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Abstract

A method to obtain the Schlesinger transformationstie standard discrete second Painlevé equation; dsRjiven. The
procedure involves formulating a Riemann—Hilbert problem for a transformation matrix which transforms the solution of the
linear problem but leaves the associated monodromy data the same.
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1. Introduction

A powerful method for studying #hinitial value problem for certa nonlinear ODEs was introduced it] and
[2]. This method which is extension of the inverse spectral method (ISM) to ODEs, is called inverse monodromy
method (IMM). It can be thought of as a nonlinear analogoub®laplace’s method. A rigorous investigation of
the six Painlevé transcendents-Ry;, using this method has been carried B+5]. In particular, in these articles,
itis shown that certain Riemann—Hilbert (RH) problems, occurring in the process of implementing the IMM, can be
rigorously investigated. Furthermore, for special relations among the monodromy data, and for certain restrictions
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of the constant parameters appearing iR/, these solutions have no poles. This provides the motivation for
studying how the solutions of a Painlevé equations depend on their associated constant parameters.

Recently, nonlinear integréd discrete equations among which thealete Painlevé (dP) equations are the
most fundamental ones have attracted much attention. The dP equation was first obtained by Jimbo 46H Miwa
The systematic derivation of the dP equations by using the Backlund transformations of the continuous Painlevé
equations was given by Fokas, Grammaticos and RafiidnBesides the rich mathematical structures of dP
equations, such as the existence of Lax pairs, Backitartsformations, singularity confinement proper{igls
the relation of dP equations to the continuous ones bas bxtensively investigated in the literature.

By exploiting the relation between the continuous andmdite Painlevé equations this Letter we present a
method to obtain the Schlesinger transformationslierstandard discrete second Painlevé equation,. dFfe
same method was used to obtain the Schlesinger transformationsfBy 9], and for R in [10]. These trans-
formations lead to a class of relations between the solutions gf\Hen its parameters are changed. In the case
of the d-Ry, the singularity structure of the monodromy problem is more complicated (regular singular points at
A = 4£1 and irregular singular points at= 0, co of rankr = 2) with respect to monodromy problem aof P

Let x, be the solution of d-f? with the parametersg, c2. The associated monodromy problem for g-8
aa? = A, Y, wherea plays the role of spectral parameter. The implementation of the isomonodromy method
necessitates the investigation of the analytic propertigs @f) in complexi-plane. It turns out that there exist a
sectionally meromorphic functiok, (1), with certain jumps across the certain contours of the complpbane;
these jumps are specified by the so-called monodromy data, denoted by MD. We dengfethbyby?Y,, x, and
Y, when(co, c2) — (cg, ¢5). It turns out that it is possible to find appropriate transformationg®fcz) such that
the MD are invariant. Thell, (1) = R, (%)Y, (1), and the Schlesinger transformation matix(*), can be found
in closed formby solving a certain simple RH-problems. The transformation matyid) leads to a class of the
transformations among the solutiansof d-R.

The standard discrete second Painlevé equation, d-P

2c3(Xp41 + Xp-1) (1= x2) = —x,(2c2+ 20+ 1) +co, ¢3#0, (1)
can be obtained as the compatibility conditidritee following linear system of equatiofitl],
dY,
8; = A (W)Y, (M), (2.)
Yii1=B,Y, (1), (Zb)
where
An(N) = Ath+ A2+ Ash L+ A2+ A3 + Ap(A2 - 1) T, (3.9)
B, = BiA"1 + Bo + Bax, (3.b)
and
o _ 0 2c3x;, _ _
A1 = As =303, Ax= <2ch”1 0 ) ; Az = (c2+n — 2c3x,x,-1)03,
_ 0 —2c3xp-1\ _ _
Ay = (_chxn 0 ) = —01A201, Ag = co01,

n=(o %) m=(o 5) m=(o) @

oi, i =1, 2, 3 are Pauli spin matrices and defined as

n=(28) () (6 5) ©
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The entrieq1, 1) and(2, 2) of the compatibility condition’% + B, A, = A, 1B, are identically satisfied and the
entries(1, 2) and(2, 1) give the d-R.

2. Direct problem

The essence of the direct problem is to establish the analytic structufg infthe entire complex-plane.
Since,(2.a)is a linear ODE im, the analytic structure df,, is completely determined by its singularitié®.a)has
regular singular points at= +1 and irregular singular points at= 0, co with rankr = 2.

2.1. Solution about =0

The formal solution?, % (3.) = (f’,f?l)(k), ?,f?z)(x)), of (2.a)in the neighborhood of the irregular singular point
A =0 has the expansion

(0) (0)
~ A 1\ © ~ (0 ~ (0 1\ P ©
Y,f"’(x):YlfO)(“(X) ¢ (”=(1+Y£,IA+Y,§,%A2+~')<X> 7, (6)
where
PO =( 0 D =—(c2+moz, 0O =—=>0s. 7)
n,1 —x, 0 )° n ’ 222

Let Y,f?;), j=1,...,4, be solutions of2.a) such thatY,f?;)(A) ~YO) asr — 0in the sectosﬁo), where the
sectors are given as follows and indicatedFig. 1, '

. 7 T . T 3
S ——<argh < —, S50 = <arngh < —,
1 4 S =<7 2 ZS¥P=7
3 5 5 7
Séo): Tn <argh < Tn Sflo): Tn <argh < Tn Al < 1. (8)
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The solutions' %, are related by the Stokes matric(é%o) and the monodromy matrix/ (9 such that

n(j)

© _yO ©) o .
Yiirn M =Y, MG, reSy, j=123,

© 3y = ¥ @ (5,627) GO 7O (0
Yion (W) =Y (keGP MO, pes?, ©

where
©)

o _ (1 a o_ (1 0
Gl _(0 1 )7 G2 _<b(o) 1),

o_(1 ¥ 0 10 DO
Gé ) — (O 1 s 51) — d(O) 1) M(O) — eZlJTD,l —e 2[710203. (10)

2.2. Solution about = oo

The formal solutior?,* (1) = (i,ff’f) (L), l?rff’;) (1)), of (2.a)in the neighborhood of the irregular singular point
A = oo has the expansion

~ N (00) 00 A A~ (c0) )
7O 0) = VO 00a @0 = (1 4 7N 4 A2 a0, (11)
where
A — C
PP=(0 ). D =atmos. Q0= 2% (12)
n, Xn—1 0 2

Let Y,ff]")) j=1,...,4, be solutions 0f2.a) such thatY,ff;?)) (M) ~ ¥ (1) asa — oo in the sect0|S](.°°), where
the sectors are given as follows and indicate8im 1,

(00). T T (c0), T T
S, ——<arga < —, Sy —<argh < —,
1 g S =<7 2 g S =<7

3 5 St lu
(00). (00).

The solutionserE’;?; are related by the Stokes matric(é%“’) and the monodromy matrix > such that

Y () = Y<°°)(,\)G§.°°), res'® j=123,

n(j+1) n(j) L

(c0) (c0) 2i (c0) (00)

Y, 00 =Y,00) (22 T)G M, he s, (14)
where

w (1 0 ) (1 b

G1 _(a<°°> 1)’ G2 —(o 1)

0= (& 7). aV=(5 1)), we e e (15)

2.3. Solution about =1

The two linearly independent solutioﬁél) E (fﬂ(x), f’n(lz) (1)) of (2.a)in the neighborhood of the regular
singular point. =1 for cg # n, n € Z, and|x — 1| < 1/2 has the following expansion

A (1) A A A (1)
YPw=rPna -0 =21+ 700 - D+ 70 - D2+ - )P, (16)

5
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where
(1) (1)
5(1) MUn Vn ) 1 _ <o
= s D = —0’3, 17
B=( L 2 0
and
n—1 n—1
1 1
wP =p [Ta+x.  v®P=v" [Ta-x. (18)
i=1 i=1
Whereuél), vél) are constan{18)can be obtained by imposing the condition tﬁ,é][) satisfieq2.b). f/n(ll) satisfies
v (1) v (1) 1 5 (D=1 4 (D (D
Yn,l + [Yn,l’ D( )] = (Yn,O) AO Yn,O’ (19)
where
> 1
(€8
Ay = A — = As. 20
0 1;- k 4 6 ( )

Monodromy matrix about = 1 is defined as
y® (AeZ"”) =yOumMD, M= 2D _ imeoos (21)
2.4. Solution about = -1

The two linearly independent solutiorYé_l)(A) = (?rle)(k), ?;31) (1)) of (2.a)in the neighborhood of the

regular singular point = —1 for cg # n, n € Z, and|x 4+ 1| < 1/2 has the following expansion

Yo =2 Pwe+ 0P =+ P04 D+ RGP0+ 2+ e+ 0P (22)
where
(-1 it Y €0
e -1
Yn’O — (_ (_1) v(_1)> , D( ) — 30'3’ (23)
n n
and
-1 n—1
Y=o P T]a+xn, v = o []a -, 9
i=1 i=1

Whereug_l), vé_l) are constantg24) can be obtained by imposing the condition tlﬁéfl) satisfieq2.b). )A’,Ef)

satisfies

P+ [0 DY = (0N A, (25)
where
> 1
Ag =Y (DAL - J 4. (26)
k=1

Monodromy matrix about = —1 is defined as

Yrg—l) ()%,Zin) — Yn(_l)()»)M(_l), MY = EZinD(—l) — pimc003. (27)
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2.5. Symmetries and monodromy data

The relation betweew > and Yn(l)(k) Y@ andy® and Y,f_l)(k) are given by the connection matrices

n(l) > Tn(l) n(3)

E® k=-1,01,

Y ) =rPG)EY, (28.a)

0

er?f))()‘) = er(i)()‘)E(o)’ (28.b)

Y5 ) =Y T PG)ED, (28.c)
where

® gk
w_(* B *) _
E® = (y(k) o ) detE® =1, (29)

Noted that, ifY, (1) solve the linear differential equatio2) thenolY(%)ol also solves the linear differential
equations. So we have the following relation between the sectionally analytic funﬁﬁé’ﬁ&) and Yn(?j).)(A)

1 0 .
o1Y,0) <x>01 =Y h(). j=1...4 (30)
(30)implies the following relations
0161 =G0, j=1..4 090 =[EO]" (31)

Similarly, bothY, (1) ando3Y,(Le ™™ )o3 solve the linear differential equatiokia). So we have the following
symmetry for the sectionally analytic functiokis(r):
(c0) (00) —i 0) 0) —i .
Y, Gig®M) =03ty (ke oz, ¥, (M) =03Y, G (ke Moz, j=1.2,
YY) = 03¥, P (re 7). (32)

The symmetry relatio32) implies the relation

0 0 . _

jo_s; = G3G§-oo)03, G.(H)'Z = 03G;» )03, j=12, 03E Vo3 =EWD. (33)
Hence, the set of the monodromy data MD is

MD = {a(OO)’ b(OO)’ ot(o), ﬂ(O), 3(0)’ ot(l), ﬂ(l), )/(1), 3(1)}. (34)

Clearly monodromy data are independentoMoreover, it can be easily shown that they are also independent of
n and satisfy the following consistency condition

4
G:(LOO)G(;O)J(*l)GéOO)GZOO)M(OO)J(l) — [E(O)]il 1_[ G;O)M(O)E(O), (35)
j=1
where
JED — [E(_l)]_lM(_l)E(_l), JO — [E(1>]—1M(1>E<1)_ (36)

In particular, the trace of the consistency conditi(3ts) is

TleZin(co+202) + Tze—Zinco + Tse—Zin(co—Zcz) + T4eZi”CO + T564i7T62 +Ts
= Hme2(1 — q(*p() 4 q(CIp() (1 4 ¢ 41, (37)

whereT;,i =1, ..., 6, can be written in terms of MD.
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3. Schlesinger transformation

Let[Y,f((’f)) M)]- and[Y,fff)) (M)14 be the limit values oY,fff)) (1), asi approaches to contodiz (seeFig. 2) from

above and from below, resptively, and similarI){Y;fg)) M1+ and[erf?f)) (A)]- be the limit values oY,f°§)) (1), asx
approaches to contodl;, from above and from below, respectively. Then by the defini@&3c)of the connection
matricesk /) and the definition(21), (27) of monodromy matriceds/ ), j = —1,1, [Y,f(o;;)(k)]i, i=1,3, are
related as follows:

JO fora>1
cr: [YXm], =[ro { : 38
i Mo @] =Ma®L I forl/2<i<1, (38)
JEY fora<—1
cr: (Y], =[rSm { : 39
v @] =Mhe®]- I for —1<i<—1/2, (39)
whereJ® | 7D are given in(36).
Let R, (1) be the transformation matrix which transforms the solution of the linear pro{@gas
Y, (M) = Ry(W)Yu (), (40)

but leaves the monodromy data associated Wjtthe same. Let; andc; = ¢; + «; be the transformed quantities
of x, andc;, i =0, 2, respectively. The consistency condition of the monodromy(@&teor (37)is invariant under
the transformation it = co + p, ¢, = c2 + q/2 wherep, g are integers. LeR, (1) = RO (L) whena in S](.O),

n(j)
j=1....4,R,() =R (1) wheniin 5 i =24, and

Ri) =[R{SM], whenie[s{™],. R, =[R W] whenie[s{]
R, =[Ri5M], whenie[s§],.  R,0)=[Rg®]_ whenie[s5)] . (41)

where the sectorss\ ™ 1., k = 1,3, are
[Sioo)]Jr: —n/4<argir <0, [s99]_: o<argh < %

(00)7 .

[SSOO ]+'
and|A| > 1/2. Definition(9), (14) of the Stokes matrice$28) of connection matrices an@8), (39) imply that

the sectionally analytic transformation mat®y satisfies the following RH-problem on the contours indicated in

5
3r/4<argh <7, [Séoo)]_i T arga < TN (42)

NP 4
N\ Cz Cz(oo)//
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Fig. 2
(0,00). (0,00) (0,00) .

Ciyit RiTpyM =R M, j=123, (43)
C;O,oo): Rr(lc()ﬁo) W) = (=14 Rr(zc();l(;O) (keZiﬂ)’ (44)

. (00) (00) (_1)[7 fora > 1,

R =[R 45
Cri [Rply =[Ruc]- { 1 for 1/2 < 1 < 1, (43)

. (c0) (00) (_l)P forx < —1,
Cr: [R = (R 46

v [Rgly =[Ria]- {1 for —1<x<-1/2, (48)
Co:  [Ruly =I[Rn]- (47)
with the following boundary conditions
1
" 1\ 2993 1
RO () ~ [Y,E")(A)]/(X) [FOm] " ast—0 resy.
(RO W], ~ [F000] 2299870 1)), ash— oo, 4 e [S7],.
A 1 ~ -1
(R W], ~ [P P @] a—n2re[fPw] ™ asi—1 ae[s7],.
5(— i 5 (— -1

(RS W], ~ [P 0] G+ D22 [P 0], ash— —1, A€ [s8],. (48)

From Eqgs(44)—(46)and the boundary conditioif48), the continuity of the RH-problem at= 0 and consistency
at) = oo imply that p andq are even integers. Hence, the shiftgdp, c¢o) are

(cp-¢h) =(co+2k,c2+r), k,rei, (49)

and the transformation matrig, is analytic everywhere in-plane.R, can be determined explicitly from the
boundary condition&48). It is enough to consider the particular cages') = (+1, 0) and(k, r) = (0, +1).
For (¢, ¢5) = (co + 2, c2), the transformation matrix is as follows:

r 1-20)(A° -1 +2 —2)
Ry = )@—il (( pl)—(z,\ " A+20)02 1)+ 2) ’ (50)
where
5 1
L= 1[263(xn + (A —x-1) +c2+n], ry= 1_72105. (51)
By using Eqs(2.a) and (50jve can obtain the following Backlund transformation fgr[12]
x! 1 [(1—2p1)x, +2]. (52)

n= 1+2p1

The transformatiorf52) breaks down ifo1 = —1/2. But then(1 — 2p1)x,, + 2 must be zero org = —1. Hence,
d-P; admits one-parameter family oflstions characterized by the follang discrete Riccati equationdp = —1:

c2+n
=14+ — 53
o * 2c3(xp-1—1) 53)
For (cq, ¢5) = (co — 2, c2), the transformation matriR,, » is
ro [((L4+2p2)(A2—1)+2 2\
22—1 21 1=20)A2 =1 +2)°

Rn,Z = (54)
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where
= [2c30tn + (1 — xp—1) + c2+ 1] L (55)
PZ—CO_l 3(Xn n—1 2 ) 2—1_2105.
Ry 2 yields the following Backlund transformation fey,
1
x! [(1 + 202)X, — 2]. (56)

" 1= 2p;

It should be noted that, the transformati@6) can be obtain by combinin@2) with x,’ = —x;,, cj = —cg. Simi-
larly, (56) breaks down ifo, = 1/2. But then(1+ 2p2)x, — 2 must be zero arp = 1. Hence, one-parameter family
of solutions of d-Rg satisfy the following discrete Riccati equatiorcif = 1:
c2+n
xp=1l4q ———. 57
! 2c3(xn-1+1) 57)
For (cg, ¢5) = (co, c2+ 1), the transformation matrix i8, 3 = B, whereB,, is given in(3.b). The transformation

matrix R, 3 leads tax;, = x,41. For(cy, ¢) = (co, c2 — 1), the transformation matrix,, 4 is

1
Rn,4=( z ”‘) (58)

—Xp—1 A

and the corresponding transformationjs= x,—1.
Successive applications &, ;, i = 1,...,4, mapc, = co + 2k andc, = c2 +r, k,r € Z. Also, it should be
noticed thatR, 1R, 2= 1.
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