 þ 3s4 þ 29s3 þ 15s� 5sþ 60

q2ðsÞ ¼ s5 þ 3s4 þ 29s3 þ 15s� 3sþ 60

q3ðsÞ ¼ s5 þ 4s4 þ 29s3 þ 14s� 3sþ 65

q4ðsÞ ¼ s5 þ 4s4 þ 29s3 þ 14s� 5sþ 65

p1ðsÞ ¼ p3ðsÞ ¼ s3 � 6s2 þ 2s� 1

p2ðsÞ ¼ p4ðsÞ ¼ s3 � 5s2 þ 2s� 2

a suitable range of �1 was determined to be
�1 2 ð�1:54, 0:97Þ. This is the intersection of suitable
ranges of �1 for the 16 vertex plants. Using Algorithm
2 for the 16 vertex plants, the set of stabilizing
ð�1,�2,�3Þ values are shown in figure 2. œ

6. Second-order controllers

In this section, we will show that Algorithm 3 can
be extended to compute all stabilizing parameters of
a higher-order controller. We will give a detailed

0.2

0

0.2

0.4

0.6

-9
-8

-7
-6

-5
-4

-3
-26

-24

-22

-20

-18

-16

-14

-12

α1

α2

α3

Figure 2. Stabilizing set of ð�1, �2,�3Þ values.
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derivation of the second-order controller case and show

how to find the jth parameter in a lth order controller.

Now, we describe an algorithm that determines the set

of all stabilizing second-order controllers for a given

plant. A second-order controller

cðsÞ ¼
�3s

2 þ �4sþ �5
s2 þ �1sþ �2

applied to g(s) gives the closed loop characteristic

polynomial

�0ðs,�1,�2,�3,�4,�5Þ ¼ ðs2 þ �1sþ �2ÞqðsÞ

þ ð�3s
2 þ �4sþ �5ÞpðsÞ

¼ q0ðsÞ þ ð�3s
2 þ �5Þp0ðsÞ ð11Þ

where

q0ðsÞ ¼ ðs2 þ �1sþ �2ÞqðsÞ þ �4spðsÞ

p0ðsÞ ¼ pðsÞ:

)
ð12Þ

Multiplying �0ðs,�1,�2,�3,�4,�5Þ by �pp0ð�sÞ we obtain

 1ðs,�1,�2,�3,�4,�5Þ ¼ �0ðs,�1,�2,�3,�4,�5Þ �pp0ð�sÞ

¼ s2Hðs2Þ þ �1s
2Gðs2Þ þ �2Hðs2Þ

þ �3s
2Fðs2Þ þ �5Fðs

2Þ

þ s½s2Gðs2Þ þ �1Hðs2Þ

þ �2Gðs
2Þ þ �4Fðs

2Þ�: ð13Þ

The reasoning behind the algorithm which determines

the set of parameters �1,�2,�3, �4, and �5 of a

stabilizing second-order controller can be explained as

follows. Suppose �0(s) is Hurwitz stable for some

�1,�2,�3,�4,�5 2 R. By Remark 1, it follows that the

odd part uGðuÞ þ �1HðuÞ þ �2GðuÞ þ �4FðuÞ of  1(s)

has at least r1 ¼ bðnþ 1� �ðp0ÞÞ=2c real negative roots

with odd multiplicities. Suppose uGðuÞ þ �1HðuÞþ

�2GðuÞ þ �3FðuÞ has r1 real negative roots with odd

multiplicities. By Lemma 2, �½�1ðsÞ� ¼ 2r1, where

�1ðsÞ ¼ Gu
1ðsÞ þ �1H1ðsÞ þ �2G1ðsÞ þ �4F1ðsÞ

¼ q1ðsÞ þ �4p1ðsÞ

and

H1ðsÞ ¼ Hðs2Þ þ sH 0ðs2Þ

G1ðsÞ ¼ Gðs2Þ þ sG0ðs2Þ

F1ðsÞ ¼ Fðs2Þ þ sF 0ðs2Þ

Gu
1ðsÞ ¼ s2Gðs2Þ þ s½Gðs2Þ þ s2Gðs2Þ�

q1ðsÞ ¼ Gu
1ðsÞ þ �1H1ðsÞ þ �2G1ðsÞ

p1ðsÞ ¼ F1ðsÞ:

9>>>>>>>=
>>>>>>>;

ð14Þ

In order to find the suitable ranges of �1, �2 and �4, we
modify �1(s) as follows. Let B :¼ gcdfF ,F 0g so that
F ¼ B �FF ,F 0 ¼ B ~FF

0
for coprime polynomials

�FF , ~FF
0
2 R½u�. Let �pp1ðsÞ :¼ �FFðs2Þ þ s ~FF

0
ðs2Þ. By a simple

computation, it follows that

 2ðs,�1,�2,�4Þ ¼ �1ðsÞ �pp1ð�sÞ

¼ Gu
2eðs

2Þ þ �1H2eðs
2Þ þ �2G2eðs

2Þ

þ �4F2eðs
2Þ

þ s½Gu
2oðs

2Þ þ �1H2oðs
2Þ þ �2G2oðs

2Þ�

where

Gu
2eðuÞ ¼ uGðuÞ �FFðuÞ � u½GðuÞ þ uG0ðuÞ� ~FF 0ðuÞ

Gu
2oðuÞ ¼ GðuÞ þ uG0ðuÞ½ � �FFðuÞ � uGðuÞ ~FF 0ðuÞ

H2eðuÞ ¼ HðuÞ �FFðuÞ � uH 0ðuÞ ~FF 0ðuÞ

H2oðuÞ ¼ H 0ðuÞ �FFðuÞ �HðuÞ ~FF 0ðuÞ

G2eðuÞ ¼ GðuÞ �FFðuÞ � uG0ðuÞ ~FF 0ðuÞ

G2oðuÞ ¼ G0ðuÞ �FFðuÞ � GðuÞ ~FF 0ðuÞ

F2eðuÞ ¼ FðuÞ �FFðuÞ � uF 0ðuÞ ~FF 0ðuÞ:

9>>>>>>>>>>=
>>>>>>>>>>;

ð15Þ

Again by Remark 1, it follows that the odd part
Gu

2oðs
2Þ þ �1H2oðs

2Þ þ �2G2oðs
2Þ has at least r2 ¼

bðj2r1 � �ðp1Þj � 1Þ=2c real negative roots with odd
multiplicities. Repeating the same procedure once
more, suppose that Gu

2oðs
2Þ þ �1H2oðs

2Þ þ �2G2oðs
2Þ has

r2 real negative roots with odd multiplicities. By
Lemma 2, �½�2ðsÞ� ¼ 2r2, where

�2ðsÞ ¼ Gu
2ðsÞ þ �1H2ðsÞ þ �2G2ðsÞ

¼ q2ðsÞ þ �2p2ðsÞ

and

Gu
2ðsÞ ¼ Gu

2oðs
2Þ þ sGu

2oðs
2Þ

H2ðsÞ ¼ H2oðs
2Þ þ sH 0

2oðs
2Þ

G2ðsÞ ¼ G2oðs
2Þ þ sG0

2oðs
2Þ

q2ðsÞ ¼ Gu
2ðsÞ þ �1H2ðsÞ

p2ðsÞ ¼ G2ðsÞ:

9>>>>>>=
>>>>>>;

ð16Þ
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The same steps above are repeated for �2(s). Let

C :¼ gcdfG2o,G
0
2og so that G2o ¼ C �GG0

2o,G
0
2o ¼ C ~GG0

2o for

coprime polynomials �GG2o, ~GG0
2o 2 R½u�. Let

�pp2ðsÞ :¼
�GG2oðs

2Þ þ s ~GG0
2oðs

2Þ. Multiplying �2ðsÞ by p2ð�sÞ,

we get

 3ðs,�1,�2Þ ¼ �2ðsÞ �pp2ð�sÞ

¼ Gu
3eðs

2Þ þ �1H3eðs
2Þ þ �2G3eðs

2Þ

þ s½Gu
3oðs

2Þ þ �1H3oðs
2Þ�

where

Gu
3eðuÞ ¼ Gu

2oðuÞ
�GG2oðuÞ � uGu

2oðuÞ
0
2oðuÞ

Gu
3oðuÞ ¼ Gu0

2oðuÞ
�GG2oðuÞ � Gu

2oðuÞ
~GG0
2oðuÞ

H3eðuÞ ¼ H2oðuÞ �GG2oðuÞ � uH 0
2oðuÞ

~GG0
2oðuÞ

H3oðuÞ ¼ H 0
2oðuÞ

�GG2oðuÞ �H2oðuÞ ~GG
0
2oðuÞ

G3eðuÞ ¼ G2oðuÞ �GG2oðuÞ � uG0
2oðuÞ

~GG0
2oðuÞ:

9>>>>>>>>>=
>>>>>>>>>;

ð17Þ

Once more by Remark 1, the odd part of  3(s) has

at least r3 ¼ bðj2r2 � �ðp2Þj � 1Þ=2c real negative roots

with odd multiplicities . Now the set of �1 2 R which

achieves r3 real negative roots with odd multiplicities

in Gu
3oðuÞ þ �1H3oðuÞ can be determined by applying

Algorithm 2 to

q3ðsÞ ¼ Gu
3ðsÞ ¼ Gu

3oðs
2Þ þ sGu

3oðs
2Þ

p3ðsÞ ¼ H3ðsÞ ¼ H3oðs
2Þ þ sH

0

3oðs
2Þ:

The algorithm below traces the above steps back-

wards by repetition of the steps (i)–(iv) below:

(i) Pick a value of �1 such that the number of real

negative roots with odd multiplicities of

Gu
3oðuÞ þ �1H3oðuÞ is r3 or greater.

(ii) Determine using Algorithm 2 all �2 2 R such that

�½�2ðsÞ� ¼ 2r2. By Lemma 2 and Remark 3, this is

equivalent to determining values of �2 such that

Gu
2oðuÞ þ �1H2oðuÞ þ �2G2oðuÞ has r2 real negative

roots with odd multiplicities.

(iii) For every �2 found, determine using Algorithm 2 all

�4 2 R such that �½�1ðsÞ� ¼ 2r1. By Lemma 2 and

Remark 3, this is equivalent to determining values

of �4 such that uGðuÞ þ �1HðuÞþ �2GðuÞ þ �4FðuÞ
has r1 real negative roots with odd multiplicities.

(iv) For every �4 determined, find using extension of

Algorithm 2, all �3,�5 such that �0(s) is Hurwitz

stable.

The following algorithm determines all �1,�2,
�3,�4, and �5 such that �ðs,�1,�2,�3,�4,�5Þ 2 H.

Algorithm 4:

. Partition the real axis into intervals (or union of
intervals) such that the number of real negative
roots with odd multiplicities of Gu

3oðuÞ þ �1H3oðuÞ is
constant in each interval.

. Fix r1 ¼ bðnþ 1� �ðp0ÞÞ=2c.
(1) Fix r2 ¼ b

2r1��ðp1Þ
2

c.
(2) Find admissible range of �1 from the intervals

found in the first step.
(a) Fix an �1 in the admissible range.
(b) Apply Algorithm 2 to q2ðsÞ and p2ðsÞ given

by (16). (This calculates admissible values
of �2 such that Gu

2oðuÞ þ �1H2oðuÞþ �2G2oðuÞ
has r2 real negative roots with odd multipli-
cities.)
(i) Fix an �2 from the range determined

in (2.b).
(ii) Apply Algorithm 2 to q1ðsÞ and p1ðsÞ

given by equation (14). (This calculates
all admissible values of �4 such that
uGðuÞ þ �1HðuÞ þ �2GðuÞ þ �4FðuÞ has r1
real negative roots with odd multiplici-
ties.)
(A) Fix an �4 from the range determined

in (2.b.ii).
(B) Apply modified Algorithm 2 to q0ðsÞ

and p0ðsÞ given by equation (12). (This
calculates all admissible values of �3
and �5 such that �0 of equation (1)
is in H.)

(C) Increment �4 and go to Step
2(b.ii.A).

(iii) Increment �2 and go to Step 2(b.i).
(c) Increment �1 and go to Step 2(a).

(3) If r2 < degðGu
2oÞ, then increment r2 by one and go

to Step 2.
. If r1 < degðuGÞ then increment r1 by one and go to

Step 1.

Algorithm 2 is repeatedly used on four auxiliary
plants

g0ðsÞ ¼
p0ðsÞ

q0ðsÞ
¼

pðsÞ

ðs2 þ �1sþ �2ÞqðsÞ þ �4spðsÞ

g1ðsÞ ¼
p1ðsÞ

q1ðsÞ
¼

F1ðsÞ

Gu
1ðsÞ þ �1H1ðsÞ þ �2G1ðsÞ

g2ðsÞ ¼
p2ðsÞ

q2ðsÞ
¼

G2ðsÞ

Gu
2ðsÞ þ �1H2ðsÞ

g3ðsÞ ¼
p3ðsÞ

q3ðsÞ
¼

H3ðsÞ

Gu
3ðsÞ

to give the admissible values of ð�1,�2,�3,�4,�5Þ.
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Remark 4: The method can also be applied to
discrete-time plants using a bilinear transformation
of the complex plane. Let the controller transfer
function be

cðzÞ ¼
�3z

2 þ �4zþ �5
�1z2 þ �2zþ 1

:

By the bilinear transformation z ¼ ðwþ 1Þ=ðw� 1Þ,
we get

cðwÞ ¼
ð�3 þ �4 þ �5Þw

2 þ ð2�2 � 2�5Þwþ �3 � �4 þ �5
ð�1 þ �2 þ 1Þw2 þ ð2�1 � 2Þwþ �1 � �2 þ 1

:

For a c(w) in this form, �1, �2, �3, and �5 appear both in
the even and odd parts of  ðw,�1,�2,�3,�4,�5Þ
¼ �ðw,�1,�2,�3,�4,�5Þ �ppð�wÞ. Let ���3 ¼ �3 þ �4 þ �5,
���4 ¼ �3 � �5 and ���5 ¼ �3 � �4 þ �5. Then, by a simple
computation it follows that

 ðwÞ ¼ w2Hðw2Þ þHðw2Þ � 2w2Gðw2Þ þ �1½w
2Hðw2Þ

þHðw2Þ þ 2w2Gðw2Þ�

þ �2½w
2Hðw2Þ �Hðw2Þ� þ ���3w

2Fðw2Þ þ ���5Fðw
2Þ

þ w½w2Gðw2Þ � 2Hðw2Þ

þ Gðw2Þ þ �1ðw
2Gðw2Þ þ 2Hðw2Þ þ Gðw2ÞÞ

þ �2ðw
2Gðw2Þ � Gðw2Þ þ ���4Fðw

2Þ�:

Stabilizing controller parameters �1,�2, ���3, ���4 and ���5
can be calculated using Algorithm 4. Since

���3

���4

���5

2
64

3
75 ¼

1 1 1

1 0 �1

1 �1 1

2
64

3
75

�3

�4

�5

2
64

3
75

and the linear transformation is invertible, we can
calculate the values of �3,�4 and �5 as

�3

�4

�5

2
64

3
75 ¼

1
4

1
2

1
4

1
2

0 � 1
2

1
4

� 1
2

1
4

2
64

3
75

���3

���4

���5

2
64

3
75:

The method hence applies to discrete-time plants
of arbitrary order.

Example 3: Consider determining a strictly proper
second-order controllers

cðsÞ ¼
�3sþ �4

s2 þ �1sþ �2

to stabilize the plant gðsÞ ¼ pðsÞ=qðsÞ, where

qðsÞ ¼ s5 þ 4s4 þ 29s3 þ 15s2 � 3sþ 60

pðsÞ ¼ s3 � 6s2 þ 2sþ 1:

The roots of q0ðsÞ are f�1:2576� j5:1476, � 1:5574,
0:5363� j1:0414g and those of p0ðsÞ are f�0:2705,
0:6587, 5:6119g so that this is an unstable and non-
minimum phase plant. Using equation (1), we have

HðuÞ ¼ �u4 � 49u3 � 142u2 � 339uþ 60

GðuÞ ¼ �9u3 � 194u2 � 43u� 123

FðuÞ ¼ �u3 þ 32u2 � 16uþ 1:

A necessary condition for the existence of a stabilizing
second-order controller is that uGðuÞ þ �1HðuÞ þ
�2GðuÞ þ �3FðuÞ has at least r1 ¼ bðnþ 1� �ðpoÞÞ=2c ¼
3 real negative roots with odd multiplicities. As
gcdðF ,F 0Þ ¼ 1, we multiply �1(s) by p1ð�sÞ ¼
Fðs2Þ � sF 0ðs2Þ. For r1¼ 3, �ð�1Þ � �ðp1Þ ¼ 6 and the
odd part of �1ðsÞ p1ð�sÞ must have at least
r2 ¼ bðj2r1 � �ðp1Þ � j 1Þ=2c ¼ 2 real negative roots
with odd multiplicities. In a similar way we can deter-
mine r3 ¼ bðj2r2 � �ðp2Þj� 1Þ=2c ¼ 1. For r1¼ 4 we
obtain r2¼ 3 and r3¼ 2. Now let us follow the steps of
Algorithm 4 for a fixed value of �1. For �1 ¼ 1, using
Step 2(b) in Algorithm 4, the range of admissible
values of �2 for which Gu

2oðuÞþ �1H2oðuÞþ �2G2oðuÞ has
at least two negative real roots is ð�14:3402, 1:5032Þ.
With �2 ¼ 0:5, we obtain

q1ðsÞ ¼ �10s8 � 40s7 � 247:5s6 � 742:5s5 � 282s4

� 564s3 � 483:5s2 � 483:58s� 1:5

p1ðsÞ ¼ �s6 � 3s5 þ 32s4 þ 64s3 � 16s2 � 16sþ 1:

Step 2(b.ii) in Algorithm 4 gives the following solution
�3 2 ð�15:8926, � 8:5154Þ for �1 ¼ 1 and �2 ¼ 0:5.
With �3 ¼ �10, we obtain

q0ðsÞ ¼ s7 þ 4s6 þ 32:5s5 þ 35:5s4 þ 86:5s3 þ 44:5s2

þ 48:5sþ 30

p0ðsÞ ¼ s3 � 6s2 þ 2sþ 1:

Step 2(b.ii.A) in Algorithm 4 gives the following solu-
tion �4 2 ð�4:0566, � 2:8786Þ for �1 ¼ 1, �2 ¼ 0:5 and
�3 ¼ �10 . The solution set for �1 ¼ 1 is shown in
figure 3.

Figures 4 and 5 shows the results for �1 ¼ 5 and
�1 ¼ 15, respectively.

Remark 5: In this section, we gave a complete deriva-
tion of an algorithm that determines all stabilizing
second-order controllers for a given plant. Algorithm
2 is repeatedly applied to a number of auxiliary plants
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Figure 3. Stabilizing set of ð�2,�3, �4Þ values for �1 ¼ 1.
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Figure 4. Stabilizing set of ð�2,�3, �4Þ values for �1 ¼ 5.
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(g0ðsÞ ¼ p0ðsÞ=q0ðsÞ, g1ðsÞ ¼ p1ðsÞ=q1ðsÞ, g2ðsÞ ¼ p2ðsÞ=q2ðsÞ,
and g3ðsÞ ¼ p3ðsÞ=q3ðsÞ). The above algorithm can be

extended to high-order controllers. As the number

of parameters of the controller increases, the number

of auxiliary plants increases accordingly. For an l th

order controller (we assume here that l is even and let

k¼ 3l=2)

cðsÞ ¼
1

sl þ �1sl�1 þ �2sl�2 þ � � � þ �l

�

�
s �lþ1s

l�2 þ �lþ2s
l�4 þ � � � þ �k

� �
þ �kþ1s

l þ �kþ2s
l�2 þ � � � þ �2lþ1

�

we can determine recursively �is and  is as

�0ðsÞ ¼ ðsl þ �1s
l�1 þ �2s

l�2 þ � � � þ �lÞqðsÞ

þ s½�l þ 1sl�2 þ �l þ 2sl�4 þ � � � þ �k�pðsÞ

þ ½�k þ 1sl þ �k þ 2sl�2 þ � � � þ �2lþ1�pðsÞ

¼ q0ðsÞ þ ½�k þ 1sl þ �k þ 2sl�2 þ � � � þ �2lþ1�

� p0ðsÞ

 1ðsÞ ¼ �0ðsÞ �pp0ðsÞ

¼  1eðs
2Þ þ s 1oðs

2Þ

�1ðsÞ ¼  1oðs
2Þ þ s 0

1oðs
2Þ

¼ q1ðsÞ þ �1p1ðsÞ

..

.

 jðsÞ ¼ �j�1ðsÞ �ppj�1ðsÞ

¼  jeðs
2Þ þ s joðs

2Þ

�jðsÞ ¼  joðs
2Þ þ s 0

joðs
2Þ

¼ qjðsÞ þ �jpjðsÞ

..

.

�kðsÞ ¼ qkðsÞ þ �kpkðsÞ:

Hence, at each step we can determine pi and qi for
i ¼ 0, 1, . . . , k. It is also possible to determine ris

recursively, i.e. r0 ¼ bðnþ l � �ðp0ÞÞ=2c and ri ¼
bðj2ri�1 � �ðpi�1Þj � 1Þ=2c for i ¼ 1, 2, 3, . . . , k. At the
jth step of the algorithm as qj(s), pj(s) and rj are all
known, we can determine �j using Algorithm 2.

7. Conclusions

We have presented a computational method to
determine the set of all stabilizing controllers with
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Figure 5. Stabilizing set of ð�2,�3,�4Þ values for �1 ¼ 15.
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an arbitrary but fixed order for a given plant. The
method consists essentially of a learned search in a
subset of the controller parameter space. This subset is
a substantially narrowed down version of the controller
parameter space and is obtained by using our results
on a semi-analytic method of determining all stabilizing
constant feedback gains, applied to a number of subsidi-
ary plants. Stabilization being the most basic require-
ment in most controller design problems, an inventory
of all stabilizing controllers of a given order is most con-
venient for searching, among such controllers, those that
satisfy further performance criteria, such as those
imposed on unit-step response, closed-loop system fre-
quency response, or H1-norm of certain transfer
fuctions. If one is able to translate a design requirement
into a contraint on the controller parameters, then our
method easily accommodates the incorporation of that
requirement into the design. Otherwise, a further
search in the admissible subset of the parameter space,
i.e. the subset that corresponds to the stabilizing control-
lers, needs be performed.
The application of our result, given in } 5, to stabiliza-

tion of uncertain systems is just one example of how
further requirements can be incorporated into the
choice of controllers. Other examples given in
Saadaoui (2003) illustrates applications to finding con-
trollers that give a desired degree of damping in unit-
step response or that lead to the smallest H1-norm for
disturbance-to-output transfer function, and the
like. The future direction in this research is then,
incorporation of yet other design specifications into
our algorithm that computes stabilizing fixed order
controllers.
The main motivation for considering fixed-order con-

trollers of course comes from the desire to reduce con-
troller complexity and to determine as low order
a controller as possible for a given high-order plant.
There are mainly three approaches to the problem of
reducing controller complexity: (i) Design a high-order
controller first and then approximate it with a low-
order one (see, e.g. Anderson and Liu 1989).
(ii) Reduce the order of the plant model so that a low-
order controller is easier to find (see, e.g. a survey in
Antoulas et al. 2001). (iii) Fix the order of the controller

and search parameters that achieve a specified perfor-

mance, as we have done in this paper. In view of the

fact that methods in the category of (i) or (ii) are still

at the stage of development, the tool we have presented

in this paper will be of great help in designing low-order

controllers.
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