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Abstract

This paper considers the mixed sensitivity optimization problem for a class of infinite-dimensional stable plants. This
problem is reducible to a two- or one-blockH∞ control problem with structured weighting functions. We first show that
these weighting functions violate the genericity assumptions of existing Hamiltonian-based solutions such as the well-known
Zhou–Khargonekar formula. Then, we derive a new closed form formula for the computation of the optimal performance
level, when the underlying plant structure is specified by a pseudorational transfer function.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Pseudorational transfer function; Infinite-dimensional systems; Mixed sensitivity optimization;H∞ control; Skew-Toeplitz
approach

1. Introduction

Since mid-1980s various methods have been de-
veloped for theH∞ control of infinite-dimensional
systems. In particular, for the one-block problem of
finding

�opt := inf
Q∈H∞ ‖W − mQ‖∞
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with m being an pure time delay, andW given as a
strictly proper rational function, a closed form expres-
sion has been obtained by Zhou and Khargonekar[15].
The formula has been extended to more general cases
in [3,8,10,14]: Let H�,W be the Hamiltonian matrix
associated withW and�:

H�,W :=
[

A BBT/�
−CTC/� −AT

]
, (1)

where(A,B,C) is a minimal realization ofW. Sup-

pose thatm is analytic on the set of eigenvalues of
H�,W . Then the optimal sensitivity�opt is the maximal
� such that det(m̃(H�,W )|22)=0 whereM|22 denotes
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the (2,2)-block of matrixM partitioned accordingly
to (1). Recently, in[7], it was shown that when a plant
is pseudorational[12], m̃(H�,W ) is easily obtainable
without numerical computations of poles and zeros of
the transfer function; see Lemma 2.
In this paper, we consider the mixed sensitivity op-

timization problem

�opt := inf
C stabilizingP

∥∥∥∥
[

Ws(1+ PC)−1
WtPC(1+ PC)−1

]∥∥∥∥∞
, (2)

whereWs andWt are rational weights, andP is a sta-
ble pseudorational plant. This problem is known to be
a typical two-block problem, for which a Hamiltonian-
based formula is obtained[4]. However, this result is
not directly applicable, since a “generic” assumption
of the formula is almost always violated[6]. In view
of this, we derive a Hamiltonian-based formula for
the optimal mixed sensitivity computation, by reduc-
ing this structured two-block problem to a one-block
problem. This result can be viewed as an extension of
the Zhou–Khargonekar formula to a specifically struc-
tured one-block problem.
The paper is organized as follows: in the next sec-

tion we review some preliminary results on pseudora-
tional systems. In Section 3, we briefly summarize the
observations made in[7] and state drawbacks in more
precise terms. In Section 4, we derive a Hamiltonian-
based solution for the structured one-block problem.
A numerical example is given in Section 5, and con-
cluding remarks are made in the last section.

Notation and Convention

As usual,Hp andH
p
− denote the Hardyp-spaces

on the open right- and left-half complex planes, re-
spectively. Letq̃(s) := q(−s). For an inner function
m, let H(m) be the orthogonal complement ofmH 2

in Hilbert spaceH 2. It is known[5] that

H(m) = {x ∈ H 2 : m̃x ∈ H 2−}. (3)

For a given distribution (in the sense of Schwartz[9])
�, supp� denotes itssupport[9], and

�(�) := inf {t : t ∈ supp�},
r(�) := sup{t : t ∈ supp�}.
Let E′(R−) denote the space of distributions having
compact support in(−∞,0]. D′+(R) is the space

of distributions having support bounded on the left.
Clearly E′(R−) ⊂ D′+(R). If a distribution � is
Laplace transformable, its Laplace transform is de-
noted by�̂(s).

2. Preliminaries on pseudorational systems

In this section we review certain basic facts on
pseudorational systems. This class of systems has
been introduced in the late 1980’s, and plays a crucial
role in realization, modeling, and control of infinite-
dimensional systems, especially delay-differential
systems[12,13]:

Definition 1. Let f be a distribution having support in
[0,∞). It is said to bepseudorationalif there exist
q, p ∈ E′(R−) such that

(1) q−1 exists overD′+(R),
(2) ordq−1 = −ordq,
(3) f can be written asf = q−1 ∗ p,

whereq−1 is taken with respect to convolution and
ordq denotes theorder of a distributionq [9].

If f is pseudorational, its associated transfer func-
tion f̂ is also said to be pseudorational. From the
Paley–Wiener–Schwartz theorem[9], in the Laplace
domain, every pseudorational transfer function is a ra-
tio of entire functions of exponential type—the sim-
plest extension of rational functions. For a stable pseu-
dorational plantP, even ifP is not necessarily inner,

�opt := inf
Q∈H∞ ‖W − PQ‖∞ (4)

can be computed by the following:

Lemma 2 (Kashima and Yamamoto[7] ). Suppose
that P can be factorized aŝp1p̂2/q̂ with q, p1, p2 ∈
E′(R−) such thatq̂−1, p̂−1

1 ,er(p2)s p̂2̃
−1 ∈ H∞, that

is, p̂1 and p̂2 denote the stable and anti-stable parts
of the numerator, respectively. Assume also that1/p̂2
is analytic on the set of eigenvalues ofH�,W . Define
L := −�(q) + �(p1) − r(p2) and

mv(s) = e−Ls p̂2(s)

p̂2̃(s)
. (5)
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Then �opt in (4) is the maximal� that satisfies
det(mṽ(H�,W )|22) = 0.

3. Mixed sensitivity optimization problem

3.1. Two-block problem

In this section, we show that the weighting functions
have a specific structure when we reduce the mixed
sensitivity optimization problem to the standard two-
block problem. Throughout the paper the plantP is
assumed to be stable. By the Youla parameterization,
all stabilizing controllers are given in the formC =
Q(1− PQ)−1, Q ∈ H∞. Hence we obtain

�opt= inf
Q∈H∞

∥∥∥∥
[
Ws(1− PQ)

WtPQ

]∥∥∥∥∞
. (6)

First, introduce the following spectral factorizationG

G̃(Ws̃Ws + Wt̃Wt)G = 1, (7)

where bothG andG−1 have no unstable poles. Then
it follows that

L1 :=
[
(WsG)̃ (−WtG)̃

WtG WsG

]
, L2 :=

[
md 0
0 1

]

are unitary, wheremd is a finite Blaschke product that
makes

W := mdWs(WsG)̃ (8)

stable[2]. Multiplying (6) by L2L1 from the left, we
obtain

�opt= inf
Q∈H∞

∥∥∥∥
[
W − mdPQ

V

]∥∥∥∥∞
, (9)

where

V := WsWtG. (10)

Note that bothW andV are rational and stable. The
problem in the form (9) has been considered in[4], and
a solution based on a Hamiltonian related to a realiza-
tion of �2 − WW˜− VV˜ is derived. It is however as-
sumed in[4] thatV andW have no common poles. For
arbitrary rational functionsV andW, this assumption
is satisfied generically. However, in the mixed sensi-
tivity problem, the functionsWandV need to be in the
form (8) and (10). As seen in Appendix, this means

that unlessWs andWt are chosen in a specific way,
W and V will have common poles, i.e., the assumption
above is almost always violated.
On the other hand, by (7), (8) and (10), we have

�2 − WW˜− VV˜= �2 − WsWs̃G(WsWs̃ + WtWt̃ )G̃

= �2 − WsWs.̃ (11)

Thus (11) may help us to avoid the “genericity” as-
sumption. However, in the argument in[4], it is dif-
ficult to introduce such structures onV andW, since
no relationship between these weights was assumed.
In view of this, we reduce the specifically structured
two-block problem to a one-block problem to make
use of such structures explicitly.

3.2. Reduction to one-block problem

Again, applying the standard techniques, see e.g.
[2], we now reduce the two-blockH∞ problem (9)
to a one-block problem. First, suppose that�> ‖V ‖∞
satisfies�= �opt. Then there existsQ ∈ H∞ such that

|W − mdPQ|2 + |V |2 = �2 a.e.

on the imaginary axis. Here, since�> ‖V ‖∞, there
exists a unique spectral factorF�:

F�̃(�2 − V Ṽ )F� = 1 a.e. (12)

where bothF� andF−1
� ∈ H∞. Therefore, by defining

W� := F�W , we obtain

|W� − mdPQ|2 = 1 a.e.

on the imaginary axis. Furthermore it is shown[11]
that �opt is given by the maximal� such that 1 is a
singular value of thecompressionoperatorWc of W�
to H(m) defined by

Wc : H(m) → H(m) : x �→ �m[W�x],
wherem := mdmv and�m[·] denotes the orthogonal
projection fromH 2 ontoH(m).
Lemma 2 characterizes the singular values of the

corresponding compression operator[14], that is, 1
is a singular value ofWc if and only if m̃(H1,W�)|22
is not of full rank, whenm is analytic on the set of
eigenvalues ofH1,W� . However,W� andmd have a
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specific structure, and we must be careful in applying
Lemma 2. To see this, let us consider the eigenvalues of
H1,W� . Notice that the eigenvalues of the Hamiltonian
matrix H�,W coincide with the zeros of�2 − WW̃ .
Eqs. (11) and (12) yield

1− W�̃W� = (�2 − V Ṽ − WW̃)F�̃F�

= (�2 − Ws̃Ws)F�̃F�.

Therefore, the eigenvalues ofH1,W� arise from those
of H�,Ws or zeros ofF� and F�̃. Unfortunately, the
zeros ofF� coincide with poles ofmd ; see Appendix
and [6,11] for details. In other words, there always
exists a nonsingular matrixT such that

H1,W� = T −1 blockdiag(H�,Ws , Ad,−Ad)T , (13)

with (sI −Ad)
−1 ∈ H(md). This means that the poles

ofmd are eigenvalues ofH1,W� , i.e., the assumption of
the lemma is also almost always violated. In practice,
we can circumvent this problem by slightly altering
V and obtain upper and lower bounds for the optimal
value[6].
In what follows, we derive a Hamiltonian-based for-

mula for the optimal mixed sensitivity computation,
i.e., the problem of finding the maximal� such that 1
is a singular value ofWc.

4. Main result

Consider the singular value equation

y = Wcx, x = W ∗
c y,

where W ∗
c is the adjoint operator ofWc. Let

(A�, B�, C�) be a minimal realization ofW�. Follow-
ing exactly the same argument in[14, Proposition
2.6], we can show that these equations are character-
ized by finite dimensional vectors as follows:

y = W�x − m(s)C�(sI − A�)
−1�,

x = W�̃y + B�(sI + AT� )
−1�,

where�, � ∈ Rn+p and n and p are the degrees of
Ws andmd , respectively. Combining these equations
together, and following the same argument as given
in [14], we obtain the following Hamiltonian-based
characterization:

Lemma 3. Under the definitions above, 1 is a singu-
lar value ofWc if and only if there exists a nonzero
vector[�T �T]T ∈ R2(n+p) such that

�(s) := (sI − H1,W�)
−1

[
m(s)�

�

]
∈ H(m). (14)

By invoking the Dunford integral, we can reduce
this lemma to a rank condition[14]. PartitionT ac-
cordingly to (13),[
T11 T12
T21 T22
T31 T32

]
:= T , (15)

whereT11, T12 ∈ R2n×(n+p) and other four matrices
are inRp×(n+p). We are now ready to give a formula
for the optimal mixed sensitivity for stable plants.

Theorem 4. Define the matricesH1,W� , H�,Ws and
Tij (i = 1,2,3, j = 1,2) by (1), (13)and (15). Sup-
pose that m is analytic on the set of the eigenvalues
of H�,Ws . Then the optimal mixed sensitivity�opt in
(6) is the maximal� such that[
T11 mṽ(H�,Ws )T12
T21 0
0 T32

]
(16)

is not of full rank.

Proof. From Lemma 3, it suffices to show that there
exists a nonzero vector[�T �T]T ∈ R2(n+p) satisfying
(14) if and only if the matrix in (16) is not of full rank.
SinceT is nonsingular,�(s) belongs toH(m) if and

only if so doesT �(s), or equivalently,

(sI − H�,Ws )
−1[T11 T12]

[
m(s)�

�

]
∈ H(m), (17)

(sI − Ad)
−1[T21 T22]

[
m(s)�

�

]
∈ H(m) (18)

and,

(sI + Ad)
−1[T31 T32]

[
m(s)�

�

]
∈ H(m). (19)

First consider (17). Let� be a closed rectifiable
contour that encircles all eigenvalues ofH�,Ws , but
none of the singularities ofm̃. Sincem̃ is analytic at
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eigenvalues ofH�,Ws , this is possible. Consider now
the integral

1

2�j

∫
�
(sI − H�,Ws )

−1[T11 T12]
[

�
m̃(s)�

]
ds.

Notice that, by spectral integral theory[1], this integral
equals

T11 T12

[
�
0

]
− m̃(H�,Ws )[T11 T12]

[
0
�

]
.

Since (17) holds if and only if this integral is equal to
0, [14], we obtain

T11� = m̃(H�,Ws )T12�. (20)

We now consider condition (18). Recall that we have
(sI − Ad)

−1T22� ∈ H(md) ⊂ H(m). Hence in view
of (3), (18) is equivalent to(sI − Ad)

−1T21� ∈ H 2−.
SinceAd has no unstable eigenvalues, this implies

T21� = 0. (21)

For (19), we havem(s)(sI +Ad)
−1 ∈ mvH(md) ⊂

H(m) and all eigenvalues of−Ad are unstable. There-
fore we must have

T32� = 0. (22)

Combining (20)–(22) together yields[
T11 mṽ(H�,Ws )T12
T21 0
0 T32

] [
�
�

]
= 0. (23)

There exists a nonzero[�T �T]T satisfying (23) if and
only if the matrix in (16) is not of full rank. This
completes the proof.�

Remark 5. WhenWt = 0, this problem becomes the
sensitivity optimization, and[T11 T12]= I andp=0.
In this case, we can verify that the rank condition
in Theorem 4 is equivalent tomṽ(H�,Ws )|22 is not of
full rank, which is the generalized Zhou–Khargonekar
formula for the one-block case as expected.

5. Example

Suppose that the weighting functions are given by
Ws(s)=1/(s+1) andWt(s)=(s+0.5)/(s+1), and a

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

1

2

3

4
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6

7

γ 

Fig. 1. 	min versus�.

stable pseudorational plantP(s)=(es−2)/(2e2s−1) ∈
H∞. Then the functionmv in (5) is given by

mv := e−s 2e
−s − 1

2− e−s
.

Then, by (7), (8) and (10),md, V andW are given by

md(s) = s + 

s − 


, V (s) = 1

(s + 1)(s − 
)
,

W(s) = s + 0.5

(s + 1)(s − 
)
,

where
=−√
5/2.We see thatV andWhave common

poles. FunctionW� is given by

W� = 1

�(s2 + bs + a)
,

where

a =
√
5− �−2
2

and b =
√
9

4
+ 2a − �−2.

The eigenvalues ofH1,W� are s = ±
, ±√
1− �−2,

including the pole ofmd .

In [6], by changing the weighting functionW�
slightly, it has been shown that 0.852< �opt<0.857.
Fig. 1shows the smallest singular values of the matrix
in (16) versus�. According to Theorem 4, the opti-
mal mixed sensitivity�opt, the maximal� such that
this minimal singular value equals to zero, is approx-
imately 0.8567 and this satisfies the estimate above.
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6. Conclusions

We have derived a new closed form Hamiltonian-
based formula to the optimal mixed sensitivity opti-
mization problem for stable pseudorational plants with
rational weights. This result can be viewed as an ex-
tension of the Zhou–Khargonekar formula to a specif-
ically structured one-block problem.

Appendix. Constraint on the derived weighting
functions

Here we see the structure of weighting functions,
when we reduce the mixed sensitivity optimization
problem to the two-block problem (9) or the prob-
lem of finding the singular values of the compression
operatorWc. Consider rational weighting functions
Ws = ns/ds, Wt = nt/dt where pairs of polynomials
(ds, ns) and (dt , nt ) are coprime. For simplicity, we
assume thatds anddt have no common zeros. Let us
take a stable polynomialdG such that

dG̃dG = nsns̃dtdt̃ + ntnt̃ dsds̃ .

Then we haveG = dsdt/dG andmd = dG̃/dG. Hence
weighting functions in the two-block problem (9) are
given byW=nsns̃dt̃ /dsdG andV =nsnt/dG, and have
common poles. Now let us define a stable polynomial
dF such that

dF d̃F = �2dGdG̃ − nsns̃ntnt̃ .

The spectral factorF� in (12) is given byF� =dG/dF ,
and its zeros are poles ofmd .
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