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A detailed description of the tunneling processes within Aharonov-BdAB) rings containing two-
dimensional quantum dots is presented. We show that the electronic propagation through the interferometer is
controlled by the spectral properties of the embedded dots and by their coupling with the ring. The transmit-
tance of the interferometer is computed by the Landauer-Buttiker formula. Numerical results are presented for
an AB interferometer containing two coupled dots. The charging diagrams for a double-dot interferometer and
the Aharonov-Bohm oscillations are obtained, in agreement with the recent experimental results of Holleitner
et al.[Phys. Rev. Lett87, 256802(2001] We identify conditions in which the system shows Fano line shapes.
The direction of the asymetric tail depends on the capacitive coupling and on the magnetic field. We discuss
our results in connection with the experiments of Kobayaslzl. [Phys. Rev. Lett88, 256806(2002] in the
case of a single dot.
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I. INTRODUCTION eter shows asymmetric line shapes for the transmittance as a
function of the plunger gate voltage, the typical proof of the
The electronic transport through Aharonov-Bohm ringsFano effec€=1° namely the interference between states be-
with embedded quantum dot€D’s) is a new subject in longing to continuous and discrete spectra.
mesoscopic physics whose complexity competes with the al- The transport properties of AB interferometers containing
ready “classical” problem of persistent currents in closedQD’s were theoretically studied by two techniques, the scat-
loops. tering approach and the Keldysh formalism in the tight bind-
Inserting one dot in a ring Yacobst al! studied for the ing picture. The scattering theory was successfully used in
first time the transport properties of such systems. The obRefs. 11-13 to describe the physics of one-dot interferom-
served Aharonov-BohrtAB) oscillations of the source-drain eters, including specific properties of the transmittance
signal as the magnetic field is varied proved that the tunnelphase. Th& matrix of the scattering problem is computed by
ing current through the dot is partially coherent. The experiwriting the Born expansion for th&-operator, the conduc-
ment presented a striking behavior of the transmittance phagance being thereafter obtained via the Landauer-Buttiker
as a function of the gate voltage applied on the dot, at eacformula.
transmittance peak the phase jumps#yDue to the two- In the tunneling picture the net current from one lead to
lead geometry used in this experiment the conductance obeysother is computed by perturbation theory and nonequilib-
the Onsager relations and as shown in Ref. 2, this imposesraim Green function techniques. Within this approach one
rigidity of the transmittance phag6 or 7). Later on Shuster can discuss in detail the co-tunneling spin-dependent pro-
et al3* employed a many lead geometry, the phase evolutioesses and finite bias transptrids discussed recently by
being obtained as well as the expected Aharonov-Bohm oskubala and Kéni¢® both approaches are equivalent, in spite
cillations. The experimental geometry was generalized byf the differences between the Hamiltonidirsthe tunneling
Holleitner et al® who measured the current through a picture the coupling between the ring and dots does not ap-
double-dot AB interferometefone QD in each arm of the pear explicitly.
ring). The main achievement of their setup is that the dots The way in which the experiments with AB interferom-
can be coherently coupled and hence the transport becometers can indeed provide the transmittance phase is a subtle
more complex. They have also found AB oscillations of thepoint that involves the explicit geometry of the leads used to
current and emphasized the formation of coherent moleculasreak the unitarity of the two-lead systéfr!®
states in the two dots. Finally, a recent experirffienth a In the present work we study systematically the tunneling
two-dot AB ring was performed in a four-lead geometry, theand coherence properties of AB interferometers with QD’s,
measured transmittance showing peaks in several regimes pérticular attention being payed to the geometry used in the
the capacitive coupling of the ring. Notably, the phase of theexperiments of Holleitneet al® The idea behind the calcu-
transmittance presents the same increment withhen one lations presented below is the following. The transmittance
dot is set to resonance and the capacitive coupling of thef the interferometer as a whole is first related to its Green
second dot is varied around a peak. function, by the Landauer-Buttiker formula. Second, it is
A closely related problem is the Fano feature of AB inter-shown that this Green function can be expressed in terms of
ferometers. As reported in Ref a one dot AB interferom- two Green functions that descrilseparatelythe ring and the
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dots system in the presence of the leads. The lead-ring, lead-
dots, and ring-dot couplings appear as non-Hermitian self-
energies of an effective Hamiltonian. The latter is obtained
by the Feschbach form#?! which is a useful tool when
dealing with Hamiltonians of coupled subsystems. We point
out that this step is necessary in order to obtain detailed
information about the complex processes within the interfer-
ometer. The resonant transport through the device is dis-
cussed in connection with the spectral properties of the dots
system embedded in the interferometer. Our approach shows
clearly that the important role in thesonanttransport pro-
cesses is played by the dots inserted in the ring, the latter
providing in turn the suitable geometry for quantwoher-
ence

We do not consider in this paper the Coulomb repulsion FIG. 1. Schematic picture of a two-dots Aharonov-Bohm inter-
because |nteract|on eﬁects on the transport propertles d?rometer. The thick solid line represents the truncated(R)gThe
single and coupled dots were studied extensively in the predashed contour surrounds the interfe_rom(ét)era, B are the sites
vious paper®-24and all the analysis presented there remaindvhere the leads are connected tq the interferometeaand, b, b’
valid here. The Coulomb interaction can be however easilj*"® the contact points between ring and dots.
included in our formalism in the Hartree approximation and
the charging effects are satisfactorily described by this ap- H=H'"+H"+HL (1)
proach(see Ref. 11 for a similar discussion of the interaction

QD2

effects in a one-particle approximatjomhe main topics we with

cor_1$ider in this work are the tunneling and coherence prop- H' = HP + HR+ HRD, 2)
erties of AB interferometers. The Kondo-type effects which

are a subject in itself are not discussed here. H' is the Hamiltonian of the interferometed and HR de-

The formalism is presented in Sec. Il. Numerical resultsscribe the leads and the truncated ring, i.e., what is left from
are discussed in Sec. Il in connection with the experimentait after removing the dot¢the notations can be identified as
findings, a qualitative agreement being found. Since we haveell from Fig. 1 which represents a double-dot interferom-
considered two-dimensional quantum dots the magnetic fiel@ted. The magnetic flux through the ring appearsiffiin the
dependence of the eigenvalues of the coupled dots systemRgierls representation as magnetic phases attached to the
no longer negligible as in the case of a dot modeled by &opping constants along the truncated ring. Their explicit
single site. It will turn out that the drift of the levels in form is obtained by using for example the Landau gauge.
magnetic field affects the interferometer transport propertie§,-|'{u'n and Hff,'f]’ are the lead-interferometer and ring-dots tun-
Moreover, the interferometer regime of the devioamely  neling Hamiltonians,
the one that exhibits AB oscillationss more difficult to L N "
reveal. Section IV summarizes the main results and ends the Hiun= HY' + H'Y = 7.3 (10,)(a] +[a)(0,)), )
paper. “«

Hiin = HPR+ HRP = 73 (&7 #nm)(0m| + &#rom)(m).

Il. FORMALISM m
(4)

This section contains the theoretical framework we use tcf—lere 7., = are the corresponding hopping parameters and

study the electronic transport in Aharonov-Bohm interferom- . ;
. D . 0a(0m) are the nearest sites to the contact pouats) be-
eters with coupled quantum dots. The Hamiltonians are writ; (Om) P )

; ; -~ . o ; tween lead-interferometer and ring-dots.
}gﬂylnJQ(SfSFT)to?r:n?é?ggggcrr?gazsecrgﬁﬁgxwgI::rrliete %rélc;n g ¢mis thg Peierls 'phase asspua;ed with the pair of sites
performing numerical computations. We consider a gener m>’ |m>. FmallyHD 'S the Ha_mlltonlan of the (_:ouple.d dots
interferometer that consists of an a.rbitrary number of two-, h'(.:h 1S _also written in Fhe Peierls representation. Itincludes

: : : the individual Hamiltonian of each dé1Px,

dimensional(coupled quantum dots embedded in a 1D me-

soscopic ring hav_mgd sites. Some of these sites are shar_ed HOk=—g\, > Yd D i i \(i'| (5)

with the dots, which are coupled to each other by tunneling ieQDy ain

Hamiltonians simulating the tunable barriers patterned in ex-

periment. The quantum dots are described as finite twoand the interdot tunneling terd,,(7,), depending on the

dimensional(2D) plaquettes. coupling constant;,; which is the same for each pair of dots
The electrons reach and leave the interferometer througtk,k+1}. We point out that the dots embedded in different

ideal one-channel semi-infinite leads attached on the ring aarms of the ring can be coupled as well, allowing thus com-

directly on the dots. The Hamiltonian of the whole systemplicated electronic trajectories within the system. The con-

has the form stant termV, from the diagonal part of eadd®< mimics the
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plunger gate voltages used in experiments to tune the dots te the Hilbert space of dotgring). We denote then by
resonance(i,i’) denotes the nearest neighbor summationP, Q the projectors on these spaced, Q are nothing
andtp is the hopping integral on dots. else but families of on-site projectiong)(i| from the

The conductance matrig,; of a mesoscopic system at coupled dots system and the ring. Next, observelﬂﬁis
zero temperature coupled to leads is given by the Landauess small off-diagonal perturbation with respect to
Buttiker formula(see Ref. 25 for a rigorous derivation HD—rfgl(z)Ead|ad><ad| and HR- ffgl(z)Ear|ar><a,| viewed

2 2 as non-Hermitian operators p andHg. This allows us to

9ap(Er) = —To45(Ep) = 4— = sirPk|(e| Ge(E +i0)| B)I, use the Feschbach forméfl&* which expresses the effective
h h tf resolvent in the following fornisee Eq(6.1) from Sec. VI B
(6) in Ref. 21
Gei(2) = Ggy(2) +[1 - GE(2)QHe(2) P Hey(2) — 21

R

whereT,4(Er) is the transmittancée), |8) are sites located X[1 =PHer(2)QG(2)], (8)
on the ring or dots that are coupled to the leadswhere we denotedsR(2):=[QH.(2Q-2z]™ and the new
E-=2t cosk is the Fermi energy of the leads atdis the effective Hamiltonian reads
hopping integral on leads. The main quantity in Eg).is the b .
effective resolvent of the system in the presence of the leadsHef(2) = PHei(2)P = PHeqQIQHet(2)Q — 2] "QHer(2) P.
(see Ref. 22 for more detallsin our caseGgx(z) =[Hei(2) (9
-z]™, where the effective Hamiltonian is defined as

a# B,

Noticing that in our caséPH.(2Q=HPR one obtains by
Her(2) := H' - 7551(2)(2 lag Yoy | + > |ad><ad|> (7)  straightforward calculations explicit formulas f65(z) and
a ag Hgi(2) [we use the notatio;;(2) = (i|G(2)|})],

and acts in the Hilbert space of the interferometgronly Rin._ (LR_ _\!

and embodies the influence of the leads at the contact points Cei(2) = (H ngl(z)g‘ |aeXax Z) ' (10
with the ring which we denotéw,} or the dots{ay} through '
the non-Hermitian terms abowvhese terms represent the

D _pyb_ 2
so-called leads’ self-energy, see Ref.).2@8he notation Her(2) = HP = 262 2 |ag)e

LH(2=(z=F \s'zz—4tf)/2 [+ shows that belongs to the upper _ “ o
(lower) half-pland and we choose Re<2t,. In the sequel -2 e'lemren)Gy o (@)mm|. (1)
we take for simplicitye=h=t =1. m,m’

In the previous papet$?* we used simpler effective
Hamiltonians. In the particular case of a single dot weakl
coupled to leadésee Ref. 2REq. (6) gives at once the trans-

wgrgﬁﬁep?ggﬁz ?ofiggté?lglog:gp(?e?tl:g;ggfr ?haete d\é?ltzgia”ydescribes the truncated ring in the presence of the leads while
. D L D _\-1; . _
the effective Hamiltonian of the dot has resonances WithGeff(z) =(Hey—2)" is an effective resolvent for the embed

small imaginary part located near the eigenvalues of the isoqmj system of dothothin the presence of leads and ring. We

R .

lated dot. Similarly, ifH.4(2) describes an array of identical "eMark thatGey, oy (2) [see Eq.(10)] has a nonvanishing
dots one can obtain and explain the splitting of the CoulompMmaginary part even i lies on the real axis, due to the
peaks as a function of the interdot coupling in terms of non-Hermitian coupling to the leads. Thls_happens because
the nearly identical spectra of the dots. Moreover, if the in—gll(E) is always ComP'eX whefE| <2t,. By direct computa- _
terdot Coulomb interaction is neglected, the effective GreediOn We express various elements of the conductance maitrix
function can be expressed only in terms of one dot Gree#Sing Eq.(8) (this time theE dependence is omitted as well
function by a recursive formula. as the subscript “eff)

Herg formula(6) is not of much use becguse_even.if the Oa s :47-‘L‘sin2k|GS 5
transmittance peaks can be obtained from it by inverting nu- rr

The advantage of using the Feschbach formula is that it pro-
Yides us with two effective resolvents, each one describing
individually the pieces that compose the inten‘eromeﬁﬁgf

merically the finite matrix of the effective resolvent, one can- + 72/ em e GR 0m(53nG§nﬁ ? = |tR 5t tSDﬁ, 2,
not distinguish between the different paths that an electron " o e

can follow. Indeed, due to the ring geometry and to the cou- (12)
pling between the dots the transport within the device is very 4o R b 1

complex. Besides that, in the experiments the metalic gates Oa. = 47.7SIPKIGL 0rGimp | (13
defining the dots are patterned in the ring arms while the

incident electrons from leads enter the ring freely. This gadﬁd:47-ﬁ3in2k|(32dﬁd|2_ (14)

means thatr ~1, thus a discussion in terms of the reso-
nances oH' is useless. These drawbacks are only apparerih the above equations the summations oreand n are
and one can rewrit&S.¢ in a suitable way to recover the understood. The set of formulés2)—(14) is the main formal
missing details. The first step is to decompose the Hilbertesult of the paper and the starting point of a detailed discus-
space of the interferometer &§=Hp® Hg whereHp(Hg)  sion of the transport processes through the system in terms of
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FIG. 2. Avoided crossings in the spectrum of a 200 | oo
double dot as a function of the detuning potental applied on D c L ’
QDy(7=0.4,$=0.15,5,,=0.1). Here ® is the magnetic flux . %‘ 4 01
through one cell, in flux quanta. W

A o S
. . . R

Fhe spectral p.ropemes of_the effective Hamﬂtoni@,‘f;f: te 5. i A L B L {0

is the transmission amplitude from leadto lead 3 via the T

truncated ring andgr'?ﬁr controls the transport via the arm | J02
containing the ddg). In the following we consider some

particular geometries already used in experiments. [, . . . . . L 03

A. One-dot AB interferometer [ ' ' '

The simplest AB device is realized when there are no
leads attached to the dots system which in turn is composeq
of only one dot(this is the geometry used by Yacobyall). S
Then the term containing the sit¢ay} vanishes from Eg. o
(11) and the transport is completely described by Ep) - 4o =
that gives the transmittance of the system.

Let E;(V) be theith eigenvalue of the isolated daf, the | -0.1
corresponding eigenfunction arf®):=|;)(¢| its associated } dos
projection. Note that the eigenvaluegV) and their eigen- '
functions |¢;) depend also parametrically on the magnetic | d.0a
field. We describe below the resonant transport throught—t . . 1 L L .

E/(V). The idea is to isolate the resonant contribution in the ©2 02 -01 31 0t 02 03

effective resolvent. With the notatio®":= 1-P;, the effec-

tive Hamiltonian can be written as FIG. 3. Charging diagrams for the double-dot Aharonov-Bohm
interferometer(r. =1,$=3,7=0.3). ¢ is the magnetic flux through

HZ = PHOP; + PHO P + PHHEP; + PAHD P, the ring, in flux quanta. The traces represent transmittances bigger
than 0.4.(a) 7;,,=0.1, (b) 7,,;=0.2, () 7,;=0.5. The Fermi level is
(15)

set to O.

and we can apply again the Feschbach lemma for

(H2-2™* having PH2P;-+H.c. as a small perturbation P.HC ()P — D:(7) — 71 = |l

€ D 1D i : . . [ i eff(z) i |(Z) Z] - . ’
of PHXPi+P"HxP. Then with the notations Ei(V) - Ai(2) -il'(2) -z
G = (P HP -2~ and Dj(2) := P;HZP; G- P;"HZP; the 17)

effective resolvent reads
where the resonance width; and the shiftA; are flux-
HP.(2) - 21" = G + (1 = G P HR.P)(P.H2.P. - D. — 7)1 d.epende.nt quantities, their expressions being easily.identi—
[He(2) 2] i+ (1= G P HegP) (PiHePi = Di = 2) fied. Notice also thaty;|D;(2)|1) is of order* thusT(2) is

X(1-PHgP;"G) (16)  of order 2. Let now z— E+i0 and suppose that we fiX
such thatE;(V)=E,-V=Eg+A, (E; being the eigenvalue of
and the resonant term is clearly the dot in the absence of the capacitive couplirigis clear

125338-4



RESONANT AND COHERENT TRANSPORT THROUGH. PHYSICAL REVIEW B 71, 125338(2005

1 L) L) L] T

08| -

06 FIG. 4. The effects of the interdot coupling
§ =T T Tt ON the electronic transmittance of a double-
= dot Aharonov-Bohm interferometer at fixed mag-
E netic flux $=3. The same gate potentidlis ap-

g 04 . plied on each dot; =1, 7=0.5. Full line, 7= 1;
long dashed line7;,;=0.5; dashed linez;;=0.2;
dotted line, 7,=0 (transport is strongly

02} J suppressed

-025 -02 -015 -01 005 O 005 01 015 02 025
Gate potential

that the maiq contribution if16) comes from[PH2((2)P; d., B:47-ﬁ7-45in2k|ei0abG5angGbRﬁ+eiaa’b’GSa,GZ,b,GbR,B

-Di(20-2z] "t sinceG;" stays bounded and the other terms are _ X b R _ R b R

of O(7%). The denominator of P;H2(2)P;-D;(2)-2z]™* re- +€%'G,G,, Gy g+ €%10G,, Gy, Gl (19

duces to resonance width which compensates the multipli- 5 5 _
cative factor7? from the numerator of3", . This behavior ~We remark that the term;,, and G, connect points that

induces a peak WSI?B and hence in ther trota| transmittance belong to different dots. The effective Hamiltonian in this

across the ring. With these considerations we conclude th&2S€ IS

for weak ring-dot coupling, wheneve¥ comes close to D ) —HD_ 2 i R )

E-—E; for someE; the transmittance can be written in the Hei(2) =H" - e m"me’m,(z)|m)<m . (20
form mm’

ei(cpm—<pn)<m| N As in the preceding section, we are interested in discussing
biXih 2 ; ;
E_V_A-E.—il +O(7).  the resonant transport in terms of the spectral properties of
! PR : the coupled dots system. Since the double-dot Hamiltonian
(18)  HP depends parametrically on the capacitive couplings

: : SO : Vi, V, we denote its eigenvalues and eigenfunctions by
Equation(18) is a Breit-Wigner-type formula and gives the “1' *2 . o )
transmittance between the leads via the quantum dot, as me'rflL(_Vl'VZ) and lpi(vl’VZ)'_The main point is that for suitable
sured in Refs. 1-3. A similar formula was obtained by Hack-PairstVi, V2 one can bringsi(Vy,V,) close tog;(Vy, Vo) for
enbroich and Weidenmiiller for a continuous modée  i=i+1. Thisis due to the spectral properties of detuned dots.
They supposed thd; is flux independent, which is true only L&t us remind here that the detuning consists in applying an
at low magnetic fields and small dots. This assumption peradd|t|onal gate potential to one dot while keeping the other

mits an analytical discussion of the ﬂux-dependenct% g SZEEn\éﬂtggﬁngzddﬂlngi% szit(\al\;eoflhg;\::r:h(jengeaﬁ‘ruur:ztig];the

magnetic field on the dot levels. We also point out that the?f ézevgﬁtgnc;?g tpolzti?tls?‘r;lpﬁ(gg:letgeoﬂng]eilng ddc;,ti ifsrnit
int-

one resonance form for the dot transmittance was obtaine L a .
here starting from a many-level description of the dot. Thecapacmvelyh(_:fourl)_led trl]uyri/_ O‘TﬁbV'OUSIY’ _one-half of lthe
rigorous argument for using from the beginning this Simp"_zpectrgm S 'kfs Inearly 1vy. The remaining elgfenva_léez
fied form is that after subtracting the resonant term from the epend weakly orvy, excepting some pomt; of avoide
effective resolvent the remainder is nonsingular and small. Crossings. As long as,.# 0 there are no Crossings between

eigenvaluegon the contrary, as shown in Fig. 2 we rather

have avoided crossingsMoreover, by perturbation theory,

near avoided crossings the distance between eigenvalues is
WhenHP describes two coupled dots embedded in differ-of order .. This behavior of eigenvalues as functionsvgf

ent arms of the ring connected to two leddse Fig. L we  andV, is due to the fact that, roughly speaking, half of the

recover the setup of Holleitnet al® In the absence of the eigenvalues belong to QDthe other half to QB As a con-

lead-dot coupling Eqs(13) and (14) give no contribution sequence, wheW,, V, are tuned such that both(V,,V,)

thus we are left only with Eq(12). For the simplicity of —andE;(V;,V,) are near and moreover close to the Fermi level

writing we shall denOthSr,Om: Gi,m and ¢m—@ny == 0my.  We expect thaboth dots will transmit. Clearly one can study

SinceGiﬁ:O in this case the conductance has the form  the tunneling through one eigenvalue following the same

t35, = 217 7SINKG], 6 Gon 5,

B. AB interferometer with a coherent double dot
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steps as in the analysis of a single-dot case. The interestirgﬁgﬁij,H_C_::V as a perturbation of the 22 diagonal
situation is however the one in which the resonant tunnellngnatrix Pii:'efoPi"'Pji:'gfiju

involves both eigenvalues. In the following we show how

this appears formally at the level GP. To this end let us E;Eﬁ: E;:I? e +(~3i? eff(z)vhc';i? et (23)
introduce the two-dimensional projectioR; = P;+P;, Py ' o ,

being the projection associated to the eigenvaii@/,,V,)  Where the unperturbed resolve@f .= G"+G) has the

with k=i, j for i andj fixed. We shall also use the notation form
Pj:=1-P;. Then P;Hg:P; +H.c. is a perturbation[of - )il
O()] to PHYP; + Pt HSP;- and by the Feschbach lemma Gij erf(2) = ~ — ~
for GP ! 1o ) Ei(V1,Vo) —Ai(2) - iT(2) - z
or Gg¢ one has
B . ) (24)
GRi = (PiHE P 27 +[Hgi(2) -2+ O(7%), (2D) Ei(V1, Vo)~ Ai(2) =Ty -2
with The indicesi, j were explicitly written for the unperturbed
operator(we did not introduce another notatjorThus, we
TID (o D o p. D pliplyD pl _ »-1 have here two resonances of widihs I'; [their expressions
Heit(2) = PijHei(2)Pij = PijHgPij (P HePij = 2) are complicated but easy to obtain frcﬁlﬂﬂ)]. It is clear that
X Pii HgyPy =2 HP(2) - Dyj(2). (22)  as long as the dots are coupl&dVy,V,) # E;(Vy,V,) thus

_ ) ) _ the two resonances come close but do not cross. Indeed, if
As in the case of a single dot the first term {@1) is  for someV,, V, the first term in(24) behaves like 1V; the
small whenz— EL+i0 and the gate voltages are chosen suctyenominator of the second termag,+(A;-A;)—il; thus the
that the resonant condition is fulfilled at least around one ofagonant condition is not strictly achieved. Let us write ex-

the two eigenvalueg,(V,,V,). Then the Iaist step to be done plicitly the second term from the Dyson expansi8).
is to write the Dyson expansion ofHefo—z)‘1 taking  SinceV is off-diagonal one is left with

|¢i><¢j|Hgﬁ+ Dij(2)|¢i){i| +H.c.
(Ei(V1,Vo) = A2 =iTi(2) - 2) - (Ej(V1,V) —A () -T2 -2

GP HDVED (2 = (25)

Looking at (20) and (22) one notes that the numerator is [keeping only the first two terms from the right-hand side of
quadratic inT as well as the widths of the resonandgsT';. Eqg. (26)]
Thus the perturbative expansi¢23) cannot be used in the

case of decoupled dots sinBgandE; can cross, the imagi- _ atsiil 2 eieabGza<a|¢//i><¢i|b>GEﬁ

nary parts of the resonances are equigkIl';=I" and Uap = 47 SIMK E(VVy) A il — 2

~ ~ | 1 | |

G}} eVG] et behaves also like 17. However here we deal R, R 5

with coupled dots and as long ag,> 7> the Dyson series elar'G (@[ (e[0") Gy 5
(23) converges andl19 becomegomitting the indexes, j * E;(V1,Vo) — A —iTj -z Rl (@7

and eff inGP ) . _
’ whereR collect all the other paths within the interferometer
that give smaller contributions. Equatié®7) will help us to

— A4 i R ~D ~R 0. ~R =D AR h - !
Jap = 47 Usink| € HabGaaGabiB-'- efab Gaa’Ga’b’Gb’ﬁ discuss the numerical results from the next section.
. ~ . ~ One may notice that in the above analysis the spectral
0y R <D <R 0apsR <D <R 2 . . ; ;
+ e/ GG Gy + €%0G L, G G + O(7) 2. properties of the truncated ring do not appear in an essential

(26) Wway in the problem. This could be anticipated from the be-

ginning since it is the double-dot system that controls the
The last formula allows a discussion of the interferometertunneling gvents. At the formal level, this fact is revealed
properties of the device. The first two terms represent thgnly by using the Feschbach formula, -
direct tunneling through .the upper and lower dot, while the, We mention th_at our Eq$1_2)—(14) and(18) are S|m|_lar 0

) .g ~D 9 ~D PP ) R the ones obtained previously by Hackenbroich and

terms containings,,, andG,,, describe paths in which the weidenmiillet!12 by a scattering theory approach, in the
electron tunnels from one dot to the other before being transcase of a single dot embedded in a ring connected to two
mitted in the leads. At small interdot coupling the cross prod4{eads. Here we gave an alternative calculation in terms of the
ucts (@l y(Uilb’), (@' | (il by, (al¢j)(y;|b),  and  Green functions rather than using tBenatrix and we gen-

@' | )¢y |b") are expected to be small so that we can writeeralized the discussion beyond the single-dot case. An advan-
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FIG. 5. The structure of the transmittance peaks from Fg) 3
around the points of double resonariag Away from this point one
has distinct sharp peaks that turn into Fano peaks at the avoided
crossing pointgh).
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tage of our approach is that we do not use the Born series
which is formally resummed in the scattering approach. ool

Let us finally observe that one could not compute the  os}
tunneling current through the interferometer via rate equation o7t
methods used previously in earlier wotk$® for weakly goﬁ-
coupled quantum dots. These approaches would imply in our & °°f

problem either the computation of the probability distribu- =T

tion P(N,a) characterizing the interferometer in the oal

N-particle statea, either a perturbative expansion with re- oAl

spect to the lead-interferometer tunneling Hamiltonian. Since o= — — e —— =
the lead-ring coupling constant is rather big the number of va

glectrons in thg interferometer is not qu.antized, RN, ) FIG. 6. (a)—(d) Solid lines, Fano line shapes as a functiorvef
is not well-defined, and the perturbative argument break?or several values o¥/,. The Fano tail changes its orientation by

down. passing through a symmetric maxima. Dashed lines, the resonant

transport through the upper arm of the ring when the lower arm is
I1l. RESULTS AND DISCUSSION decoupled from leads. Remark the correspondence between the
usual peaks and the Fano maxim@ V,=-0.1175, (b) V,=
We start this section with the most interesting geometry,-o.1150,(c) V,=-0.1125,(d) V,=-0.1100.(e) A resonant peak as

the one used by Holleitnet al® Following their analysis we  a function ofV,. The gate potential on QD1 was set\¥g=-0.2.

first look for the charging diagrams of a ring with two iden- The pointsA, B, C, D correspond to the values &f, chosen in

tical dots connected to two leads. The dots haweHsites  (a)(d). All plots are made for=0.3, 7, =1, 7,=0.2, ¢=3.
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FIG. 7. (Color onlin@ Magnetic control of the Fano interfer-
ence. As the magnetic field is varied the Fano parameter change
sign. 7=0.3, 7, =1, 7,,=0.2.

each, while the ring supports 100 sites. We re¢sdle also
Ref. 29 that the charging diagrams are plots of the current
through a system containing two quantum dots as a functior
of the gate voltage¥,, V, applied on each dot. In Fig. 3 we
present the rhomboids for our system, obtained as follows:
for each fixed value o¥,, we variedV; in the interval shown

in the figures and we selected only transmittan@es, con- 2t
ductancep T;, that are larger than 0.4, which means that \
what we obtain is roughly a map for the peak positions inthe ) . ) . ) o )
plane (V4,V,). The magnetic flux is fixed. As the interdot 0.1 0.102 0.104 0.108 o.1gg o.11I 0.112 0.114 0.116 0.118 0.12
coupling increases the diagram changes, due to the usua genvalues

behavior of the transmittance in coupled dtsa regular FIG. 8. (Color online (a) The background peak moves with the
peak is split into two subpeaks, separated by a distancgagnetic flux; the gate potential on QD1 was seWis—0.2. (b)
which increases withr,, and saturates at perfect coupling The eigenvalue of the decoupled double ¢ot0.0) has a positive
(1ik=1). The tunnel split peaks of the interferometer trans-siope with respect to the magnetic flux. The interferometer eigen-
mittance were observed in Ref. 5 both in vanishing andsalue (7=0.3 is additionally modulated by the hybridization be-
strong magnetic fieldgsee Figs. &) and 4b) in the cited tween the truncated ring and the double dot.
referencé Figure 4 shows our result for the transmittance of
the interferometer at uniform capacitive couplifge.,  crossing is more difficult to discern at small interdot cou-
V,=V,), fixed magnetic flux and different interdot tunneling pling, as in Fig. 8a). The problem of crossing resonances in
constantgherer, and 7 are also fixegl A striking feature is  double-dot AB interferometers is discussed in a recent
observed in the case of a ring with decoupled dtts dotted ~ work®! where it was proved that actually at real energies
line in Fig. 4, the transport is strongly suppressed. This be-such crossings do not exist. This result coincides with ours.
havior atr,,,=0 was predicted also in Ref. 15. It differs from  In Ref. 5, the interferometer properties of the system were
the one encountered in the case of double dots connectgévealed by the following procedure: for a fixed avoided
directly to leads, when two subpeaks merge to a single one asossing of the charging diagram the current through the in-
Tint— 0. terferometer was represented as a function of magnetic field.
Another important aspect of the charging diagram is theVe follow the same strategy, by carefully analyzing first
drift of the peaks near double resonance points, which actuvhat happens to the transmittance at such avoided crossing
ally gives the honeycomb pattern. We discuss this in connegoints of the charging diagram. As we have mentioned, the
tion with Fig. 3b) using the spectral properties of the de- two traces above regior3 andC from Fig. 3b) correspond
tuned dots emphasized in Sec. Il B. The traces from thé&o two eigenvalueg;(V,,V,) (i=1, 2 that depend weakly on
range V, € (0.11,0.35% depend weakly orV, because the V.. Similarly, the traces that approaghandD are associated
corresponding eigenvalues of the embedded double dot hawéth E;j(Vy,V,). Looking at Egs(24) and(26) one can notice
this behavior there. A similar behavior is observed with thethat as long as/, does not aligngj(V,,V,) to the Fermi
traces in the intervaV; e (-0.35,-0.11 where the eigenval- level, the only terms that produce peaks in the transmittance
ues depend weakly ow;. This behavior changes drastically are the ones involvinG", and this happens each time when
when two traces are approachitayound pointD marked in  E;(V{,V,)=Eg. The main point is that by varyiny, we
the figure, they clearly avoid each other, because the eigenachieve the resonant condition for the term involvigg’,
values of the double dot do not crags,,=0.2). The avoided hence both dots will transmit.

Magnetic flux
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Y

FIG. 9. The sharpness of the
Fano resonancds) and the phase
of the transmittance through the
interferometexb), as a function of
the interdot coupling, full line,
7nt=0.05; dashed linez;;=0.15;
dotted line,7;;=0.3. At weak cou-
pling the phase increases rapidly
by 27 while for stronger coupling
it increases smoothly by72along
a Fano resonance. The parameters
used are V,=-0.110,¢=3, 7
:0.3, ’T|_:1.
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In Fig. 5 we show a detail from the charging diagram inset close to a resonance and the upper arm does not transmit.
Fig. 3(b), taken in the neighborhood of almost crossingWe illustrate this component of transport in Figewhich
points A and B. In contrast to the usual picture with sharp shows a single peak that appears by varywggvhenV, is
peaks here we obseryEig. 5&] an asymmetric large tail of far away from resonant values. The poiAsB, C, D mark
the peaks, which shows that in this regime the interferometethe magnitude of the background for four values \6f
acts as a Fano system. This happens because ori@Bgt  Clearly, asv; approaches the resonant points the interference
is always set to a resonance thus the corresponding arm BfCOMes possible and the Fano lines appear. By inspecting
the ring is free, providing the continuum component for the€ach of Figs. @)—6(d) in connection with Fig. @) one gets

interference. Formally this is easily understood by looking att description of the line shape for different pairs\@f, V.

Eq.(27), because the second term is always large enough argy |73 28 0 P EE PR U8 T8 SO
interfere with a quantity(the first term that increases as P 9p

. ; .~ interference is constructive and the Fano line increase up to a
Ei(V) approaches the Fermi level. The Fano regime Ollsapr'naximum which coincides with the resonant peak of the

pears quickly as we tune QDaway from resonance, the nher arm. In contrast, whe, V, are chosen such that the
picture of separate peaks being recovelféid. S(b)]. _transmittance values are located on different sides of the
In Figs. 8a)-6(d) the solid lines are plots of the transmit- peaks the two path interfere destructively and the Fano line
tance as a function 0¥, whenV; is set close to a resonant drops to a dip. In particular, fov, fixed the dips will be
value. Remark the sudden drop of the peak after the resonagcated on the same side of the peaks, thus the Fano param-
point and the Fano dips. The latter are actually located in theter conserve its sign. The appearance of Fano effect in in-
avoided crossing region, which explains the small transmitterferometers with embedded dots was also discussed in a
tance there. Moreover, the asymmetric tail changes its oriersimple (exactly solvablg model in Ref. 32, without consid-
tation asV, is slightly varied, i.e., the Fano parameter signering the interdot coupling or emphasizing the electrostatic
changes. Following Kobayasht al” we shall call this fea- control of the Fano line shape.
ture the electrostatic control of the Fano asymmetric line. In In the above discussion the magnetic flux was fixed and
order to explain this observation we must look at the twowe have varied/,, emphasizing the sensitivity of the Fano
paths that are involved in the interference. The first contriinterference on this parameter. Figure 7 shows that the shape
bution comes from the resonant tunneling through the uppeof the Fano line can be equally controlled by varying the
dot and is given as dashed lines in Fig&)66(d) (the plots  magnetic flux, while keepin¥, fixed. Indeed, ag increases
were obtained by decoupling the lower arm of the ring fromfrom 3.00 to 4.50 the asymmetric tail changes its orientation.
the leads In this case there is no interference and one getJhis effect originates in the field dependence of the dot lev-
the usual resonant peaks. The second contribution is due &s which leads in turn to a shift of the background peak.
the background transmittance of the lower arm whgrnis  Indeed from Fig. 8) one notices at once that the back-
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Transmittance

FIG. 10. The in-phase Aharonov-Bohm oscil-
lations of the transmittance assigned to the Fano
dips from the regiorA, B, C, andD in Fig. 3b).

Transmittance

Transmitiance

-2 (€] 2
Magnetic flux (in quantum flux units)

ground peak moves to the left as the magnetic flux is varieds that the resonant transport is controlled by the spectral
In order to make the connection with Fig. 7 we marked withproperties of the embedded dots. If the interferometer eigen-
points the transmittance values corresponding to the gatealue would control the peak position this one should move
voltageV,=0.11. As a consequence of the magnetic shift thgo the right from¢=3.00 to¢=3.80, according to the trajec-
point located at$=3.00 on the left-hand side of the peak tory given forr=0.3. Clearly this is not the case and, up to a
passed on the upper right-hand sidesat3.80 from where it~ Shift caused by the real part of the resonance the peak obeys
goes down forp=4.50. The same argument used in the dis-the drift of the isolated eigenvalue. We stress that this non-
cussion of Fig. 6 explains now the change of the Fano palivial effect described above cannot be captured by a theo-
rameter shown in Fig. 7. _ret|cal model j[hqt neglects_the .spectral properties of the d.ot
Figure 8b) shows thed- dependence of the resonant ei- in the magnetic field. The direction change of the asymmetric

genvalue of thésolateddouble dot(the line obtained for a 210 tail at the variation of magnetic field was experimen-

o T : tally reported by Kobayastet al.” in the the case of a one-
vanishing ring-dot coupling, i.ez=0) and of the eigenvalue dot interferometer. We believe that the effect we just dis-
of the whole interferometdidrawn at7=0.3). The horizontal :

i K the fl | h in Fi A red cussed for the two-dots interferometer is similar.
ines mark the flux values chosen in FigaB As expected @ = \y frther investigate the behavior of the Fano peaks as a

nonvanishingr leads tOF? hybridization between th1e SPectragnetion of the interdot coupling. Figure@® shows that the
of the truncat.ed ringr(H™) am?' the couple_d dQB(_H ). The _ line shape is very sensitive to this parameter. More interest-
double-dot eigenvalue acquires a quasiperiodic modulatiofhg is the behavior of the interferometer phase along a Fano
with ¢ due to the ring geometry. resonance plotted in Fig(§). For weak couplingand hence

By comparing Figs. & and 8b) we observe that the for sharp peaKsthe phase shows a rapid increase hy. 2
background peak follows the field dependence of the eigerhis feature has some connection with the experimental re-
value of the isolated double dot and not the one of the intersults obtained in a single dot interferometer by Kobayashi
ferometer eigenvalue. The physical meaning of this behavioal.” They reported an increase ofrdor the phase of the AB

125338-10



RESONANT AND COHERENT TRANSPORT THROUGH. PHYSICAL REVIEW B 71, 125338(2005

0.5 - - - - - - - magnetic fields the changes are not too drastic and that the
0.45} 4 AB oscillations can be captured by monitoring the Fano dip
0.4 and plotting the transmittance magnitude there as a function
o 35 of the magnetic flux. More precisely, for a given magnetic

flux we keepV, fixed and varyV, in a range that contains
0.3F . . only one Fano dip whose transmittance is determitieid is
simply the lowest value in the chosen rangehen we repeat
the procedure for other fluxes, the results being given in Fig.
10. One can recognize at once the Aharonov-Bohm oscilla-
tions. Their position is slightly shifted due to the phase ac-
cumulation within the dot§.e., we express the transmittance
as a function of the magnetic flux through the ring while the
flux encircled by the real trajectories is a bit largeMotice
that the oscillations are in phase at all Fano dips. Figure 11

Transmittance
o
N
o

oL L X 7 N N N o P
0 0.5 1 1.5 2 2.5 3 3.5 4

Magnetic flux (in quantum flux units) shows that the oscillation amplitude increases as the interdot
coupling decreases.
FIG. 11. Aharonov-Bohn oscillations in the regidh of the We have also investigated a single-dot interferométer

charging diagram at different interdot couplings, full line, ring has the same dimension while the dot is x®
7int=0.25; dashed line7,=0.2; dotted line,7iy=0.15. Other pa-  plaquett¢. When the free arm is decoupléoly making some
rameters aré, =1, 7=0.3, E=0. hopping terms zepowe have the usual peaks corresponding
to resonant tunneling via the dot lev¢lig. 12a)]. In order
oscillations (we present instead the phase of the transmitto see the Fano features reported by Kobayashal.” we
tance. In our case the second dot is set to a resonance soriestore the coupling to the arm and we choose the Fermi
acts as a free arm of the ring, from where the similarity withlevel such that the background conductance of the arm is
the one-dot interferometer. By increasing; the phase be- around 0.3(if the Fermi level coincides with some eigen-
comes a smooth function &f;. value of the free arm its conductance approaches unity, ob-
We now address the problem of AB oscillations. It is clearscuring thus the contribution of the dofAs expected, the
that they are to be observed if both dots are close to resssymmetric peaks are turned to Fano resonances shown in
nance, meaning that the gate voltagésV, are suitably Fig. 12b), their correspondence being obvious. One notices
tuned near some eigenvalues of the double dot. The delicatbat the Fano peaks are either wide or very narrow. We have
point is that the eigenvalues depend on the magnetic flughecked that this feature remains also valid for other values
through the ring so that for different fluxes one needs differ-of the flux and different number of sites composing the dot.
ent resonant values fdr,,V,. Otherwise stated, the rhom- Remarkably, the Fano parameter takes the same sign be-
boids move withe (not shown. We found that for small tween succesive peaks. It was suggested recently by Nakan-

1

ool (a) .
0.8 | E
0.7 | E
g osl -
Eosl -
é 04t ]
=
S'Z : : FIG. 12. Transmittance through a single-dot
’ interferometer (7. =1,7=0.35,¢=5,Er=-0.5).
o1r J JL LJL JL L JL J T The dot has X 8 sites and the ring contains 100
0 J J I 2 L . . .
] . ' sites. (@) Usual peaks arising from the resonant
ool (b) | tunneling via the discrete levels of the dahe
) free arm of the ring is decouplgdb) The Fano
08 1 regime, the free arm conducts and interferes with
LT T the path along the QD. The peaks turn to Fano
S o6 7 line shapes.
Eosl -
% 04l 4
" 0.3 p L
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© 2.4 2.8 2.8 3 32 3.4
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ishi et al3® that this feature relates to the correlations be-corroborates with the results of Kubala and K&Rigbtained

tween the narow and wide peaks.

IV. CONCLUSIONS

in an exactly solvable one-site model and shows clearly the
coherent feature of the transport through the system. We em-
phasized and explained the sensitivity of the Fano tail to the
gate potential on the second dot.

The main aim of this paper was to present in a unified As we have said, our model includes the effect of the

formalism the basic properties of Aharonov-Bohm interfer-
ometers with coupled quantum dots. By combining th

Landauer-Bittiker approach and the Feschbach formula wi
studied the transport properties of the interferometer in term

0 . ) ) .
[ment with the observations of Holleitnet al® The influence

&f the various coupling constants was identified. Finally we

of the spectral properties of the embedded dots. Our meth
involves only Green functions and can be viewed as an a
ternative to the scattering theoretical approach. In the case
an interferometer with two coupled Q@ne QD in each arm
of the ring we give a formuld Eq. (27)] which emphasizes

the resonant tunneling process through a given discrete lev

from the dots(we recall that along the paper we have con-
sidered many-level dots

Numerical simulations reproduce the stability charging
diagrams of two-dot AB interferometer reported in the ex-
periments of Holleitneet al® A careful analysis of the al-

e

magnetic field on the dot levels. It turned out that this effect
explains the change of the asymmetric tail as the magnetic
flux is varied. It would be of great interest to probe experi-
entally this latter aspect. The transmittance assigned to the
ano dips shows Aharonov-Bohm oscillations, in full agree-

reproduced the results of Kobayagial.’

The analysis of the 4-lead geometry in view of the very
Lgcent results reported in the study by Sigeisal® is much
more complex and requires further investigation.
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