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Abstract

A method to obtain the Schlesinger transformations for the standard discrete second Painlevé equation, d–PII , is given. The
procedure involves formulating a Riemann–Hilbert problem for a transformation matrix which transforms the solution
linear problem but leaves the associated monodromy data the same.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A powerful method for studying the initial value problem for certain nonlinear ODEs was introduced in[1] and
[2]. This method which is extension of the inverse spectral method (ISM) to ODEs, is called inverse mono
method (IMM). It can be thought of as a nonlinear analogous ofthe Laplace’s method. A rigorous investigation
the six Painlevé transcendents, PI–PVI , using this method has been carried out[3–5]. In particular, in these articles
it is shown that certain Riemann–Hilbert (RH) problems, occurring in the process of implementing the IMM,
rigorously investigated. Furthermore, for special relations among the monodromy data, and for certain res
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of the constant parameters appearing in PII –PVI , these solutions have no poles. This provides the motivation
studying how the solutions of a Painlevé equations depend on their associated constant parameters.

Recently, nonlinear integrable discrete equations among which the discrete Painlevé (dP) equations are
most fundamental ones have attracted much attention. The dP equation was first obtained by Jimbo and M[6].
The systematic derivation of the dP equations by using the Bäcklund transformations of the continuous
equations was given by Fokas, Grammaticos and Ramani[7]. Besides the rich mathematical structures of
equations, such as the existence of Lax pairs, Bäcklundtransformations, singularity confinement properties[8],
the relation of dP equations to the continuous ones has been extensively investigated in the literature.

By exploiting the relation between the continuous and discrete Painlevé equations, in this Letter we present
method to obtain the Schlesinger transformations for the standard discrete second Painlevé equation, d-PII . The
same method was used to obtain the Schlesinger transformations for PII –PV [9], and for PVI in [10]. These trans
formations lead to a class of relations between the solutions of d-PII when its parameters are changed. In the c
of the d-PII , the singularity structure of the monodromy problem is more complicated (regular singular po
λ = ±1 and irregular singular points atλ = 0,∞ of rankr = 2) with respect to monodromy problem of PII .

Let xn be the solution of d-PII with the parametersc0, c2. The associated monodromy problem for d-PII is
∂Yn

∂λ
= AnYn whereλ plays the role of spectral parameter. The implementation of the isomonodromy m

necessitates the investigation of the analytic properties ofYn(λ) in complexλ-plane. It turns out that there exist
sectionally meromorphic functionYn(λ), with certain jumps across the certain contours of the complexλ-plane;
these jumps are specified by the so-called monodromy data, denoted by MD. We denoted byx ′

n and byY ′
n, xn and

Yn when(c0, c2) → (c′
0, c

′
2). It turns out that it is possible to find appropriate transformations of(c0, c2) such that

the MD are invariant. ThenY ′
n(λ) = Rn(λ)Yn(λ), and the Schlesinger transformation matrixRn(λ), can be found

in closed form, by solving a certain simple RH-problems. The transformation matrixRn(λ) leads to a class of th
transformations among the solutionsxn of d-PII .

The standard discrete second Painlevé equation, d-PII

(1)2c3(xn+1 + xn−1)
(
1− x2

n

) = −xn(2c2 + 2n + 1) + c0, c3 �= 0,

can be obtained as the compatibility condition of the following linear system of equations[11],

(2.a)
∂Yn

∂λ
= An(λ)Yn(λ),

(2.b)Yn+1 = BnYn(λ),

where

(3.a)An(λ) = A1λ + A2 + A3λ
−1 + A4λ

−2 + A5λ
−3 + A6

(
λ2 − 1

)−1
,

(3.b)Bn = B1λ
−1 + B2 + B3λ,

and

A1 = A5 = c3σ3, A2 =
(

0 2c3xn

2c3xn−1 0

)
, A3 = (c2 + n − 2c3xnxn−1)σ3,

A4 =
(

0 −2c3xn−1
−2c3xn 0

)
= −σ1A2σ1, A6 = c0σ1,

(4)B1 =
(

0 0
0 1

)
, B2 =

(
0 xn

xn 0

)
, B3 =

(
1 0
0 0

)
.

σi , i = 1,2,3 are Pauli spin matrices and defined as

(5)σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
.
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The entries(1,1) and(2,2) of the compatibility condition∂Bn

∂λ
+ BnAn = An+1Bn are identically satisfied and th

entries(1,2) and(2,1) give the d-PII .

2. Direct problem

The essence of the direct problem is to establish the analytic structure ofYn in the entire complexλ-plane.
Since,(2.a)is a linear ODE inλ, the analytic structure ofYn is completely determined by its singularities.(2.a)has
regular singular points atλ = ±1 and irregular singular points atλ = 0,∞ with rankr = 2.

2.1. Solution aboutλ = 0

The formal solutionỸ (0)
n (λ) = (Ỹ

(0)
n,1(λ), Ỹ

(0)
n,2(λ)), of (2.a) in the neighborhood of the irregular singular po

λ = 0 has the expansion

(6)Ỹ (0)
n (λ) = Ŷ (0)

n (λ)

(
1

λ

)D
(0)
n

eQ(0)(λ) = (
I + Ŷ

(0)
n,1λ + Ŷ

(0)
n,2λ2 + · · · )

(
1

λ

)D
(0)
n

eQ(0)(λ),

where

(7)Ŷ
(0)
n,1 =

(
0 xn−1

−xn 0

)
, D(0)

n = −(c2 + n)σ3, Q(0)(λ) = − c3

2λ2
σ3.

Let Y
(0)
n(j), j = 1, . . . ,4, be solutions of(2.a), such thatY (0)

n(j)(λ) ∼ Ỹ (0)(λ) asλ → 0 in the sectorS(0)
j , where the

sectors are given as follows and indicated inFig. 1,

S
(0)
1 : −π

4
� argλ <

π

4
, S

(0)
2 :

π

4
� argλ <

3π

4
,

(8)S
(0)
3 :

3π

4
� argλ <

5π

4
, S

(0)
4 :

5π

4
� argλ <

7π

4
, |λ| < 1.

Fig. 1.



40 U. Muğan et al. / Physics Letters A 336 (2005) 37–45

int

r

The solutionsY (0)
n(j)

are related by the Stokes matricesG
(0)
j and the monodromy matrixM(0) such that

Y
(0)
n(j+1)(λ) = Y

(0)
n(j)(λ)G

(0)
j , λ ∈ S

(0)
j+1, j = 1,2,3,

(9)Y
(0)
n(1)(λ) = Y

(0)
n(4)

(
λe2iπ

)
G

(0)
4 M(0), λ ∈ S

(0)
1 ,

where

G
(0)
1 =

(
1 a(0)

0 1

)
, G

(0)
2 =

(
1 0

b(0) 1

)
,

(10)G
(0)
3 =

(
1 c(0)

0 1

)
, G

(0)
4 =

(
1 0

d(0) 1

)
, M(0) = e2iπD

(0)
n = e−2iπc2σ3.

2.2. Solution aboutλ = ∞

The formal solutionỸ (∞)
n (λ) = (Ỹ

(∞)
n,1 (λ), Ỹ

(∞)
n,2 (λ)), of (2.a)in the neighborhood of the irregular singular po

λ = ∞ has the expansion

(11)Ỹ (∞)
n (λ) = Ŷ (∞)

n (λ)λD
(∞)
n eQ(∞)(λ) = (

I + Ŷ
(∞)
n,1 λ−1 + Ŷ

(∞)
n,2 λ−2 + · · · )λD

(∞)
n eQ(∞)(λ),

where

(12)Ŷ
(∞)
n,1 =

(
0 −xn

xn−1 0

)
, D(∞)

n = (c2 + n)σ3, Q(∞)(λ) = c3

2
λ2σ3.

Let Y
(∞)
n(j)

, j = 1, . . . ,4, be solutions of(2.a), such thatY (∞)
n(j)

(λ) ∼ Ỹ (∞)(λ) asλ → ∞ in the sectorS(∞)
j , where

the sectors are given as follows and indicated inFig. 1,

S
(∞)
1 : −π

4
� argλ <

π

4
, S

(∞)
2 :

π

4
� argλ <

3π

4
,

(13)S
(∞)
3 :

3π

4
� argλ <

5π

4
, S

(∞)
4 :

5π

4
� argλ <

7π

4
, |λ| > 1.

The solutionsY (∞)
n(j) are related by the Stokes matricesG

(∞)
j and the monodromy matrixM(∞) such that

Y
(∞)
n(j+1)(λ) = Y

(∞)
n(j) (λ)G

(∞)
j , λ ∈ S

(∞)
j+1, j = 1,2,3,

(14)Y
(∞)
n(1)

(λ) = Y
(∞)
n(4)

(
λe2iπ

)
G

(∞)
4 M(∞), λ ∈ S

(∞)
1 ,

where

G
(∞)
1 =

(
1 0

a(∞) 1

)
, G

(∞)
2 =

(
1 b(∞)

0 1

)
,

(15)G
(∞)
3 =

(
1 0

c(∞) 1

)
, G

(∞)
4 =

(
1 d(∞)

0 1

)
, M(∞) = e−2iπD

(∞)
n = e−2iπc2σ3.

2.3. Solution aboutλ = 1

The two linearly independent solutionsY
(1)
n (λ) = (Ỹ

(1)
n,1(λ), Ỹ

(1)
n,2(λ)) of (2.a)in the neighborhood of the regula

singular pointλ = 1 for c0 �= n, n ∈ Z, and|λ − 1| < 1/2 has the following expansion

(16)Y (1)
n (λ) = Ŷ (1)

n (λ)(λ − 1)D
(1) = Ŷ

(1)
n,0

{
I + Ŷ

(1)
n,1(λ − 1) + Ŷ

(1)
n,2(λ − 1)2 + · · ·}(λ − 1)D

(1)

,
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where

(17)Ŷ
(1)
n,0 =

(
µ

(1)
n ν

(1)
n

µ
(1)
n −ν

(1)
n

)
, D(1) = c0

2
σ3,

and

(18)µ(1)
n = µ

(1)
0

n−1∏
i=1

(1+ xi), ν(1)
n = ν

(1)
0

n−1∏
i=1

(1− xi),

whereµ
(1)
0 , ν

(1)
0 are constant.(18)can be obtained by imposing the condition thatY

(1)
n satisfies(2.b). Ŷ (1)

n,1 satisfies

(19)Ŷ
(1)
n,1 + [

Ŷ
(1)
n,1,D(1)

] = (
Ŷ

(1)
n,0

)−1
A

(1)
0 Ŷ

(1)
n,0,

where

(20)A
(1)
0 =

5∑
k=1

Ak − 1

4
A6.

Monodromy matrix aboutλ = 1 is defined as

(21)Y (1)
n

(
λe2iπ

) = Y (1)
n (λ)M(1), M(1) = e2iπD(1) = eiπc0σ3.

2.4. Solution aboutλ = −1

The two linearly independent solutionsY (−1)
n (λ) = (Ỹ

(−1)
n,1 (λ), Ỹ

(−1)
n,2 (λ)) of (2.a) in the neighborhood of th

regular singular pointλ = −1 for c0 �= n, n ∈ Z, and|λ + 1| < 1/2 has the following expansion

(22)Y (−1)
n (λ) = Ŷ (−1)

n (λ)(λ + 1)D
(−1) = Ŷ

(−1)
n,0

{
I + Ŷ

(−1)
n,1 (λ + 1) + Ŷ

(−1)
n,2 (λ + 1)2 + · · ·}(λ + 1)D

(−1)

,

where

(23)Ŷ
(−1)
n,0 =

(
µ

(−1)
n ν

(−1)
n

−µ
(−1)
n ν

(−1)
n

)
, D(−1) = c0

2
σ3,

and

(24)µ(−1)
n = (−1)nµ

(−1)
0

n−1∏
i=1

(1+ xi), ν(−1)
n = (−1)nν

(−1)
0

n−1∏
i=1

(1− xi),

whereµ
(−1)
0 , ν

(−1)
0 are constants.(24)can be obtained by imposing the condition thatY

(−1)
n satisfies(2.b). Ŷ

(−1)
n,1

satisfies

(25)Ŷ
(−1)
n,1 + [

Ŷ
(−1)
n,1 ,D(−1)

] = (
Ŷ

(−1)
n,0

)−1
A

(−1)
0 Ŷ

(−1)
n,0 ,

where

(26)A
(−1)
0 =

5∑
k=1

(−1)kAk − 1

4
A6.

Monodromy matrix aboutλ = −1 is defined as

(27)Y (−1)
n

(
λe2iπ

) = Y (−1)
n (λ)M(−1), M(−1) = e2iπD(−1) = eiπc0σ3.
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2.5. Symmetries and monodromy data

The relation betweenY (∞)
n(1)

andY
(1)
n (λ),Y

(0)
n(1)

, andY
(∞)
n(3)

andY
(−1)
n (λ) are given by the connection matric

E(k), k = −1,0,1,

(28.a)Y
(∞)
n(1) (λ) = Y (1)

n (λ)E(1),

(28.b)Y
(∞)
n(1) (λ) = Y

(0)
n(1)(λ)E(0),

(28.c)Y
(∞)
n(3) (λ) = Y (−1)

n (λ)E(−1),

where

(29)E(k) =
(

α(k) β(k)

γ (k) δ(k)

)
, detE(k) = 1.

Noted that, ifYn(λ) solve the linear differential equations(2) thenσ1Y ( 1
λ
)σ1 also solves the linear differentia

equations. So we have the following relation between the sectionally analytic functionsY
(∞)
n(j) (λ) andY

(0)
n(j)(λ)

(30)σ1Y
(∞)
n(j)

(
1

λ

)
σ1 = Y

(0)
n(j)(λ), j = 1, . . . ,4.

(30) implies the following relations

(31)σ1G
(∞)
j σ1 = G

(0)
j , j = 1, . . . ,4, σ1E

(0)σ1 = [
E(0)

]−1
.

Similarly, bothYn(λ) andσ3Yn(λe−iπ )σ3 solve the linear differential equations(2). So we have the following
symmetry for the sectionally analytic functionsYn(λ):

Y
(∞)
n(j+2)(λ) = σ3Y

(∞)
n(j)

(
λe−iπ

)
σ3, Y

(0)
n(j+2)(λ) = σ3Y

(0)
n(j)

(
λe−iπ

)
σ3, j = 1,2,

(32)Y (−1)
n (λ) = σ3Y

(1)
n

(
λe−iπ

)
σ3.

The symmetry relation(32) implies the relation

(33)G
(∞)
j+2 = σ3G

(∞)
j σ3, G

(0)
j+2 = σ3G

(0)
j σ3, j = 1,2, σ3E

(−1)σ3 = E(1).

Hence, the set of the monodromy data MD is

(34)MD = {
a(∞), b(∞), α(0), β(0), δ(0), α(1), β(1), γ (1), δ(1)

}
.

Clearly monodromy data are independent ofλ. Moreover, it can be easily shown that they are also independe
n and satisfy the following consistency condition

(35)G
(∞)
1 G

(∞)
2 J (−1)G

(∞)
3 G

(∞)
4 M(∞)J (1) = [

E(0)
]−1

4∏
j=1

G
(0)
j M(0)E(0),

where

(36)J (−1) = [
E(−1)

]−1
M(−1)E(−1), J (1) = [

E(1)
]−1

M(1)E(1).

In particular, the trace of the consistency conditions(35) is

T1e
2iπ(c0+2c2) + T2e

−2iπc0 + T3e
−2iπ(c0−2c2) + T4e

2iπc0 + T5e
4iπc2 + T6

(37)= e4iπc2
(
1− a(∞)b(∞)

) + a(∞)b(∞)
(
1+ a(∞)b(∞)

) + 1,

whereTi , i = 1, . . . ,6, can be written in terms of MD.
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3. Schlesinger transformation

Let [Y (∞)
n(1) (λ)]− and[Y (∞)

n(1) (λ)]+ be the limit values ofY (∞)
n(1) (λ), asλ approaches to contourCR (seeFig. 2) from

above and from below, respectively, and similarly[Y (∞)
n(3) (λ)]+ and[Y (∞)

n(3) (λ)]− be the limit values ofY (∞)
n(3) (λ), asλ

approaches to contourCL from above and from below, respectively. Then by the definition(28.c)of the connection
matricesE(j) and the definition(21), (27) of monodromy matricesM(j), j = −1,1, [Y (∞)

n(i) (λ)]±, i = 1,3, are
related as follows:

(38)CR:
[
Y

(∞)
n(1) (λ)

]
+ = [

Y
(∞)
n(1) (λ)

]
−

{
J (1) for λ > 1,

I for 1/2 < λ < 1,

(39)CL:
[
Y

(∞)
n(3) (λ)

]
+ = [

Y
(∞)
n(3) (λ)

]
−

{
J (−1) for λ < −1,

I for − 1< λ < −1/2,

whereJ (1), J (−1) are given in(36).
Let Rn(λ) be the transformation matrix which transforms the solution of the linear problem(2) as

(40)Y ′
n(λ) = Rn(λ)Yn(λ),

but leaves the monodromy data associated withYn the same. Letx ′
n andc′

i = ci + κi be the transformed quantitie
of xn andci , i = 0,2, respectively. The consistency condition of the monodromy data(35)or (37)is invariant under
the transformation ifc′

0 = c0 + p, c′
2 = c2 + q/2 wherep,q are integers. LetRn(λ) = R

(0)
n(j)(λ) whenλ in S

(0)
j ,

j = 1, . . . ,4, Rn(λ) = R
(∞)
n(i) (λ) whenλ in S

(∞)
i , i = 2,4, and

Rn(λ) = [
R

(∞)
n(1)(λ)

]
+ whenλ ∈ [

S
(∞)
1

]
+, Rn(λ) = [

R
(∞)
n(1)(λ)

]
− whenλ ∈ [

S
(∞)
1

]
−,

(41)Rn(λ) = [
R

(∞)
n(3)(λ)

]
+ whenλ ∈ [

S
(∞)
3

]
+, Rn(λ) = [

R
(∞)
n(3)(λ)

]
− whenλ ∈ [

S
(∞)
3

]
−,

where the sectors[S(∞)
k ]±, k = 1,3, are

[
S

(∞)
1

]
+: −π/4 � argλ < 0,

[
S

(∞)
1

]
−: 0� argλ <

π

4
,

(42)
[
S

(∞)
3

]
+: 3π/4 � argλ < π,

[
S

(∞)
3

]
−: π � argλ <

5π

4
,

and |λ| > 1/2. Definition(9), (14) of the Stokes matrices,(28) of connection matrices and(38), (39) imply that
the sectionally analytic transformation matrixRn satisfies the following RH-problem on the contours indicate

Fig. 2.
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Fig. 2:

(43)C
(0,∞)
j+1 : R

(0,∞)
n(j+1)(λ) = R

(0,∞)
n(j) (λ), j = 1,2,3,

(44)C
(0,∞)
1 : R

(0,∞)
n(1) (λ) = (−1)qR

(0,∞)
n(4)

(
λe2iπ

)
,

(45)CR:
[
R

(∞)
n(1)

]
+ = [

R
(∞)
n(1)

]
−

{
(−1)p for λ > 1,

I for 1/2< λ < 1,

(46)CL:
[
R

(∞)
n(3)

]
+ = [

R
(∞)
n(3)

]
−

{
(−1)p for λ < −1,

I for − 1< λ < −1/2,

(47)C0: [Rn]+ = [Rn]−
with the following boundary conditions

R
(0)
n(1)(λ) ∼ [

Ŷ (0)
n (λ)

]′(1

λ

) 1
2qσ3[

Ŷ (0)
n (λ)

]−1
, asλ → 0, λ ∈ S

(0)
1 ,

[
R

(∞)
n(1)(λ)

]
+ ∼ [

Ŷ (∞)
n (λ)

]′
λ

1
2qσ3

[
Ŷ (∞)

n (λ)
]−1

, asλ → ∞, λ ∈ [
S

(∞)
1

]
+,

[
R

(∞)
n(1)(λ)

]
+ ∼ [

Ŷ (1)
n (λ)

]′
(λ − 1)

1
2pσ3

[
Ŷ (1)

n (λ)
]−1

, asλ → 1, λ ∈ [
S

(∞)
1

]
+,

(48)
[
R

(∞)
n(3)(λ)

]
+ ∼ [

Ŷ (−1)
n (λ)

]′
(λ + 1)

1
2pσ3

[
Ŷ (−1)

n (λ)
]−1

, asλ → −1, λ ∈ [
S

(∞)
3

]
+.

From Eqs.(44)–(46)and the boundary conditions(48), the continuity of the RH-problem atλ = 0 and consistenc
atλ = ∞ imply thatp andq are even integers. Hence, the shifts in(c0, c2) are

(49)(c′
0, c

′
2) = (c0 + 2k, c2 + r), k, r ∈ Z,

and the transformation matrixRn is analytic everywhere inλ-plane.Rn can be determined explicitly from th
boundary conditions(48). It is enough to consider the particular cases(k, r) = (±1,0) and(k, r) = (0,±1).

For (c′
0, c

′
2) = (c0 + 2, c2), the transformation matrix is as follows:

(50)Rn,1 = r1

λ2 − 1

(
(1− 2ρ1)(λ

2 − 1) + 2 −2λ

−2λ (1+ 2ρ1)(λ
2 − 1) + 2

)
,

where

(51)ρ1 = 1

c0 + 1

[
2c3(xn + 1)(1− xn−1) + c2 + n

]
, r2

1 = 1

1− 2ρ2
1

.

By using Eqs.(2.a) and (50)we can obtain the following Bäcklund transformation forxn [12]

(52)x ′
n = 1

1+ 2ρ1

[
(1− 2ρ1)xn + 2

]
.

The transformation(52) breaks down ifρ1 = −1/2. But then(1 − 2ρ1)xn + 2 must be zero orc0 = −1. Hence,
d-PII admits one-parameter family of solutions characterized by the following discrete Riccati equation ifc0 = −1:

(53)xn = −1+ c2 + n

2c3(xn−1 − 1)
.

For (c′
0, c

′
2) = (c0 − 2, c2), the transformation matrixRn,2 is

(54)Rn,2 = r2

λ2 − 1

(
(1+ 2ρ2)(λ

2 − 1) + 2 2λ

2λ (1− 2ρ2)(λ
2 − 1) + 2

)
,
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ly

o
e. This

.),
where

(55)ρ2 = 1

c0 − 1

[
2c3(xn + 1)(1− xn−1) + c2 + n

]
, r2

2 = 1

1− 2ρ2
2

.

Rn,2 yields the following Bäcklund transformation forxn,

(56)x ′
n = 1

1− 2ρ2

[
(1+ 2ρ2)xn − 2

]
.

It should be noted that, the transformation(56) can be obtain by combining(52)with x ′′
n = −x ′

n, c′′
0 = −c′

0. Simi-
larly, (56)breaks down ifρ2 = 1/2. But then(1+2ρ2)xn −2 must be zero orc0 = 1. Hence, one-parameter fami
of solutions of d-PII satisfy the following discrete Riccati equation ifc0 = 1:

(57)xn = 1+ c2 + n

2c3(xn−1 + 1)
.

For(c′
0, c

′
2) = (c0, c2+1), the transformation matrix isRn,3 = Bn whereBn is given in(3.b). The transformation

matrixRn,3 leads tox ′
n = xn+1. For(c′

0, c
′
2) = (c0, c2 − 1), the transformation matrixRn,4 is

(58)Rn,4 =
( 1

λ
−xn−1

−xn−1 λ

)

and the corresponding transformation isx ′
n = xn−1.

Successive applications ofRn,i , i = 1, . . . ,4, mapc′
0 = c0 + 2k andc′

2 = c2 + r, k, r ∈ Z. Also, it should be
noticed thatRn,1Rn,2 = I .
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