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Abstract

This paper starts with the basic premise: that conventional measures of productivity growth—often
used as a measure of corporate performance—which ignore external or social output, are biased. We
then construct an alternative productivity growth measure using activity analysis which integrates the
externality/social output into a generalized productivity measure reflecting social responsibility. This
method is very general and could be applied to gauge corporate social responsibility. We provide
an application to US agriculture to demonstrate the approach: we show that conventional measures
of productivity are biased upward when production of negative externalities (or bad) outputs is
increasing. Conversely, this same measure of productivity is biased downward when externalities in
production are decreasing.
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1. Introduction

The purpose of this paper is to demonstrate how one of our most fundamental measures of
performance—namely productivity growth—can be amended to account for nontraditional
outputs, such as negative and positive externalities or other social outputs. The measure
we propose, the Malmquist cost productivity measure (MCP) is a measure of total factor
productivity that can readily integrate multiple outputs and is easily estimated. In order to
make our proposed measure concrete, we illustrate its use with an application to the issue
of performance in the agricultural sector when accounting for environmental degradation.
Given the trend toward ‘corporate’ farming in the US, this provides a somewhat unusual,
but we think relevant, example of measuring ‘corporate’ social performance, where our
focus is on environmental responsibility.

More generally concerns about environmental degradation have prompted the adoption
of measures that would internalize externalities in production. The measures taken, ranging
from command and control policies such as regulation to more market oriented policies such
as issuing tradable pollution permits, were aimed at preventing the use of the environment as
a medium whereby undesirable (or bad) outputs could be freely disposed. This has required
that models of production be extended to accommodate joint production of “goods” and
“bads”. Early contributors includedShephard (1970)andShephard and F̈are (1974).

Initial studies were more geared towards a comparative evaluation of environmental
performance of decision making units (DMUs) within a static framework. Literature on
production frontier construction is extended and modified to measure environmental per-
formance in addition to capturing efficiency at the decision making unit (DMU) level. The
two competing approaches, stochastic frontier estimation and data envelopment models,
while determining the technology to be used as a basis for constructing different measures
of DMU performance, they shared equal responsibility in providing means of measuring
environmental performance. As a result, empirical applications on the measurement of en-
vironmental performance have flourished from both strands. For example whileReinhard
et al. (1996)used a stochastic production frontier approach to construct environmental
efficiency indexes at the farm level,Ball et al. (1994)andTyteca (1997)adopted the data
envelopment analysis to measure the environmental performance. YetReinhard et al. (1997)
used both approaches on the same data set to “analyze the strengths and weaknesses of the
two methods in computing the comprehensive environmental efficiency scores”. Compar-
ative studies such asReinhard et al. (1997)’s confirmed the theoretically expected results.
Since stochastic production frontiers contain a random error, which attribute some of the
deviations from the frontier to uncontrollable chance events (and/or measurement errors),
they have generated higher environmental efficiency scores than those measured by DEA,
which is a deterministic technique that attributes all the deviations from the best practice
to inefficiency. Nevertheless, these studies also showed that although the magnitude of en-
vironmental efficiency scores are different, both approaches generate very similar results
in ranking DMU’s with respect to environmental performance and that the difference in
efficiency scores obtained from alternative approaches is a matter of scaling.

Stochastic production frontier models and DEA models also differed in their construction
of the best practice technology. While DEA models satisfy monotonicity and curvature re-
strictions by construction without imposing a parametric structure on the technology, these
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restrictions can not be imposed in stochastic production frontier models when flexible func-
tional forms are specified. Although the ability to test for the satisfaction of the theoretical
restrictions considered to be a strength of SPF models, tests of monotonicity restrictions
often time revealed that substantial number of observations violated this restriction. This
further complicates the measurement issues in environmental performance by introducing
specification errors. Hence, many studies that focused on measuring the cost of reduced
disposability and the environmental performance of producers (see, for example,Färe et
al., 1986, 1989a, 1989b, 1996; Tyteca, 1996, 1997; Zaim and Taskin, 2000; Ball et al.,
2002a, 2002b, 2002c) stayed within DEA framework.

More recently, a large number of studies have been devoted to measuring the effects
of environmental regulation on productivity growth. The results of these studies almost
unanimously suggested that regulations retard productivity growth (see for example see for
exampleDenison, 1979; Havemann and Christainsen, 1981; Gray, 1987; Robinson, 1995).
Such a conclusion was inevitable since these studies have only concentrated on cost increas-
ing aspects of regulatory policies without giving any credit to regulatory outcome—reduced
bads and hence reduced marginal damage. AsBall et al. (2002a, 2002b, 2002c)point out,
measures of productivity growth that ignore joint production of good and bad outputs and the
restrictions on disposability of bad outputs will overstate the “social benefits” of production.
They call for a revised measure of productivity growth that captures the cost associated with
environmental externalities. This issue has been addressed within a “production” framework
with the development of the Malmquist–Luenberger productivity index (seeChung et al.,
1997; Ball et al., 2001; Hailu and Veeman, 2001).

The objective of the present study is to derive an alternative measure of productivity
growth within a “cost” framework, which we term the Malmquist cost productivity (MCP)
index, which extendsDiewert’s (1992)cost function technique by allowing for bads. We be-
lieve that the MCP measure represents an attractive alternative to the Malmquist–Luenberger
index of productivity for several reasons. First, since it is augmented with price informa-
tion on inputs as well as information on quantities of inputs and outputs it contains almost
the same information as a traditional Tornqvist-type productivity indicator. Second, since
the cost structure of an industry is a fundamental determinant of cost-effective production
decisions, a cost framework as used in MCP is a desirable foundation for representing
production patterns and analyzing the productive contributions of both good and bad out-
puts and inputs to production. Finally, the underlying activity analysis framework produces
technically more feasible linear programming problems, which reduce the number of in-
feasible solutions as compared to linear programming problems that are required for the
computation of Malmquist–Luenberger index of productivity.

In constructing our MCP index, we rely on activity analysis which conveniently allows
us to model joint production of good and bad outputs, thereby putting due emphasis on the
characteristics of production with negative externalities. The basic building blocks of our
approach are as follows. First, we explicitly account for joint production of good and bad
outputs. Second, our representation of technology reflects restrictions on the disposability
of bad outputs. This implies that the reduction of bad outputs is possible either by reducing
the production of good outputs given a fixed level of inputs (where some inputs must be
diverted from the production of goods to the reduction of bads) or by increasing input
use (again to reduce bad outputs) while maintaining the same level of production of good
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outputs. Notice that in either case the reduction of bad outputs is achieved by increased cost
to the producer, since the environment ceases to be a free factor of production with a positive
marginal benefit to the producer.1 Finally, we assume that bad outputs are always produced
when good outputs are produced, thereby ruling out production of good outputs with no
environmentally detrimental impacts. In addition we do not have to introduce separability
between good and bad outputs in our framework, in contrast toFernandez et al. (2002).

The paper unfolds as follows:Section 2introduces the MCP index and its decomposition
into efficiency change and technical change components. InSection 3, we apply the proposed
index to a state-by-year panel recently made available by the US Department of Agriculture’s
(USDA) Economic Research Service.Section 4concludes.

2. The theoretical underpinnings

In this section, we introduce the cost-based Malmquist productivity index. The cost
functions on which our index is based are computed using an “environmental” activity
analysis model. By “environmental” we mean that the model incorporates both good and
bad outputs and that these outputs are weakly disposable and null-joint. A mathematical
representation is provided below. In words, weak disposability implies that feasible outputs
(good or bad) can be proportionally reduced. Null-jointness implies that to produce good
outputs, some bad outputs must also be produced. There cannot be fire without smoke.

We begin with some notation. Let us denote desirable (or good) outputs byy =
(y1, . . . , yM)∈RM+ and undesirable (or bad) outputs byb = (b1, . . . , bI )∈RI+. The vector of
outputs (y, b) = (y1, . . . , yM, b1, . . . , bI ) is produced from inputsx = (x1, . . . , xN )∈RN+
using technology

T = {(x, y, b) : x can produce (y, b)}. (1)

Next we formulate the technology as an activity analysis model. We assume that there are
K observations on inputs and outputs, wherek indexes firms (or states):

{(xk, yk, bk) : k = 1, . . . , K}. (2)

Following Shephard (1970, p. 283) we assume that

(i)
K∑

k=1
xkn > 0, n = 1, . . . , N.

(ii)
N∑

n=1
xkn > 0, k = 1, . . . , K.

(iii)
K∑

k=1
ykm +

K∑
k=1

bki > 0, m = 1, . . . , M, i = 1, . . . , I.

(iv)
M∑

m=1
ykm +

I∑
i=1

bki > 0, k = 1, . . . , K.

(3)

1 This property, which is referred to as weak disposability in the non-parametric production frontier literature,
is also adopted by studies that utilize parametric approaches. In parametric models this is a derivative property
which implies that the partial derivative of cost with respect to a bad output is negative (seeBall et al., 2002a,
2002b, 2002c).
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Condition (i) says that each input must be used in at least one activity and (ii) says that each
activity must use at least one input. Conditions (iii) and (iv) for outputs mimic conditions
(i) and (ii) for inputs.

In addition to conditions (i)–(iv) we assume that outputs (good or bad) are weakly
disposable. In terms ofT this means that (Shephard, 1970)

(x, y, b) ∈ T and 0≤ θ ≤ 1 imply (x, θy, θb) ∈ T. (4)

In words, a proportional contraction of feasible outputs is feasible. This models the idea
that it is costly in terms of good outputs to decrease production of bads. We will model this
by use of equalities in our activity analysis setting.

The bad outputs are assumed to be byproducts of production of good outputs which is
modelled by null-jointness. Formally (seeShephard and F̈are, 1974)

(x, y, b) ∈ T and b = 0 implyy = 0. (5)

In words, if no bads are produced then it is not feasible to produce good outputs. Thus
we interpret the bads as byproducts or joint products of good productionand therefore treat
them as outputs. This condition is imposed by assuming that

(v)
K∑

k=1

bki > 0, i = 1, . . . , I.

(vi)
I∑

i=1

bki > 0, k = 1, . . . , K.

(6)

The first set of inequalities says that each bad output is produced by at least one activity,
and (vi) tell us that each activity produces at least one bad output.

If, in addition, we assume that good outputs are freely disposable as represented by
expression (7) below

(x, y, b) ∈ T and y′ ≤ y imply (x, y′, b) ∈ T (7)

then our activity analysis model of technology is

T = {(x, y, b) :
K∑

k=1

zkxkn ≤ xn, n = 1, . . . , N,

K∑
k=1

zkykm ≥ ym, m = 1, . . . , M,

K∑
k=1

zkbki = bi, i = 1, . . . , I, zk ≥ 0, k = 1, ..., K}, (8)

wherezk, k = 1, . . . , K, are intensity variables.
Given input pricesw = (w1, . . . , wN ) ∈ RN+ , then followingShephard (1970), we may

compute minimum cost by solving the linear programming problem

C(y, b, w) = min{wx : (x, y, b)∈T }. (9)



E. Ball et al. / Structural Change and Economic Dynamics 16 (2005) 374–394 379

Now suppose that for each observationk, we have observations for each time periodt, t =
1, . . . , T . Then we can compute the cost functions that make up our Malmquist productivity
index. Suppressing the subscriptk, these cost functions are

ct(yt+1, bt+1, wt+1)

ct(yt, bt, wt)

ct+1(yt+1, bt+1, wt+1)

ct+1(yt, bt, wt).

(10)

If we denote the observed cost by

ct =
N∑

n=1

wt
nx

t
n and ct+1 =

N∑
n=1

wt+1
n xt+1

n , (11)

the Malmquist cost productivity (MCP) index is given by

MCPt+1
t =

[
ct(yt+1, bt+1, wt+1) · ct+1(yt+1, bt+1, wt+1)

ct(yt, bt, wt) · ct+1(yt, bt, wt)

]1/2
ct

ct+1 (12)

This index may be derived either from the usual Malmquist (input-based) productivity index
assuming allocative efficiency or from the cost-indirect index by assuming constant returns
to scale (seeFäre et al., 1994).

Like other Malmquist productivity indexes, this index can be decomposed into an effi-
ciency change and a technical change component. The efficiency change component is

EFFCHt+1
t = Ct+1(yt+1, bt+1, wt+1)/ct+1

Ct(yt, bt, wt)/ct
, (13)

and the technical change component is

TECHt+1
t =

[
Ct(yt+1, bt+1, wt+1)

Ct+1(yt+1, bt+1, wt+1)

Ct(yt, bt, wt)

Ct+1(yt, bt, wt)

]1/2

. (14)

The product of the two component measures equals the productivity index

MCPt+1
t = EFFCHt+1

t · TECHt+1
t . (15)

Before we illustrate the MCP index and its decomposition we note that the efficiency change
component (13) consists of the ratio of twoFarrell (1957)measures of cost efficiencies,
namely for timet + 1:

(minimum cost int + 1)/(observed cost int + 1), the numerator of (13)

And for timet

(minimum cost int)/(observed cost int), the denominator of (13).

In order to illustrate our decomposition, let CT(t) represent the solution to (9) for periodt. If
we suppress thebandw arguments for the moment as well, we can sketch the decomposition
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in terms of good output y and costc. See the following figure for an illustration for the two
periodst andt + 1.

The two period frontiers are constructed from the cost minimizers in each period. Ob-
served costc(t) is associated with observed output in period t namelyy(t). Similarly we
have observed cost and output in periodt + 1, c(t + 1), y(t + 1).

In our figure the cost components from expression (10) correspond to the following:

• Minimum cost in periodt usingt + 1 data =f.
• Minimum cost in periodt usingt data =b.
• Minimum cost in periodt + 1 usingt + 1 data =e.
• Minimum cost in periodt + 1 usingt data =c.

Thus in our figure, the efficiency change comonent of MCP is:

Oe/Od

Ob/Oa

and the technical change component is

[(
Of

Oe

) (
Ob

Oc

)]1/2

and hence the overall MCP index equals

[(
Of

Ob

) (
Oe

Oc

)]1/2 (
Oa

Od

)
.

In this paper, we have chosen to estimate the CMP using an Activity Analysis Model.
Other choices would be to parameterize the cost function, say with a translog function, and
esimtate its parameters using linear programming (Aigner and Chu, 1968) or as a stochastic
frontier.

Our approach has the advantage that no parametric form is required. However, mea-
surement error may affect the results. Our choice is conditioned on our faith in our
data. Another issue which we have not addressed here but would be a possible exten-
sion, is to include confidence intervals to provide evidence on statistical significance
of our estimates. See recent work bySimar and Wilson (e.g., 2000)for bootstrapping
approaches to construct confidence intervals and pursue statistical inference in a DEA
framework.

We note that the Malmquist index (15) contains mixed period cost functions
Ct(yt+1, bt+1, wt+1) andCt+1(yt, bt, wt). For some observations, the corresponding in-
put sets may be empty, implying that the value of the cost function is infinity. Under such
conditions, the Malmquist index is undefined. These are identified as “infeasible solutions”
in the empirical section of this paper. A possible extension of the work here which might
reduce problems of infeasibility is to introduce a window approach. The general idea is
to include past periods in order to increase the number of observations in the reference
technology.
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3. Measurement of productivity growth in US agriculture

Our proposed index is used to measure productivity growth in the US farm sector. Our
data consist of a state-by-year panel containing price and quantity indexes for two “good”
outputs (crops and livestock) and four inputs (capital, land, labor, and materials).2

A unique feature of our data series is that it also contains a number of “bad” outputs,
which is crucial to our analysis of productivity growth. The bad outputs are indicators of risk
to human health from chronic exposure to agricultural pesticides. We construct indicators
of risk from exposure to pesticide runoff and to pesticides leaching into groundwater.

Our assessment of risk is based on the extent to which the concentration of a specific
pesticide exceeds a water quality threshold. For each of some 200 pesticides applied to
12 crops, we estimate the annual concentration at the bottom of the root zone and at the
edge of the field for 4700 representative soils. These concentrations are compared to water
quality thresholds that represent “safe” levels for chronic exposure. When the concentra-
tion of a specific pesticide exceeds the threshold, an indicator of risk is constructed using
the concentration-threshold ratio. More specifically, we estimate the number of “threshold
exceedence units” for each pesticide and then sum across all pesticides used.3

In our empirical analysis, we include only 46 of 48 states. This is because of our require-
ment that the technology satisfy null-jointness. For two states Nevada and Rhode Island, we
observe zero production of bad outputs for some years. This does not imply that there was
zero environmental risk. Rather, the pesticide concentration in some years did not exceed
the water quality threshold.

We begin by computing the MCP index including only good outputs. This provides
a benchmark which can be used to assess the bias associated with ignoring bad outputs.
We report the average annual rates of change in the MCP index and its decomposition
into technical change and change in efficiency inTable 1 for each of the 46 states in
our sample. Recall that values greater than unity indicate an improvement in productivity
performance, while values less than unity indicate deterioration. Remarkably, every state
exhibits a positive and generally substantial average annual rate of productivity growth.
Moreover, our results suggest that technical change dominates efficiency change as a source
of productivity growth.

Before reporting productivity growth rates that account for the detrimental effects on
water quality, we examine the trends in production of the bad outputs.Fig. 1plots the time
paths of both pesticide leaching and runoff for the period 1960–1996 for the aggregate farm
sector. We observe an upward trend in both pesticide leaching and runoff between 1960
and 1974. The two series trended downward between 1976 and 1984. After 1984, pesticide
leaching resumed its upward trend, while pesticide runoff continued to decline.4

2 A description of the data can be found inBall et al. (2002a).
3 A detailed discussion of the construction of these series is provided inKellogg et al. (2002).
4 We attribute the observed reduction in risk from exposure to pesticides to passage of the Federal Environmental

Pest Control Act (FEPCA) of 1972, which significantly increased authority to regulate pesticides. The FEPCA
allowed registration of a pesticide only if it did not cause unreasonable adverse effects to human health or the
environment. It also required an examination of the safety of all previously registered pesticides using new health
and environmental criteria. Pesticides with risks that exceeded those criteria were subject to cancellation.
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Table 1
Productivity growth in US agriculture, 1960–1996

STATE MCP EFFCH TECH

AL 1.0267 1.0034 1.0232
AR 1.0360 1.0096 1.0262
AZ 1.0071 0.9813 1.0263
CA 1.0241 0.9980 1.0262
CO 1.0219 0.9951 1.0269
CT 1.0346 1.0102 1.0241
DE 1.0336 1.0078 1.0256
FL 1.0287 1.0000 1.0287
GA 1.0382 1.0113 1.0266
IA 1.0210 0.9964 1.0247
ID 1.0321 1.0026 1.0294
IL 1.0247 0.9952 1.0297
IN 1.0265 0.9974 1.0292
KS 1.0213 0.9945 1.0269
KY 1.0269 0.9991 1.0278
LA 1.0368 1.0084 1.0282
MA 1.0291 1.0048 1.0242
MD 1.0258 1.0025 1.0233
ME 1.0240 0.9997 1.0242
MI 1.0312 1.0037 1.0274
MN 1.0192 0.9952 1.0241
MO 1.0184 0.9944 1.0242
MS 1.0375 1.0081 1.0291
MT 1.0150 0.9866 1.0289
NC 1.0393 1.0108 1.0282
ND 1.0295 1.0007 1.0288
NE 1.0265 0.9983 1.0282
NH 1.0261 1.0004 1.0257
NJ 1.0260 1.0000 1.0260
NM 1.0257 0.9998 1.0258
NY 1.0171 0.9932 1.0241
OH 1.0233 0.9946 1.0288
OK 1.0155 0.9896 1.0261
OR 1.0243 0.9961 1.0283
PA 1.0263 1.0010 1.0253
SC 1.0374 1.0082 1.0289
SD 1.0209 0.9980 1.0230
TN 1.0199 0.9956 1.0244
TX 1.0175 0.9930 1.0246
UT 1.0151 0.9896 1.0258
VA 1.0255 1.0005 1.0249
VT 1.0282 1.0030 1.0251
WA 1.0334 1.0017 1.0316
WI 1.0109 0.9892 1.0219
WV 1.0151 0.9919 1.0234
WY 1.0103 0.9828 1.0280
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Fig. 1. Environmental indicators for US agriculture, 1960–1996 (in million TEUs).

Average annual rates of change in pesticide leaching and runoff for each of the 46
states are reported inTable 2 for the complete 1960–1996 period and for two sub-
periods—1960–1974 and 1974–1996. Our choice of sub-periods delineates the era of in-
creased regulatory scrutiny of pesticides.5 During the 1960–1974 period, all 46 states in
our sample exhibited increases in pesticide leaching. Although the growth rates slowed
dramatically during the 1974–1996 period, few states actually reduced pesticide leaching.
In fact, the level of pesticide leaching in 1996 exceeded that in 1960 in every state. As
for pesticide runoff, the positive growth rates observed during the 1960–1974 period were
largely reversed during the subsequent time period. Thirty-six of 46 states reduced pesticide
runoff between 1974 and 1996. Twenty-five states achieved reductions from 1960 levels.

The risk from pesticide leaching and runoff varied markedly over space as well as over
time. The spatial distributions for the two indicators are displayed inFigs. 2 and 3. We see
that the risk from pesticide runoff is greatest in the Upper Mississippi, Ohio, and Great
Lakes Water Resource Regions. The risk from pesticide leaching is high in some of these
same areas, but is also a concern in the South Atlantic and Gulf regions.

This brings us to the main theme of this paper, the measurement of productivity when
there are externalities in production.Table 3provides estimates of productivity growth

5 See footnote 2 above.
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Table 2
Growth rates of undesirable outputs, 1960–1996

State Average annual growth rates (leaching) Average annual growth rates (runoff)

1960–1974 1974–1996 1960–1996 1960–1974 1974–1996 1960–1996

AL 0.1893 −0.0230 0.0596 −0.0491 −0.0257 −0.0348
AR 0.2477 0.0536 0.1291 0.1083 0.0008 0.0426
AZ 0.3689 0.1396 0.2299 0.0754 −0.0863 −0.0234
CA 0.0248 0.0285 0.0270 0.0166 0.0326 0.0264
CO 0.0650 0.0193 0.0371 0.1729 −0.0873 0.0139
CT 0.3437 −0.0231 0.1196 0.1063 −0.0322 0.0216
DE 0.2161 −0.0097 0.0781 −0.1025 −0.0160 −0.0496
FL 0.2336 −0.0165 0.0807 −0.1730 −0.0245 −0.0822
GA 0.1669 0.0342 0.0858 −0.1500 −0.0106 −0.0648
IA 0.3730 0.0002 0.1452 0.0366 −0.0434 −0.0123
ID 0.1061 −0.0122 0.0338 0.0843 −0.0765 −0.0140
IL 0.2020 0.0167 0.0887 −0.0211 −0.0359 −0.0301
IN 0.3292 0.0052 0.1312 0.0560 −0.0649 −0.0179
KS 0.2511 0.0148 0.1067 0.0582 −0.0383 −0.0008
KY 0.2063 0.0227 0.0941 −0.0151 0.0092 −0.0002
LA 0.2269 0.0689 0.1303 0.0798 0.0272 0.0476
MA 0.3406 −0.0270 0.1160 0.1358 −0.0056 0.0494
MD 0.2476 0.0010 0.0969 −0.1028 0.0208 −0.0273
ME 0.4849 −0.2771 0.2299 0.1005 −0.0466 0.0106
MI 0.2518 −0.0182 0.0868 0.0747 −0.0099 0.0230
MN 0.3456 −0.0310 0.1155 0.1013 −0.0263 0.0233
MO 0.2320 0.0129 0.0981 0.0103 −0.1104 −0.0634
MS 0.2554 0.0250 0.1146 0.0664 −0.0068 0.0217
MT 0.0288 0.0186 0.0225 0.1487 −0.1034 −0.0053
NC 0.3073 0.0436 0.1462 −0.0931 −0.0725 −0.0805
ND 0.3569 −0.1326 0.0578 0.0411 −0.0378 −0.0071
NE 0.2877 0.0160 0.1217 0.0542 −0.0229 0.0071
NH 0.3654 −0.1520 0.0610 0.2777 −0.0027 0.1127
NJ 0.2883 −0.0267 0.0958 0.0629 0.0352 0.0460
NM 0.2566 0.0013 0.1006 0.1147 −0.0923 −0.0118
NY 0.4502 −0.0129 0.1672 0.3276 −0.0060 0.1237
OH 0.3560 −0.0341 0.1176 0.0073 −0.0687 −0.0392
OK 0.1725 0.0637 0.1060 0.0569 −0.0696 −0.0204
OR 0.1375 0.0769 0.1004 −0.0091 0.0117 0.0036
PA 0.3362 −0.0187 0.1193 0.1168 0.0225 0.0592
SC 0.2528 0.0134 0.1065 −0.1082 −0.0460 −0.0702
SD 0.1664 −0.0567 0.0301 0.0764 −0.0358 0.0078
TN 0.1745 0.0076 0.0725 0.0114 −0.0123 −0.0031
TX 0.2214 −0.0010 0.0855 0.0719 −0.0467 −0.0005
UT 0.0990 0.0589 0.0754 0.1426 −0.0571 0.0206
VA 0.3436 0.0000 0.1336 −0.0948 −0.0468 −0.0655
VT 0.3048 0.0195 0.1305 0.2811 0.0135 0.1176
WA 0.1147 0.0924 0.1010 0.0404 0.0010 0.0163
WI 0.3505 −0.0302 0.1178 0.3231 −0.0017 0.1246
WV 0.1588 −0.0345 0.0407 −0.0718 −0.0070 −0.0322
WY 0.1944 0.0758 0.1219 0.1380 −0.1174 −0.0181
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Fig. 2. Regional distribution of pesticide leaching, 1996 (in million TEUs).

Fig. 3. Regional distribution of pesticide runoff, 1996 (in million TEUs).
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Table 3
Productivity growth including and excluding bads

MCP including bads Infeasible
solutions

MCP excluding bads

1960–1974 1974–1996 1960–1996 1960–1974 1974–1996 1960–1996

AL 1.2108 1.0220 1.0968 1.0336 1.0219 1.0267
AR 1.0419 1.0301 1.0350 24 1.0460 1.0289 1.0360
AZ 0.9916 1.0728 1.0247 1.0120 1.0036 1.0071
CA 1.0171 1.0217 1.0212 18 1.0282 1.0212 1.0241
CO 1.0110 1.0320 1.0232 1.0229 1.0212 1.0219
CT 1.0191 1.0526 1.0385 1.0222 1.0435 1.0346
DE 1.2514 1.0078 1.1324 10 1.0384 1.0301 1.0336
FL 1.0460 1.0261 1.0390 16 1.0430 1.0186 1.0287
GA 1.3166 1.0204 1.1493 6 1.0516 1.0287 1.0382
IA 0.5595 0.9706 0.7716 1.0132 1.0267 1.0210
ID 1.0123 1.0358 1.0254 11 1.0330 1.0314 1.0321
IL 0.9947 1.0166 1.0074 1.0261 1.0238 1.0247
IN 1.0277 1.0190 1.0226 1.0244 1.0280 1.0265
KS 1.0250 1.0242 1.0245 1.0207 1.0218 1.0213
KY 1.0193 1.0293 1.0252 1.0226 1.0299 1.0269
LA 1.0375 1.0279 1.0319 1.0430 1.0324 1.0368
MA 0.9982 1.0285 1.0168 2 1.0308 1.0278 1.0291
MD 1.0901 1.0308 1.0551 1.0304 1.0226 1.0258
ME 0.9906 1.0128 1.0013 7 1.0302 1.0195 1.0240
MI 1.0686 1.0156 1.0374 1.0407 1.0245 1.0312
MN 0.9941 1.0456 1.0238 1.0110 1.0250 1.0192
MO 0.9646 1.0163 0.9944 1.0131 1.0222 1.0184
MS 1.0624 1.0172 1.0358 1.0545 1.0255 1.0375
MT 1.0178 1.0088 1.0125 1.0244 1.0084 1.0150
NC 1.0183 1.0315 1.0260 1.0469 1.0340 1.0393
ND 0.8019 0.6046 0.7444 17 1.0373 1.0240 1.0295
NE 1.0326 1.0293 1.0307 1.0217 1.0299 1.0265
NH 1.0194 1.0147 1.0163 7 1.0444 1.0132 1.0261
NJ 1.0344 1.0344 15 1.0156 1.0335 1.0260
NM 1.0291 1.0477 1.0394 2 1.0344 1.0195 1.0257
NY 0.9955 1.0269 1.0154 3 1.0160 1.0179 1.0171
OH 0.8738 1.0112 0.9515 1.0367 1.0138 1.0233
OK 1.0286 1.0021 1.0131 1.0285 1.0063 1.0155
OR 1.2636 1.0361 1.1070 30 1.0421 1.0117 1.0243
PA 1.0128 1.0316 1.0237 1.0214 1.0298 1.0263
SC 1.0267 1.0263 1.0265 1.0489 1.0292 1.0374
SD 1.0119 1.1622 1.0933 2 1.0076 1.0306 1.0209
TN 1.0487 1.0129 1.0277 1.0301 1.0127 1.0199
TX 1.0368 1.0133 1.0230 1.0302 1.0085 1.0175
UT 1.1738 1.1738 35 1.0111 1.0179 1.0151
VA 1.0401 1.0320 1.0353 1 1.0295 1.0226 1.0255
VT 0.9709 1.0229 1.0037 3 1.0465 1.0153 1.0282
WA 1.0426 1.0398 1.0410 9 1.0437 1.0261 1.0334
WI 1.0288 1.0106 1.0181 1.0071 1.0136 1.0109
WV 1.0355 1.0293 1.0319 1.0218 1.0104 1.0151
WY 0.9981 1.0668 1.0330 5 1.0147 1.0071 1.0103
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for each state that account for joint production of good and bad outputs. For comparison
purposes, we also include the productivity growth rates fromTable 1. First, note that the
inclusion of bad outputs in the measurement of productivity growth has a marked impact
on the rank order of state growth rates. The Spearman rank correlation coefficient between
the two models is 0.32.

Consider the sub-period 1960–1974. The risk from exposure to pesticides was generally
increasing over this period. Therefore, we would expect that a measure of productivity
that explicitly accounts for joint production of goods and bads would exhibit slower growth
than measures that ignore bad outputs. A comparison of productivity growth rates inTable 3
reveals that for 26 states (AR, AZ, CA, CO, CT, IA, ID, IL, KY, LA, MA, ME, MN, MO,
MT, NC, ND, NH, NM, NY, OH, PA, SC, VT, WA, and WY) the MCP index including
bad outputs increases more slowly than does the MCP index excluding bads. In eight states
(AL, DE, FL, GA, MD, OR, VA, and WV) where the MCP index including bad outputs
increases more rapidly, we observe reductions in pesticide runoff. However, in 10 states
(IN, KS, MI, MS, NE, OK, SD, TN, TX, and WI), we observe seemingly contradictory
results. Our MCP index including bads increases more rapidly, notwithstanding increases
in both pesticide leaching and runoff.

Turning our attention to the 1974–1996 period, we see that 36 states achieved reductions
in pesticide runoff. However, in 18 of the 36 states, pesticide leaching continued its upward
trend. Our MCP index including bads points to slower productivity growth in 10 of these
states (GA, IA, IL, IN, MO, MS, NC, NE, OK, and SC). Nineteen states reduced pesticide
leaching during this period. Relatively rapid productivity growth was indicated for 13 of
the 19 states (AL, CT, FL, ID, MA, MN, NH, NJ, NY PA, SD, TX, and WV). Seventeen
states achieved reductions in both pesticide leaching and runoff. Our MCP index including
bad outputs grew more rapidly than the alternative measure in 11 of these states (AL, CT,
FL, ID, MA, MN, NH, NY, SD, TX, and WV). For two states (KY and LA) where both
leaching and runoff increased, slower productivity growth was indicated. Still, for a number
of states, we obtain empirical results that appear to be in conflict with our theoretical model.
We attribute this to our focus on average growth rates over a period of years rather than on
actual year-to-year changes in the series.

To investigate, we examine the time paths of production of the bad outputs and the alterna-
tive measures of productivity for selected states.Fig. 4plot the indexes of pesticide leaching
and runoff for Iowa for the period 1960–1996. Observe that pesticide leaching increased
sharply from 1960 to 1978, and declined thereafter. The increase in pesticide runoff over this
period was less pronounced. If our concern is the measurement of productivity growth over
the 1960–1978 period, we would expect the MCP index including bads to increase relatively
slowly. Conversely, if our focus is the 1978–1996 period when the production of bads was
declining, we would expect this measure to exhibit more rapid productivity growth.

Indeed,Fig. 5 shows a dramatic slowdown in productivity growth between 1960 and
1978 based on the more inclusive measure. The MCP index excluding bads suggests strong
productivity growth over this period. The MCP index including bads increased more rapidly
over the 1978–1996 period, reflecting the decline in both pesticide leaching and runoff.

In Fig. 6, we present the indicators of environmental risk for Illinois. The risk from
pesticide runoff is increasing over the 1960–1979 period and from pesticide leaching over
the 1960–1980 period. There are no discernable trends in either leaching or runoff after
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Fig. 5. Alternative productivity growth rates for Iowa, 1960–1996.

Fig. 6. Environmental indicators for Illinois, 1960–1996 (in million TEUs).
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Fig. 7. Alternative productivity growth rates for Illinois, 1960–1996.

1980. Again, when the risks from pesticide leaching and runoff are increasing, we see from
Fig. 7 that our MCP index including bads increases more slowly than does the alternative.
However, when the level of risk is constant (as is the case for the period 1980–1996), the
two measures of productivity growth are quite similar.

Our last state is Nebraska.Fig. 8 plots the time paths of both pesticide leaching and
runoff for Nebraska for the 1960–1996 period. We see no discernable trend in pesticide
runoff over the entire 37-year period. However, the trend line for pesticide leaching is
unmistakably upward sloping. Consider the sub-period from 1968 to 1978 when the risk
from pesticide leaching is increasing most rapidly. We see fromFig. 9that our MCP index
including bads increases more slowly. Also note that during the period 1978–1986 when
both leaching and runoff trended downward, our MCP index including bads points to more
rapid productivity growth. Finally, during the sub-period 1988–1996 when production of
both bads are increasing, our MCP index including bads provides a lower bound on our
estimates of productivity growth.

We now turn to a discussion of the productivity performance of the aggregate farm sector.6

Referring toFig. 1, we see that both pesticide leaching and runoff increased from 1960 to
1972. Both series trend downward from 1972 to 1984. After 1984, the two series diverge.
We plot indexes of productivity growth over these three sub-periods inFig. 10. And again

6 Productivity growth for the aggregate farm sector is computed as the weighted geometric mean of productivity
growth rates across individual states, where the weights are optimal cost shares for each state. These optimal cost
shares are computed from the solution of our linear programming problems.
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Fig. 9. Alternative productivity growth rates for Nebraska, 1960–1996.

Fig. 10. Alternative productivity growth rates for US Agriculture, 1960–1996.
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we see that ignoring bads when their production is increasing results in an overstatement
of productivity growth. In fact, our MCP index including bads shows negative productivity
growth over the 1960–1972 period, while its counterpart points to gains in productivity.
Ignoring reductions in bads results in an understatement of productivity growth over the
period 1982–1984. Finally, when the two series move in opposite directions, as in the
1984–1996 period, our MCP index including bads points to stronger growth in productivity
than does the alternative.

4. Summary and conclusions

This paper suggests a procedure for measuring productivity growth in the presence of
externalities (or other social outputs). The absence of price data for most externalities or
social outputs is a limiting factor in measuring productivity growth using conventional
growth accounting and index number approaches. Our procedure allows us to model joint
production of good output and the external effect without requiring data on (shadow) prices
of the externality. This allows us to specify a practical measure of enhanced productivity
which can be used as a benchmark for corporate social behavior. Here we focused on envi-
ronmental responsibility, but the general technique could be adapted to other social outputs.

As an illustration, we provide an application using a state-by-year panel of the US
agricultural sector which includes data on environmental risk due to pesticide leaching
and runoff. More specifically, we show that measures of productivity growth that ignore
bad outputs are biased upward when the production of bads is increasing. Conversely,
when the environmental risks associated with production are decreasing, this same measure
understates the social benefits of production and, hence, productivity growth.
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