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Multishell model for Majumdar-Papapetrou spacetimes
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Exact solutions to static and nonstatic Einstein-Maxwell equations in the presence of extremely charged
dust embedded on thin shells are constructed. Singularities of multi-black-hole Majumdar- Papapetrou
and Kastor-Traschen solutions are removed by placing the matter on thin shells. Double spherical thin
shell solution is given as an illustration and the matter densities on the shells are derived.
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I. INTRODUCTION

It was shown that the Majumdar-Papapetrou (MP) solu-
tion [1,2] describes a spacetime possessing N extremely
charged black holes [3]. Later, extremely charged static
dust sources for MP spacetimes were considered [4,5] and
it was shown that solutions to Einstein-Maxwell equations
with extremely charged dust restricted to thin shells exist.
Moreover, solutions for various geometries including pla-
nar, spherical and cylindrical shells were obtained [5]. It
was also shown that spherical shells can be used as sources
for the Extreme Reissner-Nordström (ERN) spacetimes
[5]. The cosmological black-hole solutions which are
time-dependent generalizations of the MP solution were
also studied [6,7] and generalizations with discussions on
nonradiative character of these spacetimes were discussed
in [8].

In linear theories mass density of point particle distribu-
tion can be expressed as ��r� �

P
imi��r� ai� wheremi’s

are the masses of each particle, ��r� is the Dirac delta
function and ai’s are the locations of the point particles.
This expression is in consistence with the Poisson’s equa-
tion,

r2V � �4�� with V �
XN
i�1

mi
jr� aij

: (1)

Such a point particle representation of the mass density is
not valid in nonlinear theories. For instance, in a nonlinear
theory like r2V � 4��V3 � 0, there exists no solution V
for � �

P
imi��r� ai�. We overcome the above problem

by replacing massive particles by spherical thin shells with
centers at r � ai and radii ri. Then the mass density � can
now be represented as ��r� �

PN
i�1 �0i��Fi� where

Fi�r� � 0 �i � 1; 2; . . . ; N� represents the positions of the
shells and �0i are the mass density of each thin shell. The
space is divided into N � 1 spaces. In our proposed
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method we shall solve such potential problems where the
solutions are continuous everywhere.

In this work, we will first review the solutions to
Einstein-Maxwell equations in the presence of extremely
charged static dusts restricted to thin shells that are given in
[5]. Then we will generalize the methods in [5] to find
solutions possessing extremely charged dusts restricted to
multiple shells and obtain singularity free versions of MP-
solutions given in [3]. We will also work out the double
shell problem explicitly and show that the matter distribu-
tions on the shells are not uniform and that interior of the
shells are not flat unlike the single shells in [5]. Finally we
will work on cosmological MP solutions discussed in [6–
8] and develop similar multishell models.
II. SHELL MODELS FOR THE MAJUMDAR-
PAPAPETRAU SPACETIMES

Let M be a four dimensional spacetime with the metric,

ds2 � ���2dt2 � �2hijdx
idxj; (2)

where hij is an Euclidean 3-metric and � is a function of
spatial coordinates xi only. With this metric assumption,
we consider a charged static dust source with the matter
part of the energy-momentum tensor given by,

TM�� � �u�u�; (3)

where u� � � 1
� �

0
� since the dust is static. The four-

potential due to the static charged dust is in the form A� �

A0�x
i��0�, so the current four-vector is given by,

J� � ��xi�u� � ��xi���0�; (4)

where ��xi� is the charge density of the dust. Therefore the
electromagnetic and the Maxwell energy-momentum ten-
sors are given by,

F�� � r�A� �r�A�; (5)

M�� �
1

4�

�
F��F�� �

1

4
F��F��g��

�
: (6)
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Using the Einstein tensor calculated from the metric (2)
and the field equations G�� � 8��TM�� �M��� with (3)–
(6) we get,

A0 �
!
�
; ! � �1: (7)

Then plugging the above equation back into the Einstein
equations give,

r2�� 4���3 � 0: (8)

Therefore the Einstein-Maxwell equations reduce to a non-
linear type of Poisson’s equation. To find the equation
satisfied by the charge density ��xi� we use the Maxwell
equations r�F

�� � 4�J� with (4) and (5) to get,

r2�� 4�!��3 � 0: (9)

Comparing (8) and (9) gives � � !� which shows that the
dust source is extremely charged.

One can solve the reduced Einstein-Maxwell Eqs. (8)
and (9) for the extremely charged dust restricted to a thin
shell as given in [5]. Letting S be a regular surface in R3

defined by S � 	�x; y; z� 2 R3;F�x; y; z� � 0�, the matter
density can be written as,

��r� � �0�r���F�r��; (10)

where �0 is the matter distribution on the shell S.
Generalizing the method given in [5] we can set,

��r� � �0�r� � �1�r��F� � �2�r��1��F��; (11)

where �F� is the Heaviside step function. The above
choice can be made since the spacetime M is now divided
into two disjoint spacetimes M� and M� by S where the
metric functions � are �0 � �1 and �0 � �2 respectively.
We also require that the following equations are satisfied,

r2�0 � r2�1 � r2�2 � 0; (12)

��1 � �2�jS � 0: (13)

These follow from the fact that in M� and M� the
Laplace’s equation is satisfied as can be seen from (8)
(Since � � 0 in M� and M�) and the metric must be
continuous across the shell. Inserting (11) into (8) and
using the conditions (12) and (13) we get,

�0 �
�r�1 �r�2� � rF

4��30
jS: (14)

Let S be the sphere F � r� a � 0. One can choose �2 �
0, �1 � �3�%;&��

1
a�

1
r� which clearly satisfies (12) and

(13). Using (14) gives,

�0�%;&� �
�3�%;&�

4�a2��0jS�3
; (15)

where �3�%;&� satisfies,
024032
�
1

r2 sin%

@
@%

�
sin%

@
@%

�
�

1

r2sin2%

@2

@&2

�
�3�%;&� � 0:

At this point we would like to remark that the above
Eq. (15) can also be obtained by using the Israel junction
conditions [9]. However, when Israel junction conditions
are used the surface energy-momentum tensor has the
components,

Stt �
�3�%;&�

4�a2��0jS�
4 ; S%% � S&& � 0: (16)

So the matter density �I on S is given by using the fact that
Stt � �Iutut �

�I
�20
jS,

�I�%;&� �
�3�%;&�

4�a2��0jS�
2 : (17)

As can be seen from (17) in Israel method we get �20 in the
denominator instead of �30 as in (15) which is due to a
dimensional scaling. The total mass on the shell can be
written as an integral of �0��F� over the 3 spatial dimen-
sions which is equal to the integral of �I over the 2
dimensional surface, that is,

Z
V 3

�0��F��3d3x �
Z
S2

�I�2d2x; (18)

So we get the same total mass on the shell in either method
which means that there is no ambiguity.

When the interior of the sphere S is chosen as a flat
spacetime, we can set �0 � 1 and �3 � m0 as constant
which turns out to be the mass of the shell. So (15)
becomes,

�0 �
m0

4�a2
: (19)

So the interior and exterior metric functions are given by,

�out � 1�
m0

a
�
m0

r
; (20)

�in � 1; (21)

where m0 is the mass of the shell as can clearly be seen
from (19). This solution represents the ERN solution ex-
terior to a spherical shell with flat interior. Letting r �
�R�m0�=� where �  1�m0=a with m0 � a assumed,
the exterior metric can be written as,

ds2 � ��2

�
1�

m0

R

�
2
dt2 �

�
1�

m0

R

�
2
dR2 � R2d�2;

(22)

which is the conventional form of ERN metric (after a
scaling). As we noted earlier, we aim to remove the singu-
larity of an ERN spacetime. Choosingm0 < a we see from
(20) that �out > 0 is always satisfied. Comparing (22), the
relation r � �R�m0�=� and (20) one can realize that the
singularity of ERN spacetime is at �out � 0 (which corre-
-2
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sponds to R � 0) and the horizon is at r � 0 (which
corresponds to R � m0). This means that by restricting
the matter on the shell with m0 < a we remove the both
the singularity and the horizon of the ERN spacetime. In
the case m0 > a (20), �out � 0 is not excluded. The case
m0 � a represents the Levi-Civita-Bertotti-Robinson
(LCBR) spacetime outside the shell and flat spacetime
inside. By letting r � m2

0=R the exterior metric is obtained
as,

ds2 �
m0

R2 	�dt
2 � dR2 � R2d�2�; (23)

as the usual conformally flat LCBR metric. At this point we
would like to note that in our analysis the limiting case a!
0 does not exist since in that limit the matter density (10)
would become ��r� � �0�r���r� and this choice is incon-
sistent with the Einstein-Maxwell Eqs. (8) and (9). If we
had the Newtonian theory, such a limit mathematically
would be consistent with the Poisson’s equation. The non-
existence of the a! 0 limit is in agreement with the
results of [10].

To remove the singularities of a MP spacetime possess-
ing N ERN black holes discussed in [3], we place the
matter source on thin shells. A MP spacetime possessing
N ERN black holes has the metric function � given by,

� � 1�
XN
j�1

mi
jr� aij

; (24)

where ai is the position of the ith ERN black hole. Such a
spacetime contains N number of singularities. We can
place the extremely charged dust on N spatially separated
shells that do not intersect, instead of considering point
sources. Generalizing the choice we made in (10) we can
write the matter density of the spacetime as,

��r� �
XN
j�1

�0j�r���Fj�; (25)

where �0j is the matter distribution on the jth shell defined
by Sj:Fj�r� � 0. We can also generalize the choice for �
as,

� � �0 � �e
YN
j�1

�Fj� �
XN
j�1

�j	1��Fj��; (26)

so that the metric function inside the jth shell is given by,

�inj � �0 � �j 8j � 1; . . . ; N: (27)

Moreover the metric function exterior to all of the N shells
is given by,

�ext � �0 � �e: (28)

The functions �0, �j and �e satisfy the following,

r2�0 � r2�j � r2�e � 0; (29)
024032
��e � �j�jSj � 0 8j � 1; . . . ; N; (30)

where we again use the fact that the Laplace’s equation is
satisfied in source free regions and the metric across the
shells must be continuous. Using (26)–(30) we calculate
r2� as,

r2� �
XN
j�1

�r�j �r�e� � rFj��Fj�: (31)

Using the fact that ��Fj��Fk� � ��Fj� for k � j, ��3 is
given by,

��3 �
XN
j�1

�0j��0 � �j�3��Fj�: (32)

Then inserting (31) and (32) into (8) we get,

�0j �
�r�e �r�j� � rFj

4���0 � �j�
3 jSj : (33)

As an illustration we consider the case of two spherical
shells with radii r1 and r2 and the centers located at a1 and
a2. Our aim is to obtain the exterior MP solution with the
metric function given in (24) so that the singularities can be
removed. The equations defining the spherical shells are
given by F1 � jr� a1j � r1 � 0 and F2 � jr� a2j �
r2 � 0. Making analogy with (24) and the single shell
solution (20) we choose,

�e �
m1

r1
�
m2

r2
�

m1

jr� a1j
�

m2

jr� a2j
: (34)

Appropriate choices for �1 and �2 can be made by the
following forms using (29) and (30),

�1 �
m2

r2
�

m2

jr� a2j
; (35)

�2 �
m1

r1
�

m1

jr� a1j
; (36)

which in turn gives the full metric functions with the choice
�0 � 1 as,

�ext � 1�
m1

r1
�
m2

r2
�

m1

jr� a1j
�

m2

jr� a2j
; (37)

�in1 � 1�
m2

r2
�

m2

jr� a2j
; (38)

�in2 � 1�
m1

r1
�

m1

jr� a1j
: (39)

The above choices describe an exterior MP spacetime and
ERN spacetimes inside each shell. Let a1 � �aez and
a2 � aez so that the centers of the shells are on the z-
axis with r1 � r2 < 2a. The surface matter distributions
are obtained from (33) with N � 2 as,
-3
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�01 �
m1

4�r21

�
1�

m2

r2
�

m2																																															
r21 � 4ar1 cos%1 � 4a2

q
�
�3
;

(40)

�02 �
m2

4�r22

�
1�

m1

r1
�

m1																																															
r22 � 4ar2 cos%2 � 4a2

q
�
�3
;

(41)

where %1 and %2 are spherical coordinates on S1 and S2
with their centers are taken as if origin. It can clearly be
seen from (40) and (41) that the existence of a second shell
disturbs the uniform matter distribution on the other shell
so that the system stays at equilibrium. The above equa-
tions can be obtained by Israel method as we discussed
before, where one obtains the second power of the term in
the denominator instead of the third power as in (40) and
(41) which is due to dimensional scaling. One can obtain
(24) by letting �  1� m1

r1
� m2

r2
in (37) so �ext becomes,

�ext � �
�
1�

�m1

jr� a1j
�

�m2

jr� a2j

�
� � ��ext; (42)

where �m1 � m1=� and �m2 � m2=�. The MP spacetime
possessing two ERN black holes has two horizons each
described as a surface enclosing the points where the black
holes are located [3]. These singularities are defined by the
vanishing of �ext. So choosing the masses and the radii of
the shells such that m1=r1 �m2=r2 < 1, we guarantee that
�ext > 0 from (37), which means that by this choice we
remove the singularities. Note that �in1 in (38) and �in2 in
(39) can never vanish in their domains of definition. The
case m1=r1 �m2=r2 > 1 is irrelevant since we can not
remove the singularities of the MP spacetime. The case
m1=r1 �m2=r2 � 1 should correspond to two mass gen-
eralization of the LCBR metric. Thus we obtained the
double ERN black-hole solutions with singularities re-
moved. (Note that we obtained the solution with a rescaling
factor �). At this point we remark that MP-solutions with
multiple spherical dust shells as sources, can not have flat
interiors as we showed in (38) and (39). Moreover, the
shells disturb each other and cause angular dependence of
matter density on the shells. One can see from (40) and (41)
that the second shell (S2) has maximum matter density at
its north pole and the first shell (S1) has its maximum
matter density at its south pole. Such a configuration puts
the system in equilibrium. One can also calculate the
masses of the shells by integrating (40) and (41) on S1
and S2 respectively as in (18) which gives the mass of the
first shell as m1 and the second shell as m2 which is
expected. We again note that the limits r1 ! 0 and r2 !
0 do not exist since the matter density (25) is not consistent
with the Einstein-Maxwell Eqs. (8) and (9). This means
that we can not have a source density of the form,
024032
��r� � m1��r� a1� �m2��r� a2�:

This is again in total agreement with [10].
One can also consider other solutions to the Laplace’s

equation for the metric function � to obtain various space-
times. It was shown that such spacetimes possess naked
singularities [3]. One can remove these naked singularities
by placing the extremely charged source on thin shells as
we did in this work for multiple ERN black-hole solutions.
The same procedure can also be applied to the stationary
generalization of MP-spacetimes given by Israel-Wilson
[11] and Perjés [12] to remove the naked singularities of
these spacetimes.

III. SHELL MODELS FOR THE
KASTOR-TRASCHEN SPACETIMES

It was shown that time-dependent generalizations of MP
spacetimes exist and solutions corresponding to N ex-
tremely charged comoving black holes in a de-Sitter back-
ground were considered in [6–8]. The idea of removing the
singularities of N comoving black-hole solutions by thin
shells were considered briefly in [7] for testing the cosmic
censorship conjecture. At this point we would like to
extend the discussion given in [7] by the methods we
discussed above.

The cosmological MP solution which is a time-
dependent generalization of the MP solution with metric
(2) in cosmological coordinates is given by,

ds2 � � ~U�2dt2 � R�t�2 ~U2hijdx
idxj; (43)

where R�t� is the scale factor and hij is an Euclidean
metric. For a single extreme Reissner-Nördstrom-de-
Sitter (ERNdS) black hole with its charge equal to its
mass �Q � M� the metric function ~U in the metric (43)
is given by,

~U � 1� e�Ht
M
r
: (44)

We can obtain the ERNdS solution in static coordinates by
following the transformation given in [6] Given the metric
(43) with ~U being arbitrary we consider a comoving
charged dust as source. As before, we assume the four-
potential of the form A� � A0�

0
� and u� � � 1

~U
�0� since

the dust is comoving (i.e. static in cosmological coordi-
nates). Then the Einstein equations with positive cosmo-
logical constant become,

G�� � 8���u�u� �M��� ��g��; (45)

whereM�� is the Maxwell tensor given as in (6). Then the
Einstein equations (45) give,� _R

R

�
2
�

�

3
; (46)

r2 ~U� 4��R�t�2 ~U3 � 0; (47)
-4



MULTISHELL MODEL FOR MAJUMDAR-PAPAPETROU . . . PHYSICAL REVIEW D 72, 024032 (2005)
~U � 1�
1

R�t�
��x�; (48)

where dot over R represents derivative with respect to t and
��x� is independent of t. The above equations are obtained
by separating the cosmological and electromagnetic-
matter parts of the Einstein equations. One can note that
(46) is just the Friedmann equation for a flat cosmology.
Solving (46) yields R�t� � eHt where H � �

									
3=�

p
. As

discussed in [6–8] negative H corresponds to black-hole
spacetimes while positive H corresponds to white hole
spacetimes. We consider negative H for the rest of the
paper (H � �jHj). The Maxwell equations r�F�� �
4�J� give,

r2 ~U�
4��
!
R�t�2 ~U3 � 0; (49)

with ! � �1 and� being the charge density of the comov-
ing dust. Comparing (47) and (49) we get � � !� as
before, so we conclude that the dust is extremely charged.
Letting d1 � R�t�dt we can write the metric (43) as,

ds2 � �U�2d12 �U2hijdx
idxj: (50)

where

U � H1� ��x�; (51)

r2U� 4��U3 � 0: (52)

One can see from the Einstein Eqs. (52) that the product
�U3 must be time independent. This is clear from the fact
r2U is time independent as can be seen from (51) and to
have the Eq. (52) satisfied for all times we must have �U3

to be time independent.
The above derivation of Einstein-Maxwell equations for

a charged dust was given in [7]. Our treatment of the shell
model will be parallel to which we considered in the
previous part of this work, that is different from the shells
considered in [7]. We start with a dust model and then take
its limit to thin shells with the use of Dirac delta functions
for the matter density. Since (47) and (49) are totally same
with Eqs. (8) and (9) we can consider similar multishell
models with the matter density given in (25) and the metric
function U as in (26) (Clearly we just replace � with U).
One difference is that the metric function U is time depen-
dent via H1. However, as can be seen from (51) and (52)
this time dependence does not affect Einstein-Maxwell
equations. In source free regions we again have the
Laplace’s equation satisfied. The equation of each surface
defining the shells are again given by Fj�r� � 0. Thus we
follow the lines (25) to (33) to get the same dependence for
the surface matter density.
024032
As an example, we again consider two spherical shells
with radii r1, r2 and with centers located at a1, a2.The
equations describing the shells are given by,

F1 � jr� a1j � r1 � 0; F2 � jr� a2j � r2 � 0:

(53)

Because of linearity of Laplace’s equation, we extend the
single ERNdS solution in cosmological coordinates given
in (50) to the double ERNdS case for the exterior metric
function as,

Uext � H1�
m1

r1
�
m2

r2
�

m1

jr� a1j
�

m2

jr� a2j
; (54)

where we have chosen U0 � H1 in (28). Then (38) and
(39) suggests,

Uin
1 � H1�

m2

r2
�

m2

jr� a2j
; (55)

Uin
2 � H1�

m1

r1
�

m1

jr� a1j
; (56)

for the metrics inside the first and the second shells. Clearly
the choices (54)–(56) satisfy the required conditions (29)
and (30) for N � 2. We have mentioned above that �U3

must be time independent which is satisfied in our multi-
shell model since this product is given with the use of (25),
(26), (55), and (56) as,

�U3 � �01�U
in
1 �

3��F1� � �02�U
in
2 �

3��F2�:

Since F1;2 are time independent and �01;2U
in
1;2 will be

shown to be time independent below.
Again choosing a1 � �aez and a2 � aez such that

r1 � r2 < 2a the surface matter distributions are calcu-
lated from (33) as,

�01 �
m1

4�r21

�
H1�

m2

r2
�

m2																																															
r21 � 4ar1 cos%1 � 4a2

q
�
�3
;

�02 �
m2

4�r22

�
H1�

m1

r1
�

m1																																															
r22 � 4ar2 cos%2 � 4a2

q
�
�3
;

where the definitions of %1 and %2 are given as before. As
can be seen from above, �01 and �02 are time dependent
but when they are integrated on the surface of each shell
(the term �01;2�Uin

1;2�
3. will appear in the integral which is

time independent), they give constant masses for the shells
as m1 and m2 which is in consistence with the result of
Bonnor [8] . If we had a single shell, the interior of the shell
would be de-Sitter. But for the case of double shells (and
for N > 2 also) as can be seen from (55) and (56)
the interior of the shells are ERNdS. Unless this choice
is made, the continuity condition of the metric across
the shells will be violated. This fact was not realized in
[7] where the interior of the shells were considered as
de-Sitter.
-5
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To remove the singularities of the cosmological multi-
black hole solutions we again restrict the matter on thin
shells. For that purpose, we assume that the thin shells are
formed at 1 � 0 with H < 0 so from (54) one can see that
Uext never vanishes for later times 1 � 0. This means that
the exterior metric is singularity free for all times.
Moreover the interior of the shells described by (55) and
(56) can also never vanish for the choice we made. Thus the
whole spacetime becomes regular. The spacetime distances
jjPQjjg between two neighboring (space) points P andQ is
given by jjPQjjg � jUjjjP�Qjj where jjP�Qjj is the
distance in R3, and U is given in (51). Hence in exterior
and interior spacetimes the space distances increase with
constant (Hubble) speed. For this reason the shells inflate
without collision, because the distances among them also
increase.

There is also another interesting possibility of construct-
ing regular spacetimes by consideringH > 0 for 1 � 0 and
H < 0 for 1 � 0. With these choices one can see that Uext,
Uin

1 and Uin
2 never vanishes and the spacetime metric is

continuous at 1 � 0. In this model, the Hubble constant H
changes sign in each universe separated by 1 � 0 which
causes a delta-function type of singularity at this hypersur-
face. Spacetimes (interior and exterior spacetime regions)
are contracting for 1 � 0 and expanding for 1 � 0.

Our method can be applied also to higher dimensional
generalizations of the Majumdar-Papapetrau-Kastor-
Traschen solutions [13] to study brane world creations
and collisions [14].
024032
IV. CONCLUSION

We considered thin mass shell models for the
Majumdar-Papapetrou and Kastor-Traschen spacetimes.
In both cases we found exact solutions of the field equa-
tions describing gravitational fields of the extremely
charged N-number mass shells. Shell interiors are also
curved spacetimes matching smoothly to the exteriors
through (three dimensional) infinitely thin shells. We found
the mass ( also the charge) densities on each shell. The
solutions obtained this way are free of singularities. For the
case of Kastor-Traschen spacetimes choosing the sign of
the Hubble constant H properly we showed that shells are
moving away from each other with constant velocity.

Shell models in higher dimensional theories seem to be
also very interesting. In order that our method to be appli-
cable to such theories one has to modify Einstein field
equations with the inclusion of a dust matter as we did in
this work where the mass is distributed on thin shells. In
this case the shells are also higher dimensional. In the case
of five dimensions for instance the thin shells are four
dimensional spacetimes. Our work on this matter will be
communicated elsewhere.
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