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Abstract

This paper considers the mixed sensitivity optimization problem for a class of infinite-dimensional stable plants. This
problem is reducible to a two- or one-blodk® control problem with structured weighting functions. We first show that
these weighting functions violate the genericity assumptions of existing Hamiltonian-based solutions such as the well-known
Zhou—Khargonekar formula. Then, we derive a new closed form formula for the computation of the optimal performance
level, when the underlying plant structure is specified by a pseudorational transfer function.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Pseudorational transfer function; Infinite-dimensional systems; Mixed sensitivity optimizatishrontrol; Skew-Toeplitz
approach

1. Introduction with m being an pure time delay, anf given as a
strictly proper rational function, a closed form expres-
Since mid-1980s various methods have been de- sion has been obtained by Zhou and Khargonfl&it
veloped for theH* control of infinite-dimensional  The formula has been extended to more general cases
systems. In particular, for the one-block problem of in [3,8,10,14] Let H, w be the Hamiltonian matrix
finding associated withV and p:

= inf |W-—
Popt OcH® I mQlleo ' A BBT/p
- = Hyw:= —CTCl/p  —AT |’ 1)
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the (2, 2)-block of matrix M partitioned accordingly
to (1). Recently, irf7], it was shown that when a plant
is pseudorationg12], m(H, w) is easily obtainable
without numerical computations of poles and zeros of
the transfer function; see Lemma 2.

In this paper, we consider the mixed sensitivity op-
timization problem

Yopt - = in
opt C stabilizingP

Wi+ PC)~? @
W, PC(1+ PO) ]|

whereW; and W, are rational weights, anfd is a sta-
ble pseudorational plant. This problem is known to be
a typical two-block problem, for which a Hamiltonian-
based formula is obtaindd]. However, this result is
not directly applicable, since a “generic” assumption
of the formula is almost always violatd€]. In view

of this, we derive a Hamiltonian-based formula for
the optimal mixed sensitivity computation, by reduc-
ing this structured two-block problem to a one-block
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of distributions having support bounded on the left.
Clearly ¢'(R-) c Z'.(R). If a distribution o is
Laplace transformable, its Laplace transform is de-
noted bya(s).

2. Preliminaries on pseudorational systems

In this section we review certain basic facts on
pseudorational systems. This class of systems has
been introduced in the late 1980’s, and plays a crucial
role in realization, modeling, and control of infinite-
dimensional systems, especially delay-differential
systemq12,13}

Definition 1. Letf be a distribution having support in
[0, 00). It is said to bepseudorationalf there exist
q, p € &'(R_) such that

problem. This result can be viewed as an extension of (1) ¢! exists overZ’, (R),

the Zhou—Khargonekar formula to a specifically struc-
tured one-block problem.

The paper is organized as follows: in the next sec-
tion we review some preliminary results on pseudora-
tional systems. In Section 3, we briefly summarize the
observations made {7] and state drawbacks in more
precise terms. In Section 4, we derive a Hamiltonian-
based solution for the structured one-block problem.
A numerical example is given in Section 5, and con-
cluding remarks are made in the last section.

Notation and Convention

As usual,H? and H” denote the Hardy-spaces
on the open right- and left-half complex planes, re-
spectively. Letg(s) := g(—s). For an inner function
m, let H(m) be the orthogonal complement afH?

in Hilbert spaceH?. It is known[5] that
H(m) = {x € H? : nix € H?}. )

For a given distribution (in the sense of Schwd4&}p)
«, suppx denotes itsupport[9], and

(o) := inf{r : t € suppa},
r(a) = supt : t € suppx}.

Let &'(R_) denote the space of distributions having
compact support in—oo,0]. 7’ (R) is the space

(2) ordg~—! = —ordg,

(3) f can be written ay =¢~1

* p,
whereg~1 is taken with respect to convolution and
ordg denotes therder of a distributionq [9].

If fis pseudorational, its associated transfer func-
tion f is also said to be pseudorational. From the
Paley—Wiener—Schwartz theord®i, in the Laplace
domain, every pseudorational transfer function is a ra-
tio of entire functions of exponential type—the sim-
plest extension of rational functions. For a stable pseu-
dorational planfP, even ifP is not necessarily inner,

= inf |W—-P 4
popt QeH™ ” Q”oo ( )

can be computed by the following:

Lemma 2 (Kashima and Yamamot$7]). Suppose
that P can be factorized agi1p»>/q with ¢, p1, p2 €
&'(R-) such thatg 1, p7t, &2 51 e H>, that

is, p1 and p, denote the stable and anti-stable parts
of the numeratarrespectively. Assume also thgtp,

is analytic on the set of eigenvalues &}, w. Define

L :=—{(q) + €(p1) — r(p2) and

_Ls ]32 (S)
pals)

®)

my(s) =¢€
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Then pgy in (4) is the maximalp that satisfies  that unlessW; and W, are chosen in a specific way,
det(m,(Hp w)l22) = 0. W and V will have common polgse., the assumption
above is almost always violated.

On the other hand, by (7), (8) and (10), we have
3. Mixed sensitivity optimization problem

P2 = WW = VV =92 — WW,G(W, Wy + W, W)G
3.1. Two-block problem =92 — W,W,~ (11)

In this section, we show that the weighting functions  Thus (11) may help us to avoid the “genericity” as-
have a specific structure when we reduce the mixed Sumption. However, in the argument 4], it is dif-
sensitivity optimization problem to the standard two- ficult to introduce such structures shandW, since

block problem. Throughout the paper the pléhts no relationship between these weights was assumed.

assumed to be stable. By the Youla parameterization, In view of this, we reduce the specifically structured

all stabilizing controllers are given in the for = two-block problem to a one-block problem to make

01— PQ)"t, 0 e H®. Hence we obtain use of such structures explicitly.

. Ws(1— PQ) .

Yopt = iNf s 6 -

Jopt= It [ W, PO ”OO (6) 3.2. Reduction to one-block problem

First, introduce the following spectral factorizati@h Again, applying the standard techniques, see e.g.
[2], we now reduce the two-block* problem (9)

G(WWs + WW)G =1, @) to a one-block problem. First, suppose that || V||,

where bothG and G—* have no unstable poles. Then Salisfiés)=7op. Then there exist® € H such that

it follows that

Lo [wer =wer]  [ma O
=lwe wG | 2T 1o 1

W —mgPQP2+|V2P=9% ae.

on the imaginary axis. Here, singe> ||V |, there

are unitary, wherez is a finite Blaschke product that exists a unique spectral factey;:

makes F(>~VV)F,=1 ae. (12)
W = mgW(W,GY 8 -
ma Ws J ® where bothF, andF,,_1 € H®. Therefore, by defining
stable[2]. Multiplying (6) by LoL4 from the left, we W, := F,W, we obtain
obtain )
Yopt=_Inf |:W_mdPQ:|H © Wy —maPQ|°=1 a.e.
P pere |4 o on the imaginary axis. Furthermore it is shoiri]
where that )4 is given by the maximaj such that 1 is a
singular value of theompressioroperatorW, of W,
V= W;W,G. (20) to H (m) defined by

Note that bothW andV are rational and stable. The  w. . H(m) - H@m) : x — W],

problem in the form (9) has been considerefitip and

a solution based on a Hamiltonian related to a realiza- wherem := mym, andz™[-] denotes the orthogonal
tion of Y2 — WW — VVis derived. It is however as-  projection fromH? onto H (m).

sumed in4] thatV and W have no common palé&®r Lemma 2 characterizes the singular values of the
arbitrary rational function¥ andW, this assumption  corresponding compression operafb4], that is, 1

is satisfied generically. However, in the mixed sensi- is a singular value of¥, if and only if m{(H1,w,)|22
tivity problem, the function§vVandV need to be inthe  is not of full rank, whenm is analytic on the set of
form (8) and (10). As seen in Appendix, this means eigenvalues offi; w,. However, W, andm, have a
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specific structure, and we must be careful in applying Lemma 3. Under the definitions aboyé is a singu-
Lemma 2. To see this, let us consider the eigenvalues oflar value of W, if and only if there exists a nonzero
Hiw,. Notice that the eigenvalues of the Hamiltonian vector[éT CT]T € R?™+P) sych that

matrix H, w coincide with the zeros 0p? — WW. "

Egs. (11) and (12) yield ®(s) = (s] — Huw) ™ [’"(g)g] e Hm).  (14)

5 . By invoking the Dunford integral, we can reduce
= — WoWy) FF,.

this lemma to a rank conditiofi4]. PartitionT ac-

Therefore, the eigenvalues &y, arise from those cordingly to (13),
of H, w, or zeros of F, and F,. Unfortunately, the T T
e o . . 11 T2
zeros ofF, coincide with poles ofn,; see Appendix o 15
; To1 T |:=T, (15)
and [6,11] for details. In other words, there always | .= .
) . 31 I3
exists a nonsingular matrik such that
where Ty, Tiz € RZ**P) and other four matrices
are inR?*""*P) \We are now ready to give a formula
for the optimal mixed sensitivity for stable plants.

Hyw, =T~ 'blockdiag #, w,, Aa, —A)T,  (13)

with (sI —Ag) ! € H(my). This means that the poles
of m, are eigenvalues a1, W, s i.e., the assumption of
the lemma is also almost always violated. In practice,
we can circumvent this problem by slightly altering
V and obtain upper and lower bounds for the optimal
value[6].

In what follows, we derive a Hamiltonian-based for-
mula for the optimal mixed sensitivity computation, |:T11 mv~(Hy,WS)T12j|

Theorem 4. Define the matricesHl,Wy, H,w, and

T;; 1=1,2,3,j=12) by (1), (13)and(15). Sup-

| Pose that m is analytic on the set of the eigenvalues
of H, w,. Then the optimal mixed sensitivify, in

(6) is the maximal such that

i.e., the problem of finding the maximalsuch that 1 To1 0
is a singular value oW.. 0 T32

(16)

is not of full rank.

4. Main result ) ]
Proof. From Lemma 3, it suffices to show that there

Consider the singular value equation exists a nonzero vectgt' (T]T e R*"*+7) satisfying
(14) if and only if the matrix in (16) is not of full rank.
y=Wex, x=W}y, SinceT is nonsingular®(s) belongs taH (m) if and
only if so doesT @(s), or equivalently,

where W} is the adjoint operator ofW.. Let
(A,, By, Cy) be a minimal realization oW,. Follow-
ing exactly the same argument [@4, Proposition
2.6], we can show that these equations are character-

(sI — Hyw,) MT11 T12] [m(g)é} € Him),  (17)

ized by finite dimensional vectors as follows: (I — Ag) YTy Tao] m(g)é € H(m) (18)
y= va - m(S)Cy(SI — Ay)ilé: ) _
x=Wyy+ By(sI + AI)_lﬁ, aneh
_ [m(s)E]
whereé, { € R"*? andn andp are the degrees of (87 + Aa) a1 Tazl ¢ |€ Hm). (19)

W, andmy, respectively. Combining these equations
together, and following the same argument as given First consider (17). Letd be a closed rectifiable
in [14], we obtain the following Hamiltonian-based contour that encircles all eigenvalues Hf, w,, but

characterization: none of the singularities ofi. Sincent is analytic at
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eigenvalues of, w,, this is possible. Consider now
the integral

1 -1 ¢
E/A(SI — Hy w,) " "[T11 T12] [m~(s)§] ds.

Notice that, by spectral integral thedty, this integral
equals

T11 Ti2 [g} — m(Hy w)[T11 T12] [?] :

Since (17) holds if and only if this integral is equal to
0, [14], we obtain

T11¢ = m(Hy w,)T12C.

We now consider condition (18). Recall that we have
(sI — Ag) YT € H(my) C H(m). Hence in view
of (3), (18) is equivalent tds/ — Ag) " 1721¢ € H2.
SinceA; has no unstable eigenvalues, this implies

(20)

T51E =0. (21)

For (19), we haven(s)(sI +Ag) "t € myH (mg) C
H (m) and all eigenvalues 6f A, are unstable. There-
fore we must have

T32{ =0. (22)
Combining (20)—(22) together yields
Ti1 my(Hyw,)T12 ¢
T 0 [ C} =0. (23)
0 T32

There exists a nonzeid' (7|7 satisfying (23) if and
only if the matrix in (16) is not of full rank. This
completes the proof.

Remark 5. WhenW; = 0, this problem becomes the
sensitivity optimization, anfiTy; T12]=1 andp =0.

In this case, we can verify that the rank condition
in Theorem 4 is equivalent ta,(H,, w,)|22 is not of
full rank, which is the generalized Zhou—Khargonekar
formula for the one-block case as expected.

5. Example

Suppose that the weighting functions are given by
Ws(s)=1/(s+1) andW,(s)=(s+0.5)/(s+1),and a
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stable pseudorational plafis)=(e—2)/(2e% —1)
H*®. Then the functionn, in (5) is given by

21

my = e

Then, by (7), (8) and (10)n,, V andW are given by
s+ A 1

ma(s) =7, VO = e T

W) s+ 05

)= ————,

(s+Ds =4

wherei=—+/5/2. We see tha¥ andW have common
poles. Functiori, is given by

1
Wy—=— -
(24 bs +a)

where

52 /97
_ d b=,/=+2a—y2
5 an 4+ a — 7y

The eigenvalues offy w, ares = +4, £,/1—772,
including the pole ofng,.

In [6], by changing the weighting functiofV,
slightly, it has been shown that852 < 74, < 0.857.
Fig. 1shows the smallest singular values of the matrix
in (16) versusy. According to Theorem 4, the opti-
mal mixed sensitivityy,,, the maximaly such that
this minimal singular value equals to zero, is approx-
imately Q8567 and this satisfies the estimate above.
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6. Conclusions

We have derived a new closed form Hamiltonian-
based formula to the optimal mixed sensitivity opti-
mization problem for stable pseudorational plants with
rational weights. This result can be viewed as an ex-
tension of the Zhou—Khargonekar formula to a specif-
ically structured one-block problem.

Appendix. Constraint on the derived weighting
functions

Here we see the structure of weighting functions,
when we reduce the mixed sensitivity optimization
problem to the two-block problem (9) or the prob-
lem of finding the singular values of the compression
operator W,.. Consider rational weighting functions
Ws =ng/d,, W; =n,/d, where pairs of polynomials
(ds, ny) and (d;, n;) are coprime. For simplicity, we
assume thad; andd, have no common zeros. Let us
take a stable polynomials such that

dgdc = nsngdid; + nyn;dyds.

Then we haves = d,d; /dg andmy = dg/dg. Hence
weighting functions in the two-block problem (9) are
given byW =ngngyd;/d;dg andV =ngn, /d, and have
common poles. Now let us define a stable polynomial
dr such that

dde = ”/szd(f— nsn;nlnf.

The spectral factoF;, in (12) is given byF, =dg/dF,
and its zeros are poles of;.
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