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Use of Meixner Functions in Estimation of Volterra
Kernels of Nonlinear Systems With Delay

Musa H. Asyali*, Member, IEEE, and Mikko Juusola

Abstract—Volterra series representation of nonlinear systems is
a mathematical analysis tool that has been successfully applied in
many areas of biological sciences, especially in the area of mod-
eling of hemodynamic response. In this study, we explored the pos-
sibility of using discrete time Meixner basis functions (MBFs) in
estimating Volterra kernels of nonlinear systems. The problem of
estimation of Volterra kernels can be formulated as a multiple re-
gression problem and solved using least squares estimation. By ex-
panding system kernels with some suitable basis functions, it is
possible to reduce the number of parameters to be estimated and
obtain better kernel estimates. Thus far, Laguerre basis functions
have been widely used in this framework. However, research in
signal processing indicates that when the kernels have a slow ini-
tial onset or delay, Meixner functions, which can be made to have
a slow start, are more suitable in terms of providing a more ac-
curate approximation to the kernels. We, therefore, compared the
performance of Meixner functions, in kernel estimation, to that of
Laguerre functions in some test cases that we constructed and in a
real experimental case where we studied photoreceptor responses
of photoreceptor cells of adult fruitflies (Drosophila melanogaster).
Our results indicate that when there is a slow initial onset or delay,
MBF expansion provides better kernel estimates.

Index Terms—Laguerre functions, nonlinear system identifica-
tion Meixner functions, Volterra series.

I. INTRODUCTION

S IGNIFICANT applications of nonlinear system identifica-
tion techniques to biological sciences have occurred for

nearly a century, starting from the early work of Volterra [1]. In
Volterra’s approach, a nonlinear time-invariant dynamic system
is represented by a series of multidimensional functions known
as “Volterra Series” that represent the system’s transformation
action. Application areas of this mathematical tool in biomed-
ical engineering as a method of system identification include
modeling of respiratory response [2], [3], renal auto-regulation
[4], and neural plasticity [5], [6].

The typical problem of system identification involves estima-
tion of system functions or kernels from a pair of possibly noisy
input and output data. When the system under study is not linear,
which is generally the case for physiological systems, we can
use Volterra’s approach.
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Volterra has shown that a nonlinear time-invariant system’s
output or response to an input or stimulus can be ex-
pressed by the following multiconvolution relation [7], [8]

(1)

The series/sum given by (1) is known as the Volterra series.
Here, denotes the system’s th order Volterra
kernel, associated with the system’s th order nonlinearity. The

is a constant term that balances the means of the two sides.
For a linear system is 0 and the remainder of the right-
hand side of (1) reduces to the well-known convolution integral,
where is called the impulse response. As the complexity
or nonlinearity of the system increases, more kernels are needed
to accurately describe the functioning of the system. According
to this description of nonlinear systems, knowing its Volterra
kernels is sufficient to find the system’s response to any input.
However, in practice, due to the problems like short data length
and ill-conditioned matrices, it is only possible to estimate ac-
curately kernels up to a certain order.

The problem of estimation of Volterra kernels can be formu-
lated as a multiple regression problem and solved using least
squares estimation. To elucidate this approach, let us assume
that we are estimating the first two kernels of a nonlinear system.
Even if the system under study may have nonlinearities higher
than second-order, we can still find out how well we can ap-
proximate the system’s behavior with a second-order Volterra
model. Extension of this technique to the estimation of higher
order kernels is straightforward.

As we will be using numerical techniques for kernel estima-
tion, we need to translate (1) into discrete-time. We do this by
assuming a default sampling period of 1 s and input and output
data lengths of points. If we denote input and output se-
quences by and , where , after
discretization of (1) we obtain

(2)
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where, and denote the first- and second-order kernels
and and their lengths. Notice that, during the conversion
to discrete-time, we included kernels up to second-order and
assumed that the contribution of the higher order kernels are
embedded in the error sequence .

To keep the number of points in the kernels at a reasonable
level, one can select the kernel lengths and in such a
way that , as the length of the kernels cannot
be greater than the data length and the number of points in
the kernels increases exponentially with the order. For instance,
according to formulation in (2), we have and
distinct values or points in and , respectively.

The orthogonal series expansion method [9], [10] that we will
use assumes that the kernels can be expressed in terms of some
suitable orthogonal basis functions , being the order, as

(3.a)

(3.b)

Here, and are the coefficients or weights, and and
are the number of basis functions used in the expansion

of and , respectively. By substituting (3.a) and (3.b) in
(2) and expressing the convolution of with as

, we can express as

(4)
We should note here that the error terms in (4) and (2)

are slightly different. The error term in (4) includes not only
missing/ignored contribution of higher order kernels to the
output but also the error introduced due the approximate kernel
expansions (3.a) and (3.b) substituted in (2). By further defining
column vectors corresponding to the output, convolution, and
error sequences, respectively, as ,

, and , we
can put (4) into matrix form as

(5)

where,
is the ob-

servation matrix formed by using ’s and their ele-
ment-wise multiplicative combinations
and

is the
vector of coefficients. The column of 1’s in allows for the
estimation of the constant term . Since ,
we collected similar terms in the expansion of in (4) and
doubled the corresponding coefficient in vector , hence

.
The over-determined system of equations given in (5) can be

solved conveniently for using the least squares technique. In-
clusion of the constant term in the regression assures that the
error sequence will have zero mean. Once the coefficients are

estimated, they are substituted in the expansions (3.a) and (3.b)
and the kernels are constructed. Extension of this technique to
the estimation of higher order kernels is straightforward. The
important issue here is to utilize basis functions that are morpho-
logically similar to the kernels of the system under study. This
enables accurate representation of kernels with a relatively small
number of basis functions or weights, which implies a reduction
in the number parameters to be estimated. Estimating a smaller
number of parameters may improve the numerical condition of
the estimation problem and produce coefficient estimates with
less variance. The series expansion utilizing discrete orthog-
onal Laguerre Basis Functions (LBFs) has been used widely.
The kernels of physiological systems typically die away after
some certain time, known as the memory of the system, and
many studies have shown that LBF can efficiently represent such
kernels. However, when the kernels have sluggish initial onset,
using LBF to represent them may not be suitable. A physiolog-
ical example where the LBF expansion does not do as well as
other approaches can be seen in [11].

In this paper, we suggest an alternative set of basis functions
to represent kernels that have a slow initial onset. The research in
signal processing has shown that the “Meixner-like basis func-
tions having rational -transform” is a better option to repre-
sent such functions (see [12] and the references therein). We
will simply refer to these functions as Meixner basis functions
(MBF) for brevity. As we will see shortly, LBF are closely re-
lated to MBF, actually LBF is a special case of MBF. How-
ever, until now, MBF have not been used in physiological mod-
eling studies. In an attempt to highlight the cases where MBF
can be a better alternative to LBF, we applied kernel estimation
using MBF and LBF expansions, on some simulated and exper-
imental data. Then we analyzed and compared the performance
of these two families of basis functions in kernel estimation. In
Section II, we will first give a brief background on LBF and
MBF, and discuss the details of kernel estimation, e.g., the is-
sues of selecting the number of basis functions to be used in
the expansions and the underlying parameters of the basis func-
tions. We will then describe the data from hypothetical systems
and real experiments from which we estimated Volterra kernels
using LBF and MBF expansions. In Section III, we will present
graphs and tables summarizing our kernel estimation results. In
Section IV, we will discuss possible advantages of using MBF
over LBF.

II. METHODS

A. The Discrete-Time Laguerre and Meixner Basis Functions

Since the generation of discrete-time LBF and MBF using
their explicit formulas is not practical, we generated them using
the filter structure shown in Fig. 1 (adopted from [12] with per-
mission). A MATLAB™ (The MathWorks, Inc. Natick, MA)
code for generating MBF is available upon request. For ex-
plicit formulas for these orthogonal basis functions, we refer the
reader to [12]. LBF and MBF are denoted by and ,
respectively, where the subscript is the order of basis functions
and is the index. We note that the first block is a low-pass filter
and all the remaining cascaded blocks are all-pass filters, i.e.,
their magnitude response is unity. For both LBF and MBF, the
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Fig. 1. The cascaded filter structure to generate LBF and MBF (Adopted from
[12], courtesy of Prof. A. C. Den Brinker). L [k] and M [k], respectively,
denote LBF and MBF; q = 0; 1; 2;Q� 1 is the order and k = 0; 1; 2;N � 1
is the index of basis functions; A is the Q � Q orthogonal matrix that
transforms LBF to MBF.

pole parameter determines how soon the basis
functions will die away. As increases, the functions become
more oscillatory and prolonged. For each different value of
we have a different set of basis functions.

is an orthogonal transformation matrix that operates on
LBF to generate MBF (the Appendix gives details of the con-
struction of this matrix). The parameter is the
“order of the generalization” that determines how late the family
of MBF will start to fluctuate. For each different value of we
have a different set of MBF. When , becomes the
identity matrix and hence MBF become identical to LBF.

Selection of and are of crucial importance for an accurate
representation of kernels to be estimated. We demonstrate the
effect of and on the family of basis functions in Fig. 2. We
note that LBF and MBF become more oscillatory, i.e., die away
more slowly, as the pole parameter gets closer to 1 and that
when the order of generalization increases, the delay in the
onset of the functions increases.

B. Simulation Study

1) Test Systems and Simulated Data: In order to compare
the performance of LBF and MBF in kernel estimation, we con-
structed two hypothetical second-order nonlinear systems. The
use of hypothetical systems is essential, as we need to know the
exact kernels to compare kernel estimation approaches based on
different basis function expansions. The first- and second-order
kernels of the systems will be derived from the following tem-
plate function that is comprised of two exponentials with time
constants of 12.5 and 6.25 s

We discretized this function with a sampling period of 1 s and
over the interval to 169 s, giving a total of 170 samples.
Based on the morphology of kernels of physiological systems
that have been identified in earlier studies [2]–[6], we can as-
sume that kernels constructed using this function will be a good
representative for kernels of real physiological systems.

The first test system has the following first- and second-order
kernels, and , respectively

The second test system has the same kernels except for a delay
of 10 s along each dimension

Fig. 2. The discrete time MBF of order q = 0; 1; 2; 3 for different values
of (p; n) as a function of index k. (Solid line: p = 0:7, n = 0. Dotted line:
p = 0:9, n = 0. Dash-dot line: p = 0:9 and n = 1, Dashed line: p = 0:9 and
n = 4).

We assumed that these test systems were driven by a white
Gaussian noise (WGN) sequence of zero mean, unit variance
and length 500 points. The WGN is an ideal choice for input
in system identification studies, since it has an essentially flat
power spectrum over a broad range of frequencies that allows
stimulation a larger range of dynamic modes of the system under
study. We also studied the effect of output noise in kernel esti-
mation. To simulate measurement noise in the output, we added
WGN at different power levels to the output as follows:

where and refer to the output and its standard deviation
respectively, is the percentage of the noise power with re-
spect to the output power (i.e., ), is again a zero mean,
unit variance WGN and is the noisy output. By stimulating
the test systems with WGN inputs and collecting corresponding
outputs, we obtained input and noise-free output and
input and two noisy output data pairs from which
kernels of the system can be estimated using LBF and MBF
expansions.

2) Kernel Estimation: In order to carry out kernel estima-
tion, we need to decide about the number of basis functions to
be used in (3.a) and (3.b). and can be selected depending
on the desired level of accuracy for representation of the ker-
nels. However, if too many basis functions are used, we may be
attempting to explain even the inherent noise in the data. This
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will diminish our model’s ability to generalize and the numer-
ical condition of the estimation problem will deteriorate, i.e., we
may end up having coefficient estimates with large variances.
On the contrary, if too few basis functions are used, we may
have a poor model with a large estimation error. The number
of coefficients to be estimated exponentially increases with the
kernel order, therefore, selecting is a good practice.
Given , this study aims at comparing the LBF and MBF in
kernel estimation. Thus, after some trial and error, we decided
to use and , corre-
sponding to two different resolution levels. (With these choices
for the number of basis functions, we had, respectively,
and 34 model parameters or coefficients to estimate.)

However, the selection and (or equivalently ) is a
nontrivial problem in general. This issue has been dealt with ex-
tensively in system identification literature and various criteria
based on information theoretical results have been proposed.
The most commonly used of such criteria are Akaike’s infor-
mation criterion (AIC), final prediction error (FPE) [13]–[15],
and minimum descriptive length (MDL) [16], [17]. All of these
criteria involve two terms acting in opposite sense, the variance
of the estimation error that monotonically decreases as in-
creases and an expression that increases with .

Besides and , we also need to select the parameters
for the basis functions. For both LBF and MBF, we need to se-
lect a suitable value for that determines how soon the basis
functions will die away. For MBF, we also need to select a suit-
able value for that determines how late the functions will start
to fluctuate. In order to determine the optimal basis function
parameters, we let vary from 0 to 20 and for each value of

made an efficient search on to locate the value that mini-
mizes the Euclidean norm of the estimation error, . Using
Nelder–Mead simplex (direct search) method [18], [19] and a
starting/initial value of 0.5, we established the optimal with
a resolution of . Since the error is zero mean, there is the
following simple relationship between , the standard devia-
tion of the error, and

Therefore, using or as the cost function in the min-
imization produces the same optimal . There was one minor
complication that stemmed from the fact that when and/or
is large, the corresponding basis functions may not be fully or-
thogonal over the interval where the kernels are defined, e.g.,

s for our test systems. We overcame this difficulty by
modifying the cost function, i.e., , to incorporate a penalty
for such cases. Specifically, when the basis functions are not
orthogonal, is assigned to a large positive number, which
ensures that the search avoids such pairs.

To check the orthogonality of the basis functions, we placed
them in a matrix and multiplied the matrix with its transpose.
Ideally, the resultant matrix should be the identity matrix of size

. Therefore, if any of the elements of the resultant matrix de-
viated from the corresponding elements in the identity matrix
by more than , we identified the set of basis functions as
not orthogonal. This rather firm test on the orthogonality im-
proves the numerical condition of the estimation problem, i.e.,

Fig. 3. Estimated first- and second-order kernel of the second test system that
has delays, obtained after 100 trials using Q = 12, Q = 6. Upper two
panels:h (�) and h (�), first-order kernels estimated using MBF and LBF.
Lower two panels:h (�; �) and h (�; �), main diagonals of second-order
kernels estimated using MBF and LBF. The solid and dotted lines show the
actual kernels and the 95% confidence intervals (CI) for the estimated kernels,
respectively.

increases the chances that the matrix introduced in (5) is
full-rank, which in turn helps produce coefficient estimates with
less variance.

3) Simulation Results: In Fig. 3, we show a sample kernel
estimation result obtained for the second test system using

and , under 0% output noise condition. After 100 op-
timal kernel estimation trials, for MBF the median of the optimal

and parameters were 15 and 0.5864, respectively, whereas
for LBF the median of optimal parameter was 0.8191. (Each
optimal kernel estimation trial or run takes about 0.4 s on a PC
with 1.6 GHz Intel Pentium IV™ processor and 384 MB of
memory, running under Microsoft Windows 2000™.) The esti-
mated kernels are shown using bands of 95% confidence inter-
vals (CIs). The upper two panels show the actual and estimated
first-order kernels using MBF and LBF. The lower two panels
show the diagonal of actual and estimated second-order kernels
using MBF and LBF. We clearly see that the kernel estimation
using MBF provides better results when the kernels have delays.

We repeated kernel estimation trials 100 times for both sys-
tems at different resolutions and output noise conditions and
recorded and , where the subscripts and refer
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TABLE I
RESULTS OF THE SIMULATION STUDY

to the results obtained using MBF and LBF, respectively. In
Table I, we present the mean, the standard error of the mean
(SEM), and the P-value of paired t-test for these two variables
in each case.

We note that, when there is no delay in the kernels of the
system, e.g., the first test system, MBF do not provide a statisti-
cally significant performance improvement over LBF under dif-
ferent resolutions and output noise conditions. However, when
there is a delay in the kernels, e.g., the second test system, MBF
is superior to LBF.

C. Experimental Data

To compare the performance of MBF and LBF in kernel esti-
mation we analyzed photoreceptor responses of photoreceptor
cells of adult fruitflies (Drosophila melanogaster) to WGN
light. The dynamics of insect photo-transduction reactions,
which convert light input into voltage output with an absolute
delay, dead-time [20], has been studied at length [21]–[23].
Therefore, the photoreceptor responses provide the ideal
testing data for evaluating the predictions of the two methods.
Furthermore, the detailed knowledge about the workings of
this preparation, the locations and properties of the reaction
cascades and ion channels, gives one the confidence to relate
the kernels to actual biophysical processes.

Intracellular current clamp recordings were made from green
sensitive R1–6 photoreceptor cells at 25 using filamented
quartz microelectrodes of resistance 60–150 . Voltage re-
sponses were sampled together with light stimuli at 1 KHz and
filtered at 500 Hz using SEC-10L amplifiers (NPI Electronic
GMBH, Tamm, Germany) and custom written MATLAB™
software (BIOSYST©, M. Juusola, 1997-2002) with an in-
terface package for National Instrument boards (MATDAQ©,
H.P.C. Robinson, 1997-2001).

Photoreceptors were stimulated with light from a small field
(5 as seen by the fly) generated by a high-intensity green LED
with peak wavelength 525 nm (Marl Optosource, U.K.) that
was driven by a custom-built driver. The maximum light inten-
sity level, or background, BG0 during the Gaussian white-noise
stimulation was extrapolated to be at least 5 absorbed pho-
tons/second. This was done by placing neutral density filters,
each reducing the light by a log-unit, between the light source
and the eye until we could count identifiable voltage responses

to single photons [24]. The signaling characteristics of photore-
ceptors were studied at five backgrounds: BG0, BG-1, BG-2,
BG-3, and BG-4 that covered a light intensity range of four
log-units. In the experiment the photoreceptor was first studied
at the lowest background (BG-4, photons/s) before sys-
tematically proceeding to brighter BGs. Prior to recording, pho-
toreceptors were adapted for 30 s to a chosen light background.
However, to minimize the effects of noise and nonstationary
adaptation the first 10-s-long response to the repeated WGN
pattern was omitted and the data was averaged 10 times. For
analysis, the light intensity of WGN stimulus was converted to
contrast units , where is the change in light inten-
sity in respect to the mean . The characteristic contrast of the
WGN pattern was 0.32, defined by dividing the standard devia-
tion of the contrast values by the unit mean [24]. The details of
the set-up, recording criteria, light intensity calibration and data
acquisition are further explained in [24] and [25].

III. RESULTS

We analyzed the responses of Drosophila photoreceptors at
five light intensity levels (BGs), each one log-unit apart, to an
identical WGN light contrast stimulus. Table II presents the re-
sults of second-order Volterra models for the five responses,
from BG-4 ( photons/s) to BG0 ( photons/s),
using and . The kernel estimation was done
“optimally” as described in Section II-B2. The number of pa-
rameters to estimate/construct the first- and second-order ker-
nels was 16 and , respectively. The last two
columns in the table show the ratio of the number of significant
parameters. The ratios presented in the table indicate that the
given selection of and is very reasonable. Along with
the norm of estimation error, the percentage of the error norm
with respect to the output/response norm is also reported in the
table. This figure indicates the percentage of signal power that
was not explained by the model. We observe that from BG-3 to
BG0, both MBF and LBF models perform acceptably well in
terms of producing a low error power with respect to the output
power. However, at BG-4, as the rates of photons, both emitted
and absorbed, are low, the voltage responses are noisy. This to-
gether with the low number of averaged traces makes
both models perform poorly. Nevertheless, in each case MBF
produces a model with a lower estimation error norm.



234 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 2, FEBRUARY 2005

TABLE II
COMPARISON OF SECOND-ORDER VOLTERRA MODELS

OBTAINED USING MBF AND LBF

Fig. 4. Volterra kernels for the photoreceptor response collected at BG0. Upper
panel: first-order kernel, Lower panel: main diagonal of the second-order kernel,
obtained using MBF (solid) and LBF (dotted).

Figs. 4–8 show the estimated first-order (upper panels) and
second–order (lower panels) kernels for the five different BG
cases, using MBF (solid lines) and LBF (dotted lines). (Only
the main diagonals are shown for the second-order kernels).

We also obtained third-order Volterra models, in an attempt
to see how much performance improvement we can realize by
incorporating the third-order kernels. The results are shown in
Table III, where , , and . In this case, we
had 16, 36, and parameters corre-
sponding to the first-, second-, and third-order kernels, respec-
tively (for details of third-order Volterra kernel estimation see
[26]). We observe that the inclusion of the third-order kernels
introduce only a slight decrease in the norm of the esti-
mation error. Therefore, one may argue that using a third-order
model is not justified. We also note that almost 50% of the es-
timated coefficients for the third-order kernels are not signifi-
cantly different than 0. However, as in the case of second-order
Volterra models, for each different BG case, the use of MBF re-
sults in a lower estimation error norm.

Fig. 5. Volterra kernels for the photoreceptor response collected at BG-1.
Upper panel: first-order kernel, Lower panel: main diagonal of the second-order
kernel, obtained using MBF (solid) and LBF (dotted).

Fig. 6. Volterra kernels for the photoreceptor response collected at BG-2.
Upper panel: first-order kernel, Lower panel: main diagonal of the second-order
kernel, obtained using MBF (solid) and LBF (dotted).

The voltage responses of Drosophila photoreceptors are
superimposed on a light-induced mean potential, or dc-poten-
tial. When the mean light increases so does the dc-potential.
In our exemplary recordings this was 2, 8, 13, 17, 20 mV
for the five light backgrounds, respectively. Drosophila pho-
toreceptors express voltage-sensitive potassium channels
(Shaker-channels, ), whose time-dependent activation
and inactivation in adult flies can be correlated to the shape
of the second-order Volterra kernel at different dc-potentials
[21]. This early positive nonlinear component amplifies and
accelerates the photoreceptor voltage responses progressively
as the dc-potential increases in brighter light [21]. Here, the
second-order Volterra kernels obtained using MBFs behaved
more consistently with the proposed activation-inactivation
model of the shaker channel dynamics than the second-order
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TABLE III
COMPARISON OF THIRD-ORDER VOLTERRA MODELS OBTAINED USING MBF AND LBF

Fig. 7. Volterra kernels for the photoreceptor response collected at BG-3.
Upper panel: first-order kernel, Lower panel: main diagonal of the second-order
kernel, obtained using MBF (solid) and LBF (dotted).

Volterra kernels of Laguerre kind that showed unexpectedly
prominent bipolarity at high BGs (Figs. 4–6).

For dim illumination, the general strategy of photoreceptors
is to maximize photon capture and signal amplification [24],
[27]. The filtering is very much low-passed as the slow and small
amplitude kernels appear to enhance input redundancies (Figs. 7
and 8). On the other hand at high backgrounds, when bombarded
by millions of photons each second, Drosophila photoreceptors
must desensitize to prevent saturation. The kernels depict now
a system that by adapting rapidly to the incoming photon rate is
able to utilize the limited amplitude and frequency range of its
voltage responses for the transfer of fast and localized signals
(Figs. 4–6).

IV. DISCUSSION AND CONCLUSION

In this study, we explored the possibility of using MBFs, in-
stead of widely known/used LBFs, in estimation of Volterra ker-
nels of nonlinear and/or physiological systems using the least
squares technique. The results obtained in the simulation study
clearly indicate that using MBFs is advantageous over LBFs
when there is a delay in the kernels. Our experimental results
support the findings of the simulated data. This is judged by 1)
their controlled, virtually oscillation-free onset, 2) universally

Fig. 8. Volterra kernels for the photoreceptor response collected at BG-4.
Upper panel: first-order kernel, Lower panel: main diagonal of the second-order
kernel, obtained using MBF (solid) and LBF (dotted).

lower norm of estimation error at different noise conditions, and
3) more meaningful behavior as correlated to the known bio-
physical factors.

As delays are always possible/expected in physiological
systems, we suggest that it may be more advantageous to use
MBF expansion rather than LBF expansion in the least squares
Volterra kernel estimation. This result is not surprising as
MBFs are a superset of LBFs. However, what is surprising is
that MBFs have not been used in the context of physiological
system identification thus far.

In this study, we have also devised an optimization method
through which the “optimal” basis function parameters can
be selected. Given the number of basis functions, using basis
functions generated with those optimal parameters produces
a model with the minimum possible estimation error norm.
(A Windows™ application named MeixKerEst that estimates
Volterra kernels, up to third-order, from single input–output
data using MBFs can be downloaded from the following URL:
http://rc.kfshrc.edu.sa/bssc/staff/MusaAsyali/ Downloads.asp)

An underlying assumption of our modeling scheme was
that the noise is assumed to exist only on the output, in which
case the use of the ordinary least squares technique is justified.
However, in experimental situations, there will be measurement
noise on the input signal as well. It is known that the input
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noise will bias the coefficient estimates [28]. The methods that
address this issue include instrumental variables [29], modified
least-squares algorithms that optimize the coefficients and
estimate the noise covariance simultaneously [30], and other
more recent approaches such as stochastic error whitening [31].

Another limitation of our modeling approach stemmed from
the assumption that the higher order, i.e., higher dimensional,
kernels are separable in their variables. This simplification,
while serving to reduce the number of adaptable weights,
severely limits the modeling capabilities of the Volterra series,
not to mention the extreme truncations practiced (at order 2 or
3). The separability condition can be lifted by the use of multi-
dimensional Laguerre or MBFs to approximate the higher order
kernels. This way, the number of parameters can be still kept at
a reasonable level while the restrictive separability assumption
is removed from the model. However, in this case, we expect
that the optimization procedure will be more complex, as it will
involve generation of the higher dimensional basis functions
and their test of orthogonality at each step of the search.

APPENDIX

Following the treatment given in [12], (the or-
thogonal matrix that transforms Laguerre functions to Meixner
functions) can be expressed as

(A.1)

where is an upper band matrix given as follows:

...
...

...
. . .

...

and is a lower triangular matrix that we need to find out.
( is the number of basis functions to be generated.) Since
is an orthogonal matrix, we have

(A.2)

The matrix is a positive definite band matrix with
equal elements along its diagonals. (The width of the band is

.) From (A.2) we conclude that can be determined
by an inversion of the Cholesky factorization of .
Next, can be obtained by (A.1). Having calculated in
this way, a simple numerical check on the accuracy of the result
can be obtained by comparing with the identity
matrix .
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