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This paper studies portfolios under risk and stochastic constraints. Certainty equivalents combine risk aversion and exponential utility
to form the objective. Budget and stochastic constraints on the account balance are used to ensure a positive net worth over time.
These portfolio models are analyzed by functional conjugate duality for general distributions and by conjugate duality for the normal
distribution. All the programs are convex. The duals provide insight into this approach and relate it to other stochastic and financial
concepts.

1. Introduction

One of the major thrusts in financial engineering is the man-
agement and optimization of risky portfolios. Although this
is a well-researched area (Merton, 1990), it is still a mine
of unsolved and intractable problems that has attracted the
attention of researchers from a diversity of disciplines in-
cluding economics, mathematics, computer science, physics
and engineering. The basic portfolio problem involves the
allocation of a fixed amount of wealth among a finite set of
investment alternatives where each alternative has an uncer-
tain return. In one of the earliest models (Markowitz, 1952),
the objective is to maximize the expected return while min-
imizing risk as measured by the variance-covariance ma-
trix of the portfolio. Current research generally focuses on
an objective of the investor’s expected lifetime utility and
attempts to incorporate issues such as taxes and investor
preferences as well as risk (Ziemba and Mulvey, 1998).
Another approach focuses on shorter term percentile mea-
sures such as Value at Risk (VaR) or Conditional Value at
Risk (CVaR) (Jorion, 2000; Uryasev, 2000). Solution proce-
dures are generally based on stochastic dynamic program-
ming or stochastic programming (Kall and Wallace, 1994;
Prekopa, 1995; Birge and Louveaux, 1997). One approach
to risk that has had significant success in management ap-
plications is to treat uncertainty by a certainty equivalent
(Pratt, 1964). This is the approach that we adopt in this
paper.

In an earlier paper, the risky static-portfolio selection
problem was embedded into function space and analyzed

by certainty equivalents and geometric programming for
functionals (Jefferson et al., 1979). In this paper, we first
revisit the static model before going on to study the risky
dynamic portfolio problem including stochastic constraints
with a view to providing insight on this important class of
problems through analysis and duality.

The first feature of the risky portfolio problem is the use of
certainty equivalents to reduce risk. Instead of maximizing
return, Pratt (1964) proposed that the utility be maximized
under the assumption that the decision-maker has an ex-
ponential utility function: U(x) = 1/r (1 − exp(−r x)). If p
is the random variable of return, then the certainty equiv-
alent, π , is proven by Pratt to be independent of the ini-
tial wealth: π (p) = −1/r ln(Ep[exp(−rp)]), where r > 0, is
the risk aversion parameter for the decision-maker. In the
limit, as r goes to zero, the certainty equivalent function
π tends to the risk-neutral function of the return. Thus, in
the risky portfolio problem, we will want to maximize the
present value of the certainty equivalents over a given time
horizon.

2. The models

2.1. The static model

The foundation of the risky dynamic portfolio problem is
the risky static-portfolio problem. Suppose there is a budget
of C and n projects, each with a cost of Cj and a stochastic
return of xj, j = 1, . . . , n. Let sj be the fraction of the jth
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932 Jefferson and Scott

project invested in, then the formulation is:

max −
n∑

j=1

(1/r ln(E[exp(−rsjxj)]) + sjCj), (1)

subject to

n∑
j=1

sjCj ≤ C, (2)

0 ≤ sj ≤ 1, ∀j. (3)

In Jefferson et al. (1977), the static model was optimized
over the sj. Here, to gain insight into the risk-aversion pa-
rameter r , the model will be optimized over r and sj. Fur-
ther insights are obtained when the random variables are
assumed to be independent normal. Both of these models
with be analyzed using the duality presented in the next
section

2.2. The dynamic model

A more realistic, but more complicated portfolio model has
returns or costs spread over a time horizon and an objective
of maximizing the risk-adjusted discounted cash flow. Index
the present and future cash flows over t = 0,. . . ,T and let
the interest rate be i. The risk-adjusted dynamic portfolio
model is:

max −
T∑

t=0

(1 + i)−t
n∑

j=1

(1/r ln E[exp(−rsjxtj)]) −
n∑

j=1

sjCj,

(4)
subject to

n∑
j=1

sjCj ≤ C, (5)

0 ≤ sj ≤ 1, ∀j. (6)

Typically the portfolio will be reviewed yearly or more
frequently and updated with new figures, information and
projects. It is the adaptive use of the portfolio model, which
makes it truly dynamic. Again, to gain insight into the
dynamic portfolio model, it will be analyzed for general
distributions and for a typical normal distribution using
duality.

2.3. The dynamic model with stochastic constraints

Whereas certainty equivalents lead to a conservative port-
folio, they do not check each time period to see that we are
running a positive balance; however, our bankers will do so.
In order to ensure that we run a positive balance in every
time period, stochastic constraints are required. This leads
to the third model under consideration. Here the probably
of the accrued cash balance being negative is kept to a small

probability pT ′, 0 ≤ T ′ ≤ T :

max −
T∑

t=0

(1 + i)−t
n∑

j=1

(1/r ln(E[exp(−rsjxtj)])) −
n∑

j=1

sjCj, (7)

subject to

∫
1N

[
T ′∑

t=0

(1 + i)T ′−t
n∑

j=1

sjxtj + (1 + i)T ′
(

C −
n∑

j′=1

sj′Cj′

)]

× dF(x) ≤ pT ′, 0 ≤ T ′ ≤ T, (8)
n∑

j=1

sjCj ≤ C, (9)

0 ≤ sj ≤ 1, ∀j. (10)

The indicator function 1N() in stochastic constraint (8), is
one when its argument is negative and zero elsewhere.

The next section contains the duality theory for con-
vex functionals needed to analyze the portfolio models
presented above. This takes place in Section 4 of the pa-
per. Results and conclusions are summarized in the final
section.

3. Conjugate duality for convex functionals

In order to understand the models for dynamic financial
planning we will call on a variety of conjugate duals. The
most general is generalized geometric programming for
functionals developed by Scott and Jefferson (1977). Ge-
ometric programming over functionals was also derived in
the same paper. When the probability density functions are
known, the formulations can be analyzed by generalized ge-
ometric programming (Peterson, 1976) and in some cases by
geometric programming (Duffin et al., 1967). For function-
als, consider the space of mappings of the random portfolio
returns z(x) : X → R. We assume that this space is a mea-
surable, complete, separable, real metric space with inner
product: 〈z, z∗〉 = ∫

z(x)z∗(x)dx. Let G(z(x)) be a convex
functional then the following properties of convex func-
tionals over convex sets can be defined in preparation for
calculation of the dual program.

Definition 1. The subgradient set of a convex functional G
defined over a convex domain � at a point x0 is defined by:

∂G(z0(x)) = {z∗ | G(z(x)) − 〈z∗, z − z0〉 ≤ G(z0(x)), ∀z ∈ �}.
(11)

The subgradient set is the set of all sublinear approxima-
tions of G and is the basis for duality.

Definition 2. The conjugate transform of a convex func-
tional G defined on the convex domain � is G∗ defined on
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Dynamic financial planning 933

�∗ where:

G∗(z∗) = supz∈�{〈z, z∗〉 − G(z)}, (12)

and

�∗ = {z∗ | 〈z, z∗〉 − G(z) < ∞}. (13)

The conjugate inequality is a consequence of the
definition of the conjugate transform: G(z) + G∗(z∗) ≥
〈z, z∗〉 with the supremum of the conjugate trans-
form being achieved and the conjugate inequality
equal when z∗ ∈ ∂G(z) provided G is a closed convex
functional.

Definition 3. The positive homogeneous extension of a con-
vex functional G on convex domain � is:

G+(z, λ) =
{
λG(z/λ), λ > 0,

supz∗∈�∗ 〈z, z∗〉, λ = 0,
(14)

�+ = {(z, λ) | supz∗∈�∗ 〈z, z∗〉 < ∞, λ = 0}
× ∪ {(z, λ) | z/λ ∈ �, λ > 0}. (15)

The positive homogeneous extension is important because
the conjugate transform of the 0 functional on the set
{z | G(z) ≤ 0 and z ∈ �} is G∗+(z∗, λ∗) defined on the convex
set �∗+.

Consider the following convex program:

Program A:

inf G0(z0) + G+
1 (z1, λ), (16)

subject to

G2(z2) ≤ 0, (17)
z0 ∈ �0, (z1, λ) ∈ �+

1 , z2 ∈ �2, (18)
z = (z0, z1, z2) ∈ χ, (19)

where χ is a subspace.
Using the definitions above the conjugate dual to pro-

gram A can be derived and is:

Program B:

inf G∗
0(z∗

0) + G∗+
2 (z∗

2, µ
∗), (20)

subject to

G∗
1(z∗

1) ≤ 0, (21)
z∗

0 ∈ �∗
0 , z∗

1 ∈ �∗
1 , (z∗

2, µ
∗) ∈ �∗+

2 , (22)

z∗ = (z∗
0, z∗

1, z∗
2) ∈ χ⊥, (23)

where χ⊥ is the orthogonal complementary subspace to χ .
Note that there can be a multiplicity of constraints in

either program A or program B. Scott and Jefferson (1977)
prove that provided both Programs A and B are consistent
the sum of the objective functions for feasible x and x∗

is non-negative and optimal solutions are related by the
following three conditions:

1. G0(z0) + G+
1 (z1, λ) + G∗

0(z∗
0) + G∗+

2 (z∗
2, µ

∗) = 0, (24)
2. 〈z, z∗〉 = 0, (25)
3. z∗

0 ∈ ∂G0(z0) or z0 ∈ ∂G∗
0(z∗

0),

z∗
1 ∈ ∂G1(z1/λ) or z1/λ ∈ ∂G∗

1(z∗
1), λ > 0, (26)

z∗
2/µ

∗ ∈ ∂G2(z2) or z2 ∈ ∂G∗
2(z∗

2/µ
∗), µ∗ > 0.

The three optimality conditions allow the solution of one
program from the other. These together with both programs
can offer insights into the problem and its solution.

4. Analysis of stochastic dynamic portfolios

We return now to the three portfolio problems presented in
the Introduction and analyze them using conjugate duality.

4.1. The static model

The static portfolio has already been studied in Jefferson
et al. (1979) but there is more that can be revealed if we
ask what is a good value for the risk-aversion parameter
r? It is reasonable to consider that the budget constraint
is binding as one could simply add a project, which is to
put the funds into a government bond. Thus, cost can be
dropped from the objective, as it is a constant. Finally mod-
ify the certainty equivalent by subtracting the reciprocal
of r, as it is reasonable to assume that the risk would be
low for high wealth and high for low wealth. Define λ so
that r = 1/λ and λ ∝ C. This modified certainty equivalent
has meaning, as it has a dual relationship with entropy in
general and with portfolio variance in particular as will be
seen in the analysis. Then the static model can be written
as:

max −
n∑

j=1

(λ ln(E[exp(zj(xj)/λ)])) − λ, (27)

subject to

zj(xj) = −sjxj, ∀j, (28)
n∑

j=1

sjCj ≤ C, (29)

0 ≤ sj ≤ 1, ∀j, λ ≥ 0 (30)

Let fj(xj) be the marginal probability density function
for the probability distribution of xj and converting the
objective into an equivalent minimization problem we see
that the objective takes the form of G+

1 . The formulation
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934 Jefferson and Scott

then is:

min
n∑

j=1

(
λ ln

∫
exp(zj(xj)/λ)fj(xj)dxj

)
+ λ, (31)

subject to

zj(xj) = −sjxj, ∀j, (32)
n∑

j=1

sjCj ≤ C, (33)

0 ≤ sj ≤ 1, ∀j, λ ≥ 0. (34)

Dual program:

min
n∑

j=1

α∗
j + Cγ ∗, (35)

subject to
n∑

j=1

∫
z∗

j (xj) ln(z∗
j (xj)/fj(xj)) dxj ≤ 1. (36)∫

z∗
j (xj) dxj = 1, z∗

j (xj) ≥ 0, (37)∫
xjz∗

j (xj) dxj ≤ Cj(1 + γ ∗) + α∗
j , (38)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j.

At optimality:

−
n∑

j=1

(λ ln(E[exp(zj(xj)/λ)]) − λ

=
n∑

j=1

α∗
j + Cγ ∗, (39)

z∗
j (xj) = fj(xj) exp(−sjxj)∫

fj(xj) exp(−sjxj) dxj
, ∀j, (40)

where γ ∗ is the dual variable of the budget constraint of
Equation (33) and is positive. The α∗

j are the dual vari-
ables for the fraction of the project being invested in Equa-
tion (34). It may be zero or positive, depending on the con-
straint being binding. The sum of these variables, with γ ∗
multiplied by the budget value, C, is the dual objective and
is equal to the original objective. The optimality condition
of Equation (40) says that the dual variable z∗

j is a probabil-
ity distribution discounted by the investment. Note that the
maximization of the certainty equivalent profit implies that
discounted entropy is constrained. Fang et al. (1997) study
entropy optimization. Furthermore, the reciprocal of the
dual variable of the entropy constraint of Equation (36), λ,

is the optimal risk-aversion parameter r .
Up to this point the results do not require any assumption

on the distribution of the returns. If the returns on the port-
folios are assumed to be independent normal, N(µj, σ

2
j ),

then the portfolio problem becomes simpler. Note that the
moment generating function for the normal distribution is:

Mj(−rsj) = exp
( − rsjµj + r2s2

j σ
2
j

/
2
)
, (41)

and thus

π (sjxj) = −1
r

ln(Mj(−rsj)). (42)

4.1.1. The Normal case

min
n∑

j=1

(
s2

j σ
2
j /2λ

) −
n∑

j=1

sjµj + λ, (43)

subject to

n∑
j=1

sjCj ≤ C, (44)

0 ≤ sj ≤ 1, ∀j, λ ≥ 0. (45)

Dual program:

min
n∑

j=1

α∗
j + Cγ ∗, (46)

subject to

n∑
j=1

(s∗
j + µj)2

2σ 2
j

≤ 1, (47)

Cjγ
∗ + α∗

j + s∗
j ≥ 0, ∀j, (48)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j. (49)

At optimality:

sj/λ = (s∗
j + µj)/σ 2

j , ∀j. (50)

Substituting into the dual nonlinear constraint gives the
following constraint:

n∑
j=1

σ 2
j s2

j /(2λ2) ≤ 1. (51)

This means that the optimal value of λ2 is half the variance
of the portfolio. Thus, r is

√
2 divided by the standard de-

viation of the portfolio. This provides a link between risk
and variance. The original paper on portfolio analysis by
Markowitz (1952) uses a similar objective and his parame-
ter to balance return and risk is equivalent to r or λ. This
is also shown to be equivalent to CVaR or VaR in this case
(Rockafellar and Uryasev, 2000).

4.2. The dynamic model

Let us now fix the risk aversion parameter r and look at
the dynamic model. The risk-adjusted dynamic portfolio
program is equivalent to:

min
T∑

t=0

(1 + i)−t

r

n∑
j=1

(ln(E[exp(−rsjxtj)]) +
n∑

j=1

sjCj, (52)
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Dynamic financial planning 935

subject to

n∑
j=1

sjCj ≤ C, (53)

0 ≤ sj ≤ 1, ∀j. (54)

Dual program:

min
T∑

t=0

n∑
j=1

∫
z∗

tj(xtj) ln[z∗
tj(xtj)r (1 + i)t/ftj(xtj)] dxtj

+
n∑

j=1

α∗
j + Cγ ∗, (55)

subject to

∫
r (1 + i)t z∗

tj(xtj) dxtj = 1, r (1 + i)t z∗
tj(xtj) ≥ 0 ∀tj, (56)

T∑
t=0

r
∫

xtjz∗
tj(xtj) dxtj ≤ Cj(1 + γ ∗) + α∗

j , (57)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j. (58)

At optimality:

r (1 + i)t z∗
tj(xtj) = ftj(xtj) exp(−rsjxtj)∫

ftj(xtj) exp(−rsjxtj) dxtj
, ∀tj. (59)

The dual program becomes more understandable with the
following transformation of variables:

y∗
tj(xtj) = r (1 + i)t z∗

tj(xtj), ∀tj. (60)

The transformed dual is:

min
T∑

t=0

(1 + i)−t

r

n∑
j=1

∫
y∗

tj(xtj) ln[y∗
tj(xtj)/ftj(xtj)] dxtj

+
n∑

j=1

α∗
j + Cγ ∗ (61)

subject to

∫
y∗

tj(xtj) dxtj = 1, y∗
tj(xtj) ≥ 0, ∀tj (62)

T∑
t=0

(1 + i)−t
∫

xtjy∗
tj(xtj) dxtj ≤ Cj(1 + γ ∗) + α∗

j , (63)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j. (64)

At optimality:

T∑
t=0

(1 + i)−t

/
r

n∑
j=1

(ln(E[exp(−rsjxtj])) +
n∑

j=1

sjCj

+
T∑

t=0

(1 + i)−t

/
r

n∑
j=1

∫
y∗

tj(xtj) ln(y∗
tj(xtj)/ftj(xtj)) dxtj

+
n∑

j=1

α∗
j + Cγ ∗ = 0, (65)

y∗
tj(xtj) = ftj(xtj) exp(−rsjxtj)∫

ftj(xtj) exp(−rsjxtj) dxtj
, ∀tj. (66)

In the dual, the objective is the present value of the en-
tropy plus shadow costs associated with the budget con-
straint and the limitations on investments in projects of
Equation (61). At optimality, this is equal to the profit
described by Equation (65). y∗

tj(xtj) is a probability den-
sity function which is the original distribution, ftj(xtj), dis-
counted by the risky returns described by Equation (66).
The constraint associated with sj equates to the present
value of the returns to costs using the probability function
of Equation (63).

We can see more about risky portfolios if the distribution
is specified. Let us use the normal distribution.

4.2.1. The normal case

min

[
n∑

j=1

s2
j

T∑
t=0

r (1 + i)−tσ 2
tj/2

+
n∑

j=1

sj

(
Cj −

T∑
t=0

(1 + i)−tµtj

)]
, (67)

subject to
n∑

j=1

sjCj ≤ C, (68)

0 ≤ sj ≤ 1, ∀j. (69)

Dual program:

min
n∑

j=1

(
sj − Cj + ∑T

t=0 (1 + i)−tµtj
)2

2r
∑T

t=0 (1 + i)−tσ 2
tj

+
n∑

j=1

α∗
j + Cγ ∗,

(70)

subject to

Cjγ
∗ + α∗

j + s∗
j ≥ 0, ∀j, (71)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j. (72)

The dual holds all the present value calculations and the
normal random variables in a sum of quadratic terms in
the s∗

j . s∗
j is compared with the expected present value of

the project j and scaled by the variance of the project times
the risk parameter r in the objective described by Equation
(70). This is the only term where r appears and shows the
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936 Jefferson and Scott

close relationship between risk and variance. s∗
j is related to

the shadow prices in the constraints of Equation (71).

4.3. The dynamic model with stochastic constraints

For stochastic constraints, let us first convert the problem
into a convex minimization program:

min
T∑

t=0

(1 + i)−t
n∑

j=1

(1/r ln(E[exp(−rsjxtj)])) +
n∑

j=1

sjCj,

(73)

subject to

∫
1N

[
T ′∑

t=0

(1 + i)T ′−t
n∑

j=1

sjxtj + (1 + i)T ′
(

C −
n∑

j′=1

sj′Cj′

)]

× dF(x) ≤ pT ′, 0 ≤ T ′ ≤ T, (74)
n∑

j=1

sjCj ≤ C, (75)

0 ≤ sj ≤ 1, ∀j, (76)

Dual program:

min
T∑

t=0

n∑
j=1

∫
z∗

tj(xtj) ln[z∗
tj(xtj)r (1 + i)t/ftj(xtj)] dxtj

+
n∑

j=1

α∗
j + Cγ ∗ +

T∑
T ′=0

(1 + i)T ′
Cq∗

T ′ (77)

subject to∫
w∗

T ′(x) dF(x) + q∗
T ′ = 0, ∀T ′, (78)∫

1N(−w∗
T ′(x)) dF(x) ≤ pT ′, ∀T ′, (79)∫

r (1+ i)t z∗
tj(xtj) dxtj = 1, r (1+ i)t z∗

tj(xtj) ≥ 0 ∀tj, (80)

T∑
t=0

r
∫

xtjz∗
tj(xtj) dxtj

≤
T∑

T ′=0

∫ (
T ′∑

t=0

(1 + i)T ′−t xtj − (1 + i)T ′
Cj

)
w∗

T ′(x) dF(x)

+ Cj(1 + γ ∗) + α∗
j , (81)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j. (82)

At optimality:

r (1 + i)t z∗
tj(xtj) = ftj(xtj) exp(−rsjxtj)∫

ftj(xtj) exp(−rsjxtj) dxtj
, ∀tj. (83)

The dual program becomes more understandable with
the following transformation of variables:

y∗
tj(xtj) = r (1 + i)t z∗

tj(xtj), ∀tj. (84)

The transformed dual is:

min
T∑

t=0

(1 + i)−t

r

n∑
j=1

∫
y∗

tj(xtj) ln[y∗
tj(xtj)/ftj(xtj)] dxtj

+
n∑

j=1

α∗
j + Cγ ∗ −

T∑
T ′=0

(1 + i)T ′
C

∫
w∗

T ′(x) dF(x), (85)

subject to∫
1N(−w∗

T ′(x)) dF(x) ≤ pT ′, ∀T ′, (86)∫
y∗

tj(xtj) dxtj = 1, y∗
tj(xtj) ≥ 0 , ∀tj, (87)

T∑
t=0

(1 + i)−t
∫

xtjy∗
tj(xtj) dxtj

≤
T∑

T ′=0

∫ (
T ′∑

t=0

(1 + i)T ′−t xtj − (1 + i)T ′
Cj

)
w∗

T ′(x) dF(x)

+ Cj(1 + γ ∗) + α∗
j , ∀j, (88)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j. (89)

At optimality:

y∗
tj(xtj) = ftj(xtj) exp(−rsjxtj)∫

ftj(xtj) exp(−rsjxtj) dxtj
, ∀tj. (90)

For the case with stochastic constraints, we see many
of the same properties as before. In addition, the stochastic
constraints also appear in the dual of Equation (86), making
the dual more complex than the primal. Let us see the result
when the distribution is specified to be normal.

4.3.1. The normal case

min

[
n∑

j=1

s2
j

T∑
t=0

r (1 + i)−tσ 2
tj/2

+
n∑

j=1

sj

(
Cj −

T∑
t=0

(1 + i)−tµtj

)]
, (91)

subject to

n∑
j=1

sj

(
T ′∑

t=0

(1 + i)T ′−tµtj − (1 + i)T ′
Cj) + (1 + i)T ′

C

+ zpT ′

√√√√ n∑
j=1

s2
j (

T ′∑
t=0

(1 + i)2(T ′−t)σ 2
tj

)
≥ 0, ∀T ′, (92)

n∑
j=1

sjCj ≤ C, (93)

0 ≤ sj ≤ 1, ∀j. (94)

In the probability constraints of Equation (92), zpT ′ is
the value of the standard normal for which the cumulative
probability is pT ′ . For a cumulative probability of 0.05 that
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value would be equal to –1.645. For negative values of zpT ′ ,
the program is convex and has a dual, which is given below.

Dual program

min
n∑

j=1

(
s∗

j − Cj + ∑T
t=0 (1 + i)−tµtj

)2

2r
∑T

t=0 (1 + i)−tσ 2
tj

+
n∑

j=1

α∗
j + Cγ ∗ +

T∑
T ′=0

(1 + i)T ′
Cν∗

T , (95)

subject to

n∑
j=1

(w∗
T ′)2 ≤ z2

pT ′ , ∀T ′, (96)

T∑
T ′=0

[
w∗

T ′j( ∑T ′
t=0 (1 + i)2(T ′−t)σ 2

tj

)
−

(
T ′∑

t=0

(1 + i)T ′−tµtj − (1 + i)T ′
Cj

)
ν∗

T ′

]

+ Cjγ
∗ + α∗

j + s∗
j ≥ 0, ∀j, (97)

γ ∗ ≥ 0, α∗
j ≥ 0, ∀j, ν∗

T ′ ≥ 0, ∀T ′, w∗
T ′j ≥ 0, ∀T ′, j.

(98)

The stochastic constraints in the primal add quadratic
constraints to the dual of the dynamic portfolio problem
described by Equation (96). The w∗

T ′j, are the contribution
to the value squared of zpT ′ , from the project j in time pe-
riod T ′. ν∗

T ′ is the dual variable for the stochastic constraint
on the accounts at time period T ′ given by Equation (92).
All in all, the dual is a quadratically-constrained quadratic
program, which is a reasonable way to solve the dynamic
portfolio problem with stochastic constraints. See Peter-
son and Ecker (1970) for more analysis of this class of
programs.

5. Results and conclusions

In this paper we have analyzed risky portfolio problems,
both non-parametric and parametric, in static, dynamic,
and stochastic versions. All were found to be convex
and amenable to the calculation of a dual. For the non-
parametric case, the dual was found by embedding the
problem in function space and using functional conju-
gate duality. For the parametric (normal) case, the gener-
alized geometric programming form of conjugate duality
was used. This analysis leads to insights into risky portfo-
lios, which are useful to both practitioners and to problem
solvers.

The static model provides a linkage between certainty
equivalents and constrained entropy. For the normal case,
a recommended value of the risk parameter is related to the
reciprocal of the portfolio standard deviation.

The dynamic model transforms the present value of the
certainty equivalent into the present value of the entropy
over a distribution, which is discounted by the risk parame-
ter for high returns. Thus, we see the two types of discount-
ing (over time and over risk) working together.

Adding stochastic constraints to the dynamic model
leads to a complicated but convex dual in the non-
parametric case. In the normal case, the dual is a
quadratically-constrained quadratic program, amenable to
solution. Each stochastic constraint transforms to a simple
quadratic constraint in the dual.

Overall there is a close relationship among risk, vari-
ance, certainty equivalents, moment generating functions
and entropy. There is also a link between discounting over
time with interest and over return with risk. This analy-
sis should encourage the use and understanding of these
concepts in managing uncertainty and risk.
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