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Abstract
Using the approach to quantum entanglement based on the quantum
fluctuations of observables, we show the existence of perfect entangled
states of a single ‘spin-1’ particle. We give physical examples related to
photons and condensed matter physics.
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In the usual treatment, quantum entanglement is associated
with the specific nonlocal correlations among the parts of a
quantum system that has no classical analogue (e.g., see [1]).
This assumes that the entangled system should consist of two
or more parts. At the same time, there is a strong interest in
single-particle (especially single-photon) entanglement [2–8].
In particular, the possibility to use single-photon entanglement
in quantum cryptography has been discussed recently [7].

Single-photon entanglement is usually considered in terms
of two-qubit entanglement. One of the qubits is an intrinsic
property of the photon like polarization, while the second qubit
corresponds to the spatial degrees of freedom, defined by the
two spatial modes of a single photon. These modes can be
produced either by a beam splitter [2, 3, 8] or through the use
of two identical cavities, containing a single excitation [6].

Undoubtedly, it is of high interest to consider
entanglement caused only by the intrinsic degrees of freedom
of a single particle.

Here we examine single-particle entanglement from the
perspective of a recent approach, treating entanglement as a
manifestation of quantum fluctuations in a state where the
fluctuations come to their extreme [9–13]. In particular, it
was shown that the completely entangled (CE) states of a given
system can be defined in terms of a certain variational principle
for the total amount of quantum fluctuation [12]. It should be
stressed that every entangled state can be transformed into a CE
state by an SL OCC transformation [14–16] that can change
the amount of entanglement but cannot either create or destroy
it. Mathematically SL OCC transformation amounts to action
of the complexified dynamic group Gc.

The essence of the approach can be formulated as
follows [11, 12, 17]. Let HA be the space of states of a quantum

system A, and L be the Lie algebra generated by observables
we are going to measure in the course of experiment, or, which
is the same, by the Hamiltonians available for manipulation
with quantum states. L is said to be the Lie algebra of
essential observables, and the corresponding compact group
G = exp(L) is called the dynamic group of system A. For
example, for a two-component system HAB = HA ⊗ HB

with full access to local degrees of freedom the dynamic
group is SU (HA) × SU (HB). The corresponding group
of SL OCC transformations Gc = exp(Lc) is defined by
complexified algebra Lc = L ⊗ C. In the above example,
Gc = SL(HA)× SL(HB).

The key physical quantity responsible for entanglement of
a state ψ ∈ HA is its total variation

Vtot(ψ) =
∑

i

(〈ψ |O2
i |ψ〉 − 〈ψ |Oi |ψ〉2), (1)

where summation is performed over an orthonormal basis Oi

of the Lie algebra of essential observables L. The crucial point
is that this quantity is independent of the basis Oi , and reflects
the total amount of quantum fluctuation of the system in the
state ψ . For spin group SU (2), one can use spin projection
operators Sx , Sy, Sz as the basis of L = su(2).

The quantity (1) bears a similarity with the so-called
skew information that has been introduced by Wigner [18, 19]
to specify the amount of information, carried by a quantum
state with respect to noncommuting observables, whose
measurement needs macroscopic apparatus. In turn, the
observables associated with the additive conserved quantities
like energy can be measured with microscopic apparatus. The
main difference between our approach and that of Wigner
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consists in the definition of fundamental observables in terms
of the dynamic symmetry of the system.

To clarify the physical meaning of (1), note that in the case
of classical observables represented by c-numbers the total
amount of fluctuation is equal to zero. Thus, the nonzero value
of (1) specifies the remoteness of the stateψ from the ‘classical
reality’, i.e., from the result of classical measurements.

CE states ψCE ∈ HS have the following extremality
property [12]:

Vtot(ψCE) = max
ψ∈HS

Vtot(ψ). (2)

This means that CE states provide the maximal amount of
quantum fluctuation in the system. In other words, CE states
are maximally remote from the ‘classical reality’. This clarifies
the fact that entanglement has no classical analogue.

In contrast, generalized coherent states correspond to
the minimal amount of quantum fluctuation [17] (concerning
generalized coherent states, see [20]). Thus, they are closest
to the ‘classical reality’.

Equation (2) plays in entanglement the same role as
variational principles in mechanics. Using a differential
criterion of extremum, one can recast it into the form

〈ψCE|O|ψCE〉 = 0, ∀O ∈ L, (3)

which tells us that in the CE state the system is in the centre of
its quantum fluctuations. The definition (3) does not assume
the nonlocality of system A, and therefore can be used to study
entanglement in single-component systems.

As an example of some practical interest consider a spin-
1 system with dynamic group SU (2) in its three-dimensional
irreducible representation H1. An example is provided by a
single photon with orbital angular momentum l = 1 [21, 22].
Another example is given by an electric dipole photon with
total angular momentum j = 1 [23, 24]. One more realization
is provided by the superfluid 3He, where both spin and orbital
momenta of a Cooper pair are equal to one [25, 26].

To clarify the structure of CE states in a single spin-1
system we start with the Clebsch–Gordon decomposition

H1/2 ⊗ H1/2 = H1 ⊕ H0, (4)

of two spin- 1
2 systems into a symmetric component H1 of spin

1, and a skew symmetric scalar component H0. If we denote
the base states in H1/2 by |↑〉 and |↓〉, then the basis of H1 is
represented by the symmetric triplet

|↑↑〉
|↓↓〉

1√
2
(|↑↓〉 + |↓↑〉)

(5)

while the antisymmetric singlet

1√
2
(|↑↓〉 − |↓↑〉) (6)

corresponds to H0. Since the states of the spin-1 system under
consideration can always be specified by the projection of spin
onto the quantization axis |m〉, the states (5) can be interpreted

as the states |m = 1〉, |m = −1〉, and |m = 0〉, respectively.
From the physical point of view, this means that if a single
spin-1 system, prepared initially in the state |m = 0〉, decays
into the two spin- 1

2 objects, they should be observed in the EPR
(Einstein–Podolsky–Rosen) state (the last state in (5)). This is
an indication that the spin-1 state |m = 0〉 is entangled. The
other two states |m = ±1〉 in the triplet (5) are coherent and
decay into disentangled spin- 1

2 components.
To classify spin-1 states, it is convenient to treat H1 as a

complexification of three-dimensional Euclidean space

H1 = E
3 ⊗ C (7)

with dynamical symmetry group SU (2) ≈ SO(3), acting by
rotations in E3. Then, every state |ψ〉 in H1 can be represented
as the complex superposition

|ψ〉 = cosϕ · | �µ〉 + i sin ϕ · |�ν〉, 0 � ϕ � π/4, (8)

of two orthonormal vectors �µ, �ν ∈ E
3. Note that one

orthonormal pair �µ, �ν ∈ E
3 can be transformed into another by

a rotation. Hence, the angle ϕ is the unique intrinsic invariant
of the spin-1 state. Therefore, it is not surprising that its
measure of entanglement can be expressed via ϕ.

We will see later that ϕ = 0 corresponds to the CE states,
while ϕ = π/4 gives unentangled (coherent) states. In the
theory of superfluid 3He, the former are known as the unitary
states.

Spin projection operator S �ω onto direction �ω ∈ E
3

in representation (7) amounts to infinitesimal rotation with
angular velocity �ω given by the cross product

S �ω : x �→ i �ω × �x, �x ∈ E
3. (9)

Hence, S�ν|�ν〉 = 0, i.e. |�ν〉 is a state with zero spin projection
onto direction �ν. Moreover, by (9),

〈�ν|S �ω|�ν〉 = (�ν, �ω, �ν) = 0, ∀�ω ∈ E
3 (10)

and by criterion (3), |�ν〉 is the CE state. For the general state (8),
we get

〈ψ |S �ω|ψ〉 = 2 sin ϕ cosϕ(�µ, �ω, �ν) = sin(2ϕ)(�µ, �ω, �ν).
(11)

Hence, |ψ〉 is the CE state only for ϕ = 0. So, we arrive at
a characterization of CE states as those with spin projection
m = 0 onto some direction. Typical examples are the states

|ψ0〉 = |0〉

|ψ±1〉 = 1√
2
(|+1〉 ± |−1〉) (12)

which form a completely entangled basis in H1. One of those
states, |ψ0〉 = |0〉, formally corresponds to the EPR state in (5).

Taking into account that the general state (8) of the spin-1
system can be formally represented in the form of the two-qubit
state

|ψ〉 = ψ↑↑|↑↑〉 + ψ↓↓|↓↓〉 + ψ↑↓(|↑↓〉 + |↓↑〉)

in the symmetric sector, and that the concurrence (measure of
entanglement in the case of two qubits [27]) has the form

C(ψ) = 2|det[ψ]| = 2|ψ↑↑ψ↓↓ − ψ↑↓ψ↓↑|,
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we can conclude that the amount of entanglement in the CE
basis (12) can be measured by the expression

C(ψ) = 2|ψ+1ψ−1 − ψ2
0/2|, (13)

which represents the concurrence in the case of a spin-1 system.
It is interesting that the concurrence can also be expressed in
terms of the total amount of fluctuation (1) as follows:

C(ψ) =
√

Vtot(ψ)− Vmin

Vmax − Vmin
.

In terms of the intrinsic parameterϕ introduced by equation (8),
the concurrence (13) takes the form

C(ψ) = cos 2ϕ, ϕ ∈ [0, π/4].

Similar analysis can also be done in the case of mixed states
of a single spin-1 system.

Concerning physical realizations, let us mention first
that the three-dimensional entanglement in orbital angular
momentum of photons [21, 22] provides an example,
illustrating the above theory. Namely, a single photon in a
Laguerre–Gauss beam in the state |m = 0〉 is entangled by
itself. Let us stress that in the usual treatment, entanglement
with respect to the orbital angular momentum of a pair of
photons [21, 22] is discussed.

Consider now a single electric dipole (E1) photon [23, 24],
emitted by an atomic transition between the states | j = 1,m =
0〉 and | j ′ = 0,m ′ = 0〉. Here j and m denote the angular
momentum and its projection, specifying an atomic level.
According to selection rules, a photon created by this transition
carries total angular momentum j = 1 and projection m = 0.
Thus, in view of our results, it is prepared in CE states.

In view of the above interpretation, we can assume that
such a photon may decay into a pair of entangled particles.
In other words, the electron–positron pair created by the
photodecay of the dipole photon with m = 0 should be
prepared in the CE EPR state (the last state in (5)) with respect
to the spin of charged particles. This may be observed in
the presence of a strong electric field, which separates the
particles with opposite charge and, unlike the magnetic field,
does not influence the spin state. Other photon decay processes
such as resonance down-conversion and Raman scattering with
creation of the entangled pairs can also be described using the
above formalism.

A single biphoton [28, 29] can also be considered as a
spin-1 particle. In fact, a photon pair created by spontaneous
resonance down-conversion and propagating in the same
direction (biphoton) cannot be separated in space and time
and therefore should be considered as a single particle (spin-
qutrit) [29]. In the case of a biphoton, the coefficient of the
wavefunction ψi in (13) can be interpreted as a component of
the biphoton polarization vector [30, 31]. Thus, equation (13)
gives concurrence for single spin-qutrit particle.

Thus, we have shown that the single-particle spin-1 system
prepared in the state with spin projection m = 0 always

manifests complete entanglement, defined in terms of the
maximum total amount of quantum fluctuation. This means
that those states are less stable than non-CE states, and that
the possible decay of those states leads to creation of EPR
pairs. The above consideration shows that the notion of the
single-particle entanglement as well as the approach used for
its description are quite general. In particular, they can be
used for analysis of states of photons, quantum liquids, and
elementary particles. Similar analysis can be applied to any
physical objects with spin s � 1 [17].
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