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POLYHEDRAL ANALYSIS FOR THE UNCAPACITATED HUB
LOCATION PROBLEM WITH MODULAR ARC CAPACITIES∗

HANDE YAMAN†

Abstract. We consider the problem of installing a two-level telecommunication network. Ter-
minal nodes communicate with each other through hubs. Hubs can be installed on terminal nodes
and they are interconnected by a complete network. Each terminal is connected directly to a hub
node. Integer amounts of capacity units are installed on the arcs between hub pairs and terminals
and their hubs. The aim is to minimize the cost of installing hubs and capacity units on arcs. We
present valid and facet defining inequalities for the polyhedron associated with this problem.
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1. Introduction. We consider the problem of locating hubs in a telecommuni-
cation network. Hubs (servers, concentrators, etc.) are installed to route the traffic
of terminals (users). Given a set of terminals, a subset is chosen to be the set of hub
locations. Each terminal that does not become a hub is directly connected to a single
hub. The network connecting the hubs is called the backbone network and a network
connecting the terminals to a hub is called a local access network (LAN). We consider
telecommunication networks where the backbone is complete and the LANs are stars.

The traffic between two terminals goes from the origin terminal to its hub, then
to the hub of the destination terminal, and then to the destination itself. So the total
traffic on the arc from a terminal to its hub is the traffic originating at that terminal
node, and the traffic on the arc from a hub to a terminal connected to that hub is the
traffic arriving at that terminal node. The total traffic to travel from hub j to hub l
is the traffic from terminals connected to hub j to terminals connected to hub l. The
traffic flows on arcs and capacity units can be installed on arcs in integer amounts.

In Figure 1.1, we see a network with three hubs. The traffic between any two
nodes is 0.5 and the capacity unit is 1 on all arcs. The amount of capacity units
to be installed on the arcs are given in the figure. For example, we need to install
�7 × 0.5� = 4 capacity units on an arc from a terminal to its hub.

The cost of installing such a telecommunication network is the sum of the cost of
locating hubs and the cost of installing capacity units on arcs. The uncapacitated hub
location problem with modular arc capacities (HLM) is the problem of locating hubs
and connecting the remaining nodes to hubs with the aim of minimizing this total
cost. Labbé and Yaman [11] prove that the special case of HLM where the cost of
installing capacity units on the backbone network is zero is NP-hard.

Campbell, Ernst, and Krishnamoorthy [3] give a survey of hub location problems.
Klincewicz [7] gives a survey of hub location problems in telecommunications.

Very little is known about the polyhedra associated with hub location problems. A
similar problem with no cost for installing capacity units on arcs but a cost for routing
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Fig. 1.1. A network with three hubs.

the traffic is called the uncapacitated hub location problem with single assignment
(HLs). Polyhedral analysis for this problem can be found in [12] and [10]. If, in
addition, we allow a terminal to be connected to several hubs, then the problem
is called the uncapacitated hub location problem with multiple assignment (HLm).
Polyhedral properties of HLm are studied by Hamacher et al. [6].

Chung, Myung, and Tcha [5] study a version of HLM where there is a fixed
cost of establishing a link between two hubs. In HLM, this corresponds to the case
where backbone links are uncapacitated, meaning that if two nodes become hubs,
only one capacity unit is installed between them. The authors propose a branch and
cut algorithm for this problem.

Yaman and Carello [15] consider a generalization of HLM where hubs are capac-
itated; the amount of traffic transiting through a hub is limited by the capacity of
the hub. They present a metaheuristic and a branch and cut algorithm to solve this
problem. Their branch and cut algorithm uses cuts given in [12] and [10].

In this paper, we present valid and facet defining inequalities for the polyhedron
associated with HLM. We give several lifting results which can be used to derive
further facet defining inequalities. The paper is organized as follows. In section 2, we
give a formulation of the problem. We present valid inequalities in section 3. Section
4 is devoted to polyhedral analysis. We conclude in section 5.

2. Formulation. Let I denote the set of terminal nodes with |I| = n. Any
distinct pair of terminal nodes defines a commodity. We denote by K the set of
commodities. For commodity (i,m) ∈ K, i is the origin, m is the destination, and tim
is the amount of traffic to be routed from i to m. We define tii to be 0 for all i ∈ I.

Each terminal either becomes a hub or is connected to another node which be-
comes a hub. The cost of installing a hub at node i ∈ I is denoted by Cii. Hubs are
connected by a complete directed graph. Each nonhub node is directly connected to
its hub. Integer amounts of capacity are installed on the arcs between pairs of hubs
and between terminals and their hubs. We assume that the capacity unit on all arcs
is 1 and that the demands are scaled accordingly. The capacity of each terminal-hub
and hub-terminal arc is fully determined by the chosen terminal-hub connection. The
cost of connecting node i ∈ I to node j ∈ I \ {i}, denoted by Cij , is equal to the cost
of installing �

∑
m∈I tim� + �

∑
m∈I tmi� capacity units between nodes i and j.

We define the arc set A = {(j, l) : j ∈ I, l ∈ I, j �= l}. We denote by Rjl the

cost of installing a capacity unit on arc (j, l) if it becomes a backbone arc. Let K
′

jl

be the set of commodities (i,m) such that i is connected to j and m is connected to
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HUB LOCATION WITH MODULAR ARC CAPACITIES 503

l. If nodes j and l become hubs, then the amount of flow on arc (j, l) is given by∑
(i,m)∈K

′
jl
tim and �

∑
(i,m)∈K

′
jl
tim� units of capacity should be installed on this arc.

We define the assignment variable xij to be 1 if terminal i ∈ I is assigned (con-
nected) to hub j ∈ I and 0 otherwise. If node i becomes a hub, then xii is 1. We
further define zjl to be the amount of capacity units installed on arc (j, l) ∈ A.

The HLM can be formulated as follows (see [12]):

min
∑
i∈I

∑
j∈I

Cijxij +
∑

(j,l)∈A

Rjlzjl(2.1)

subject to
∑
j∈I

xij = 1 ∀i ∈ I,(2.2)

xij ≤ xjj ∀(i, j) ∈ A,(2.3)

zjl ≥
∑

(i,m)∈K′

tim(xij + xml − 1) ∀(j, l) ∈ A,K
′ ⊆ K,(2.4)

zjl integer ∀(j, l) ∈ A,(2.5)

xij ∈ {0, 1} ∀i ∈ I, j ∈ I.(2.6)

Constraints (2.2), (2.3), and (2.6) ensure that each terminal either becomes a hub
or is assigned to exactly one hub. Constraints (2.4) relate the capacity vector z to
the assignment vector x. For arc (j, l) ∈ A, because of constraints (2.5) and (2.6),
constraint set (2.4) is equivalent to

zjl ≥
⌈

max
K′⊆K

( ∑
(i,m)∈K′

tim(xij + xml − 1)

)⌉
=

⌈ ∑
(i,m)∈K

′
jl

tim

⌉
.

If Rjl > 0, then an optimal solution satisfies the inequality at equality.
The objective function (2.1) consists of the cost of locating hubs and the cost of

installing capacity units on arcs.

3. Valid inequalities. In this section, we present families of valid inequalities
for the polyhedron associated with HLM and point out the domination relations
among these valid inequalities. We investigate inequalities that involve both the
assignment and the capacity variables.

Definition 3.1. Let

F =
{
(x, z) ∈ {0, 1}n2 × Z

n(n−1) : (x, z) satisfies (2.2)–(2.6)
}

and

P = conv(F ).

Labbé, Yaman, and Gourdin [12] study the HLs which is obtained by relaxing
integrality constraints (2.5) in HLM. They derive valid inequalities by projecting out
the flow variables in a larger formulation for this relaxed problem. These inequalities
are given in the following proposition.

Proposition 3.2 (Labbé, Yaman, and Gourdin [12]). Let S and T be nonempty
disjoint subsets of I and K

′ ⊆ K. The projection inequality

∑
j∈S

∑
l∈T

zjl ≥
∑

(i,m)∈K′

tim

(∑
j∈S

xij +
∑
l∈T

xml − 1

)
(3.1)
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504 HANDE YAMAN

is valid for P .
Constraints (2.4) are projection inequalities where sets S and T are singletons.
Projection inequalities (3.1) ignore the integrality of zjl variables. Now we present

a family of inequalities which use this information.
For K

′ ⊆ K, let

O(K
′
) = {i ∈ I : ∃m ∈ I \ {i} with (i,m) ∈ K

′}

and

D(K
′
) = {i ∈ I : ∃m ∈ I \ {i} with (m, i) ∈ K

′}.

Proposition 3.3. Let S and T be nonempty disjoint subsets of I and K
′ ⊆ K.

Inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉(
1 −

∑
i∈O(K′ )

∑
j∈I\S

xij −
∑

m∈D(K′ )

∑
l∈I\T

xml

)
(3.2)

is valid for P .
Proof. For (x, z) ∈ F , the right-hand side of inequality (3.2) is �

∑
(i,m)∈K′ tim�

if
∑

j∈I\S xij = 0 for all i ∈ O(K
′
) and

∑
l∈I\T xml = 0 for all m ∈ D(K

′
). It is

nonpositive otherwise.
Notice that different sets K

′
can lead to the same sets O(K

′
) and D(K

′
). For a

given fractional solution, it is important to be able to choose among these subsets K
′

the one which leads to the most violated inequality.
For subsets O and D of I, let

κ(O,D) =
{
(i,m) ∈ K : i ∈ O and m ∈ D

}
.

Proposition 3.4. Let (x, z) be a fractional solution which satisfies constraints
(2.2). If there exists an inequality (3.2) violated by (x, z), then there exists a vio-
lated inequality (3.2) for some K

′ ⊆ K such that O(K
′
) ∩ D(K ′) = ∅ and K

′
=

κ(O(K
′
), D(K

′
)).

Proof. For K
′ ⊆ K, if |O(K

′
) ∩D(K

′
)| ≥ 1, then

1 −
∑

i∈O(K′ )

∑
j∈I\S

xij −
∑

m∈D(K′ )

∑
l∈I\T

xml

=
∑

i∈O(K′ )

∑
j∈S

xij +
∑

m∈D(K′ )

∑
l∈T

xml − |O(K
′
)| − |D(K

′
)| + 1

=
∑

i∈O(K′ )\D(K′ )

∑
j∈S

xij − |O(K
′
) \D(K

′
)| +

∑
m∈D(K′ )\O(K′ )

∑
l∈T

xml − |D(K
′
) \O(K

′
)|

+
∑

i∈O(K′ )∩D(K′ )

∑
j∈S∪T

xij − 2|O(K
′
) ∩D(K

′
)| + 1

≤
∑

i∈O(K′ )∩D(K′ )

∑
j∈S∪T

xij − 2|O(K
′
) ∩D(K

′
)| + 1

≤ (−|O(K
′
) ∩D(K

′
)| + 1) ≤ 0.

Therefore, inequality (3.2) for this choice of K
′
cannot be violated. This proves that

if inequality (3.2) is violated for K
′
, then O(K

′
) ∩ D(K

′
) = ∅. The second part of

the proposition is then trivial.
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HUB LOCATION WITH MODULAR ARC CAPACITIES 505

If S and T are singletons, then inequality (3.2) becomes

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉(
1 −

∑
i∈O(K′ )

∑
u∈I\{j}

xiu −
∑

m∈D(K′ )

∑
u∈I\{l}

xmu

)
.(3.3)

If, in the formulation (2.1)–(2.6), we replace constraints (2.4) and (2.5) with the
set of inequalities (3.3) for all disjoint subsets O and D of I, K

′
= κ(O,D), and

(j, l) ∈ A, we obtain a valid formulation for HLM where we do not need to impose
explicitly the integrality of zjl variables. For (j, l) ∈ A, constraints (2.4) linearize the
nonlinear requirement

zjl ≥
∑

(i,m)∈K

timxijxml

by linearizing the equivalent family of nonlinear inequalities

zjl ≥
∑

(i,m)∈K′

timxijxml

for all K
′ ⊆ K. Inequalities (3.3) linearize the nonlinear requirement

zjl ≥
⌈ ∑

(i,m)∈K

timxijxml

⌉

by linearizing the equivalent family of nonlinear inequalities

zjl ≥
⌈ ∑

(i,m)∈κ(O,D)

tim

⌉
Πi∈OxijΠm∈Dxml

for all disjoint subsets O and D of I.
The following example shows that it is not possible to compare the LP relaxations

of these two formulations.
Example 3.1. Comparing the LP relaxation of formulation (2.1)–(2.6) with that

of formulation (2.1)–(2.3), (2.6), and (3.3) is equivalent to comparing the relative
strength of inequalities (2.4) and (3.3). Let I = {1, 2, 3, 4}. Consider a vector x such
that x12 = x22 = x34 = x44 = 0.6 and x11 = x21 = x33 = x43 = 0.4 (see Figure 3.1).

3 4

2

0.40.4

0.4

0.6

0.6

1

0.6

0.4

0.6

0.4

Fig. 3.1. Example 3.1: assignment of nodes.

For arc (2, 4) and K
′
= {(1, 3), (1, 4), (2, 3), (2, 4)}, constraint (2.4) reads

z24 ≥ 0.2(t13 + t14 + t23 + t24).(3.4)
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506 HANDE YAMAN

This is indeed a best choice of K
′

in the sense that it can lead to a most violated
inequality (2.4) for arc (2, 4).

Now we consider inequality (3.3) for arc (2, 4). Let O and D be disjoint subsets of
I. To find a most violated inequality, it is better to choose O ⊆ {1, 2} and D ⊆ {3, 4}.
Then, inequality (3.3) is z24 ≥ �

∑
(i,m)∈κ(O,D) tim�(1 − 0.4|O| − 0.4|D|). The right-

hand side of this inequality can be positive only if |O| = |D| = 1. If |O| = |D| = 1
and i ∈ O and m ∈ D, then the inequality is

z24 ≥ 0.2�tim�.(3.5)

The best inequality can be obtained by choosing a commodity (i,m) with maximum
tim. Assume without loss of generality that this maximum is attained at i = 1 and
m = 3.

If t13 + t14 + t23 + t24 > �t13�, then inequality (3.4) imposes a higher lower bound
than inequality (3.5). And if t13+t14+t23+t24 < �t13�, then the lower bound imposed
by inequality (3.5) is higher than the one imposed by inequality (3.4). Therefore, these
two inequalities are not comparable.

For given sets S and T , inequalities (3.1) can be separated in polynomial time
(see [12]). However, the complexity of the separation of inequalities (3.2) is open even
when S and T are given. Still, the separation is easy if x is not fractional. In this
case, sets S and T should be singletons and

K
′
=

⎧⎨
⎩(i,m) ∈ K,

∑
j∈S

xij = 1 and
∑
l∈T

xml = 1

⎫⎬
⎭ .

Yaman and Carello [15] present inequalities that dominate the projection inequal-
ities (3.1).

Proposition 3.5 (Yaman and Carello [15]). Let S and T be nonempty disjoint
subsets of I and K

′ ⊆ K. The improved projection inequality

∑
j∈S

∑
l∈T

zjl ≥
∑

(i,m)∈K′ :i 	∈S,m 	∈T

tim

( ∑
j∈S\{m}

xij +
∑

l∈T\{i}
xml + xim + xmi − 1

)

+
∑

(i,m)∈K′ :i∈S,m 	∈T

tim

( ∑
j∈S\{m}

xij +
∑
l∈T

xml + xim − 1

)

+
∑

(i,m)∈K′ :i 	∈S,m∈T

tim

(∑
j∈S

xij +
∑

l∈T\{i}
xml + xmi − 1

)

+
∑

(i,m)∈K′ :i∈S,m∈T

tim

(∑
j∈S

xij +
∑
l∈T

xml − 1

)

is valid for P .

We present inequalities that dominate inequalities (3.2) in the same manner.

Proposition 3.6. Let S, T , O, and D be nonempty subsets of I such that
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HUB LOCATION WITH MODULAR ARC CAPACITIES 507

S ∩ T = ∅ and O ∩D = ∅. Inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈κ(O,D)

tim

⌉[∑
i∈O

(∑
j∈S

xij +
∑

m∈D\(S∪T )

xim − 1

)

+
∑
m∈D

(∑
l∈T

xml +
∑

i∈O\(S∪T )

xmi − 1

)
+ 1

]
(3.6)

is valid for P .
Proof. If

∑
m∈D\(S∪T ) xim = 0 for all i ∈ O and

∑
i∈O\(S∪T ) xmi = 0 for all

m ∈ D, then inequality (3.6) reduces to inequality (3.2) for K
′
= κ(O,D).

If there exists i ∈ O and m ∈ D \ (S ∪ T ) such that xim = 1 (resp., m ∈ D
and i ∈ O \ (S ∪ T ) such that xmi = 1), then as xmm = 1, m �∈ T and m �∈ O, we
have

∑
l∈T xml +

∑
l∈O\(S∪T ) xml = 0 (resp.,

∑
j∈S xij +

∑
j∈D\(S∪T ) xij = 0). This

implies that the right-hand side of inequality (3.6) is nonpositive.
Inequality (3.6) remains valid if �

∑
(i,m)∈κ(O,D) tim� is changed to �

∑
(i,m)∈K′ tim�

for K
′ ⊂ κ(O,D). But these new inequalities are dominated.

Proposition 3.7. For given nonempty subsets S, T , O, and D of I such that
S ∩ T = ∅ and O ∩D = ∅, inequality (3.6) dominates inequality (3.2).

Proof. If K
′
= κ(O,D), then inequality (3.6) dominates inequality (3.2). If K

′ �=
κ(O,D), then by Proposition 3.4, inequality (3.2) for κ(O,D) dominates inequality
(3.2) for K

′
.

In inequality (3.2), when a node in O(K
′
) is assigned to some node in I \ S

or a node in D(K
′
) is assigned to some node in I \ T , the right-hand side of the

inequality is nonpositive, since the coefficients of the assignment variables are all
equal to �

∑
(i,m)∈K′ tim�. In the remaining part of this section, we present families

of valid inequalities where the assignment variables have smaller coefficients so that
even when there exist nodes in O(K

′
) which are assigned to nodes in I \ S or nodes

in D(K
′
) which are assigned to nodes in I \ T , the inequality can still give a positive

lower bound on
∑

j∈S

∑
l∈T zjl.

Proposition 3.8. Let S and T be nonempty disjoint subsets of I and K
′ ⊆ K.

Inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )

(⌈ ∑
m:(i,m)∈K′

tim

⌉ ∑
j∈I\S

xij

)

−
∑

m∈D(K′ )

(⌈ ∑
i:(i,m)∈K′

tim

⌉ ∑
l∈I\T

xml

)
(3.7)

is valid for P .
Proof. For a given x, define O

′
= {i ∈ O(K

′
) :

∑
j∈I\S xij = 0} and D

′
= {m ∈

D(K
′
) :

∑
l∈I\T xml = 0}. Then the right-hand side of inequality (3.7) is equal to⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )\O′

⌈ ∑
m:(i,m)∈K′

tim

⌉
−

∑
m∈D(K′ )\D′

⌈ ∑
i:(i,m)∈K′

tim

⌉

≤
⌈ ∑

(i,m)∈K′ :i∈O′ and m∈D′

tim

⌉
≤

⌈ ∑
i∈O′

∑
m∈D′

tim

⌉
.
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508 HANDE YAMAN

The last term is a valid lower bound on
∑

j∈S

∑
l∈T zjl.

Different from inequalities (3.2) and (3.6), inequalities (3.7) defined by sets K
′ �=

κ(O,D) can be nondominated. If there exists a commodity (u, v) ∈ κ(O,D) such that
�
∑

(i,m)∈κ(O,D) tim� = �
∑

(i,m)∈κ(O,D)\{(u,v)} tim�, then inequality (3.7) for κ(O,D) \
{(u, v)} either is the same as inequality (3.7) for κ(O,D) or dominates it. An example
is given.

Example 3.2. Let I = {1, 2, 3, 4}. The nonzero traffic values are as follows:
t13 = 1.25, t14 = 1, t23 = 1.95, t24 = 0.05 (see Figure 3.2).

1

3 4

2

0.051.25

1.951

Fig. 3.2. Example 3.2: nonzero traffic values.

We consider some arc (j, l). Inequality (3.7) for κ(O,D), where O = {1, 2} and
D = {3, 4}, is

zjl ≥ �t13 + t14 + t23 + t24� − �t13 + t14�(1 − x1j) − �t23 + t24�(1 − x2j)

−�t13 + t23�(1 − x3l) − �t14 + t24�(1 − x4l)

= 5 − 3(1 − x1j) − 2(1 − x2j) − 4(1 − x3l) − 2(1 − x4l).

For K
′
= {(1, 3), (1, 4), (2, 3)}, inequality (3.7) is

zjl ≥ �t13 + t14 + t23� − �t13 + t14�(1 − x1j) − �t23�(1 − x2j)

−�t13 + t23�(1 − x3l) − �t14�(1 − x4l)

= 5 − 3(1 − x1j) − 2(1 − x2j) − 4(1 − x3l) − 1(1 − x4l).

Inequality (3.7) for K
′
dominates inequality (3.7) for κ(O,D).

The complexity of the separation is open for inequalities (3.7). If one approxi-
mates the separation problem by removing the ceilings, then the new problem is the
same as the separation problem for projection inequalities (3.1).

The coefficients of some variables can be further improved as follows.

Proposition 3.9. Let S and T be nonempty disjoint subsets of I and K
′ ⊆ K.

For i∗ ∈ O(K
′
), inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )\i∗

(⌈ ∑
m:(i,m)∈K′

tim

⌉ ∑
j∈I\S

xij

)

−
(⌈ ∑

(i,m)∈K′

tim

⌉
−
⌈ ∑

(i,m)∈K′

tim −
∑

m:(i∗,m)∈K′

ti∗m

⌉) ∑
j∈I\S

xi∗j

−
∑

m∈D(K′ )

(⌈ ∑
i:(i,m)∈K′

tim

⌉ ∑
l∈I\T

xml

)
(3.8)
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HUB LOCATION WITH MODULAR ARC CAPACITIES 509

is a valid inequality for P . Similarly, for i∗ ∈ D(K
′
), inequality

∑
j∈S

∑
l∈T

zjl ≥
⌈ ∑

(i,m)∈K′

tim

⌉
−

∑
i∈O(K′ )

(⌈ ∑
m:(i,m)∈K′

tim

⌉ ∑
j∈I\S

xij

)

−
(⌈ ∑

(i,m)∈K′

tim

⌉
−
⌈ ∑

(i,m)∈K′

tim −
∑

m:(m,i∗)∈K′

tmi∗

⌉) ∑
l∈I\T

xi∗l

−
∑

m∈D(K′ )\i∗

(⌈ ∑
i:(i,m)∈K′

tim

⌉ ∑
l∈I\T

xml

)
(3.9)

is valid for P .

Proof. We prove the validity of inequality (3.8). Validity of inequality (3.9) can
be proved in a similar way. If

∑
j∈I\S xi∗j = 0, then inequality (3.8) is the same

as inequality (3.7). If
∑

j∈I\S xi∗j = 1, then it is dominated by inequality (3.7) for

K
′′

= {(i,m) ∈ K
′
: i �= i∗}.

To conclude this section, we compare inequalities (3.2), (3.7), (3.8), and (3.9).

Proposition 3.10. For given nonempty disjoint subsets S and T of I and
K

′ ⊆ K, inequality (3.7) dominates inequality (3.2) and inequalities (3.8) and (3.9)
dominate inequality (3.7).

4. Facet defining inequalities. This section is devoted to the polyhedral anal-
ysis for the HLM polyhedron. We first prove some properties of the facet defining
inequalities and then present families of such inequalities.

4.1. Basics. We reformulate the problem by substituting xjj = 1−
∑

m∈I\{j} xjm

for all j ∈ I (see Avella and Sassano [1]). We also eliminate some inequalities (2.4). If
both j and l become hubs, then the traffic of commodities with destination j or origin
l does not travel on arc (j, l). Moreover, the traffic from node j to node l travels on
arc (j, l). Define for (j, l) ∈ A,

Kjl = K \
({

(j, l)
}
∪
{
(m, j) : m ∈ I \ {j}

}
∪
{
(l,m) : m ∈ I \ {l}

})
.

The HLM can be reformulated as follows:

min
∑
i∈I

∑
j∈I\{i}

Cijxij +
∑
i∈I

Cii

(
1 −

∑
j∈I\{i}

xij

)
+

∑
(j,l)∈A

Rjlzjl

s.t. xij +
∑

m∈I\{j}
xjm ≤ 1 ∀(i, j) ∈ A,(4.1)

zjl ≥
∑

(i,m)∈K′ ,i 	=j,m	=l

tim(xij + xml − 1)

+
∑

i∈I:(j,i)∈K′

tji

(
xil −

∑
m∈I\{j}

xjm

)

+
∑

i∈I:(i,l)∈K′

til

(
xij −

∑
m∈I\{l}

xlm

)
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510 HANDE YAMAN

+ tjl

(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
∀K ′ ⊆ Kjl, (j, l) ∈ A,(4.2)

xij ∈ {0, 1} ∀(i, j) ∈ A,(4.3)

zjl ≥ 0 ∀(j, l) ∈ A,(4.4)

zjl integer ∀(j, l) ∈ A.(4.5)

Definition 4.1. Let

PA = conv
({

(x, z) ∈ {0, 1}n(n−1) × Z
n(n−1) : (x, z) satisfies (4.1)–(4.5)

})
.

Define also

P∅ = conv
({

x ∈ {0, 1}n(n−1) : x satisfies (4.1) and (4.3)
})

.

Polytope P∅ is a special stable set polytope. (See, e.g., [2], [4], and [14] for poly-
hedral properties of the stable set polytope and see [9] for facet defining inequalities of
P∅.) Polytope P∅ is interesting since P∅ = Projx(PA). Labbé and Yaman [8] describe
the relationship between the facets of P∅ and PA. The following two propositions
are corollaries of the results in [8] and the proofs can be found in that paper. Sim-
ilar results are also proved by Labbé, Yaman, and Gourdin [12] for the polyhedron
associated with HLs.

Proposition 4.2. The polyhedron PA is full dimensional, i.e., dim(PA) = 2n(n−
1).

Proposition 4.3. The inequality πx ≤ π0 defines a facet of PA if and only if it
defines a facet of P∅.

This proposition gives a characterization of the facet defining inequalities of PA

which involve only the assignment variables, in terms of the facet defining inequalities
of P∅. Next, we investigate facet defining inequalities of PA which involve only the
capacity variables. The proofs of the following two propositions are similar to the
proofs of Proposition 4.3 and 4.4 in [12] and are omitted here.

Proposition 4.4. Every facet defining inequality of PA of the form βz ≥ β0 is
a positive multiple of zjl ≥ 0 for some (j, l) ∈ A.

This proposition implies that it is not possible to find fixed positive lower bounds
on capacity variables. This is natural since if all nodes are assigned to the same hub,
then there is no traffic in the backbone network.

Proposition 4.5. For (j, l) ∈ A, if tjl = 0, then the inequality zjl ≥ 0 defines a
facet of PA.

4.2. General lifting results. In what follows, we give some properties of facet
defining inequalities that involve both the assignment and the capacity variables.

Define exij = (x, z) (resp., ezij = (x, z)) to be the unit vector such that xlm = 0 for
all (l,m) ∈ A \ {(i, j)}, xij = 1 and zlm = 0 for all (l,m) ∈ A (resp., xlm = 0 for all
(l,m) ∈ A, zlm = 0 for all (l,m) ∈ A \ {(i, j)} and zij = 1).

Definition 4.6. For B ⊆ A, define

FB =
{
(x, z) ∈ {0, 1}n(n−1) × Z

|B| : (x, z) satisfies (4.1) and (4.3) ∀(i, j) ∈ A

and (4.2), (4.4), and (4.5) ∀(j, l) ∈ B
}

and let

PB = conv(FB).
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HUB LOCATION WITH MODULAR ARC CAPACITIES 511

If B = {(j, l)}, then we write Fjl and Pjl for FB and PB, respectively.
In other words, PB is the projection of PA on the space of xij for all (i, j) ∈ A

and zjl for all (j, l) ∈ B. Facet defining inequalities of PB and PA are related in the
following way.

Theorem 4.7. For B ⊂ A, inequality βz ≥ αx + π with βjl = 0 for all (j, l) ∈
A \B is facet defining for PA if and only if it is facet defining for PB.

Proof. Assume that βz ≥ αx + π with βjl = 0 for all (j, l) ∈ A \ B is not
facet defining for PA. Then all (x, z) ∈ PA that satisfy βz = αx + π also satisfy
β

′
z = α

′
x + π

′
and (β

′
, α

′
, π

′
) �= 0 is not a positive multiple of (β, α, π). As, for

(j, l) ∈ A \B, both (x, z) and (x, z) + ezjl are in PA and satisfy βz = αx+ π, we have

β
′

jl = 0. Then βz ≥ αx + π cannot be facet defining for PB .
If βz ≥ αx + π with βjl = 0 for all (j, l) ∈ A \B is facet defining for PA, then it

is clearly facet defining for PB .
Theorem 4.7 implies that for B1 ⊂ B2 ⊂ A, facet defining inequalities of PB1 are

also facet defining for PB2 . Proposition 4.3 is a special case of Theorem 4.7 where
B = ∅. Facet defining inequalities of P∅ are facet defining for PB for every B ⊆ A.

Proposition 4.8. For B ⊆ A, if βz ≥ αx + π is facet defining for PB, then
β ≥ 0.

Proof. Let (x, z) ∈ PB be such that βz = αx + π. As, for (j, l) ∈ B, (x, z) + ezjl
is also in PB , βjl ≥ 0.

Proposition 4.8 implies that facet defining inequalities of Pjl that involve both
assignment and capacity variables are of the form zjl ≥ αx + π. We give general
properties and lifting results for these inequalities.

Definition 4.9. For A
′ ⊆ A and B ⊆ A, define

FB(A
′
) =

{
(x, z) ∈ FB : xim = 0 ∀(i,m) ∈ A \A′}

and

PB(A
′
) = conv(FB(A

′
)).

If we have a facet defining inequality for PB(A
′
), then by lifting variables xim

with (i,m) ∈ A \ A
′

sequentially, we can obtain a facet defining inequality for PB

(see, e.g., Nemhauser and Wolsey [13]).
Proposition 4.10. For (j, l) ∈ A and A

′ ⊆ A, if zjl ≥ αx + π is facet defining

for Pjl(A
′
), then αim ≥ 0 for (i,m) ∈ A

′
such that i �= j and i �= l.

Proof. Let (i,m) ∈ A
′

such that i �= j and i �= l. Suppose that zjl ≥ αx + π is

facet defining for Pjl(A
′
). Then there exists (x, zjl) ∈ Pjl(A

′
) such that zjl = αx+ π

and xim = 1. As (x, zjl) − exim is also in Pjl(A
′
), we have that αim ≥ 0.

The following three theorems give the values of the optimal lifting coefficients of
some variables.

Theorem 4.11. For (j, l) ∈ A, A
′ ⊆ A and (j, u) ∈ A \A′

, if inequality

zjl ≥
∑

(i,m)∈A′

αimxim + π(4.6)

is facet defining for Pjl(A
′
), then

zjl ≥
∑

(i,m)∈A′

αimxim + αjuxju + π
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512 HANDE YAMAN

is facet defining for Pjl(A
′ ∪ {(j, u)}), where

αju = − max
x∈F∅(A′ )

( ∑
(i,m)∈A′ :i 	=j,i 	=u and m	=j

αimxim

)
− π.

Proof. For xju, the optimal lifting coefficient αju can be computed as

αju = min
(x,zjl)∈Fjl(A

′∪{(j,u)}):xju=1

(
zjl −

∑
(i,m)∈A′

αimxim

)
− π.

For a given x such that xju = 1, best choice of zjl is 0. So,

αju = min
x∈F∅(A′∪{(j,u)}):xju=1

(
−

∑
(i,m)∈A′

αimxim

)
− π.

Moreover, as xju = 1, we have xjm = 0 for all m ∈ I \{j, u}, xij = 0 for all i ∈ I \{j}
and xum = 0 for all m ∈ I \ {u}.

Theorem 4.12. For (j, l) ∈ A, A
′ ⊆ A and (l, u) ∈ A \ A′

, if inequality (4.6) is
facet defining for Pjl(A

′
), then

zjl ≥
∑

(i,m)∈A′

αimxim + αluxlu + π

is facet defining for Pjl(A
′ ∪ {(l, u)}), where

αlu = − max
x∈F∅(A′ )

( ∑
(i,m)∈A′ :i 	=l,i 	=u and m	=l

αimxim

)
− π.

Proof. The proof is analogous to the proof of Theorem 4.11.
Theorem 4.13. For (j, l) ∈ A and A

′ ⊂ A, assume that inequality (4.6) is facet
defining for Pjl(A

′
). Let (u, v) ∈ A\A′

such that u is different from j and l. Consider
the two sets of conditions (i) and (ii):

(i) (a) (j, v) ∈ A
′
,

(b) for each m ∈ I \ {u, v, j} independently, we have (u,m) ∈ A \ A
′

or
αum = 0,

(c) for each m ∈ I \ {u, v, j} independently, we have (m,u) ∈ A \ A
′

or
αmu = 0.

(ii) (a) (l, v) ∈ A
′
,

(b) for each m ∈ I \ {u, v, l} independently, we have (u,m) ∈ A \ A
′

or
αum = 0,

(c) for each m ∈ I \ {u, v, l} independently, we have (m,u) ∈ A \ A
′

or
αmu = 0.

If at least one set of conditions (i) and (ii) is satisfied, then inequality (4.6) is also
facet defining for Pjl(A

′ ∪ {(u, v)}).
Proof. If inequality (4.6) is facet defining for Pjl(A

′
), then inequality

zjl ≥
∑

(i,m)∈A′

αimxim + αuvxuv + π
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HUB LOCATION WITH MODULAR ARC CAPACITIES 513

is facet defining for Pjl(A
′ ∪ {(u, v)}), where

αuv = min
(x,zjl)∈Pjl(A

′∪{(u,v)}):xuv=1

(
zjl −

∑
(i,m)∈A′

αimxim

)
− π.

Assume that condition set (i) is satisfied. As inequality (4.6) is facet defining for
Pjl(A

′
) and by condition set (i), we know that there exists (x, zjl) in Pjl(A

′
) such

that xjv = 1, zjl =
∑

(i,m)∈A′ αimxim + π and
∑

m∈I\{u,v,j}(xum + xmu) = 0. Then

(x, zjl) + exuv is in Pjl(A
′ ∪ {(u, v)}) and so αuv ≤ 0. By Proposition 4.10, αuv ≥ 0.

Thus αuv = 0. The case where condition set (ii) is satisfied is similar.

We conclude this section with two more lifting theorems.

Let (j, l) ∈ A, Ij ⊆ I \ {j, l}, Il ⊆ I \ {j, l} and A
′
= {(i, j) : i ∈ Ij} ∪ {(m, l) :

m ∈ Il}. Consider inequality

zjl ≥
∑
i∈Ij

αijxij +
∑
m∈Il

αmlxml + π,(4.7)

which is facet defining for Pjl(A
′
). Let u ∈ I \ (Ij ∪ {j, l}). To compute the lifting

coefficient of the variable xuj , we solve a min cut problem on a directed layer graph

Guj = (Nuj , Auj) constructed as follows. Let I
′

j = {i ∈ Ij : αij − til > 0} and

I
′

l = {m ∈ Il : αml − tjm − tum > 0}. Let o and d be two dummy nodes. The node

set is Nuj = {o, d} ∪ I
′

j ∪ I
′

l . The first layer includes node o, the second layer includes

nodes of I
′

j , the third layer includes nodes of I
′

l , and the fourth layer includes node
d. Arcs go from the nodes of a layer to the nodes of the next layer. Thus, the arc
set consists of arcs from node o to nodes in I

′

j , arcs from nodes in I
′

j to nodes in I
′

l ,

and arcs from nodes in I
′

l to node d, i.e., Auj = {(o, i) : i ∈ I
′

j} ∪ {(i,m) : i ∈ I
′

j ,m ∈
I

′

l}∪{(m, d) : m ∈ I
′

l}. A cut separating nodes o and d is defined by a subset C ⊂ Nuj

with o ∈ C and d �∈ C, and the capacity of the cut is the sum of the capacities of arcs
going from nodes of C to nodes of Nuj \ C. If there is no such arc, then the cut has
zero capacity.

Theorem 4.14. Let (j, l) ∈ A, Ij ⊆ I \ {j, l}, Il ⊆ I \ {j, l}, and A
′
= {(i, j) :

i ∈ Ij} ∪ {(m, l) : m ∈ Il}. Consider inequality (4.7) with integer coefficients.

Let u ∈ I \ (Ij ∪ {j, l}) and define I
′

j = {i ∈ Ij : αij − til > 0} and I
′

l = {m ∈ Il :
αml − tjm − tum > 0}. Consider the graph Guj = (Nuj , Auj) constructed above. The
capacity of arc (i,m) ∈ Auj is as follows:

wim =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αmj − tml if i = o and m ∈ I
′

j ,

∞ if i = m and i ∈ I
′

j ∩ I
′

l ,

tim if i ∈ I
′

j and m ∈ I
′

l \ {i},
αil − tji − tui if m = d and i ∈ I

′

l .

Let ω be the capacity of a minimum capacity cut separating nodes o and d in the graph
Guj = (Nuj , Auj). Compute

αuj = −π +

⌈
tjl + tul −

∑
i∈I

′
j

(αij − til) −
∑
m∈I

′
l

(αml − tjm − tum) + ω

⌉
.
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514 HANDE YAMAN

If inequality (4.7) is facet defining for Pjl(A
′
), then inequality

zjl ≥
∑
i∈Ij

αijxij +
∑
m∈Il

αmlxml + αujxuj + π

is facet defining for Pjl(A
′ ∪ {(u, j)}).

Proof. The optimal lifting coefficient of xuj can be computed as follows:

αuj = −π + min
(x,zjl)∈Fjl(A

′∪{(u,j)}):xuj=1

(
zjl −

∑
i∈Ij

αijxij −
∑
m∈Il

αmlxml

)

= −π + min
(x,zjl)∈Fjl(A

′∪{(u,j)}):xuj=1

⌈
tjl + tul +

∑
i∈Ij

(til − αij)xij

+
∑
m∈Il

(tjm + tum − αml)xml +
∑
i∈Ij

∑
m∈Il

timxijxml

⌉
.

There is an optimal solution where xij = 0 for all i ∈ Ij \ I
′

j and xml = 0 for all

m ∈ Il \ I
′

l . So,

αuj = −π +

⌈
tjl + tul + min

(x,zjl)∈Fjl(A
′∪{(u,j)}):xuj=1

(∑
i∈I

′
j

(til − αij)xij

+
∑
m∈I

′
l

(tjm + tum − αml)xml +
∑
i∈I

′
j

∑
m∈I

′
l

timxijxml

)⌉

= −π +

⌈
tjl + tul −

∑
i∈I

′
j

(αij − til) −
∑
m∈I

′
l

(αml − tjm − tum)

+ min
(x,zjl)∈Fjl(A

′∪{(u,j)}):xuj=1

(∑
i∈I

′
j

(αij − til)(1 − xij)

+
∑
m∈I

′
l

(αml − tjm − tum)(1 − xml) +
∑
i∈I

′
j

∑
m∈I

′
l

timxijxml

)⌉
.

It remains to show that ω is equal to the optimal value of the above minimization
problem. Let C be a cut separating nodes o and d in Guj . The capacity of cut C is∑

i∈I
′
j
\C

(αij − til) +
∑

m∈I
′
l
∩C

(αml − tjm − tum) +
∑

i∈I
′
j
∩C

∑
m∈I

′
l
\C

tim.

This is the cost of a solution where xij is equal to 1 if i ∈ I
′

j ∩ C and 0 otherwise for

i ∈ I
′

j and xml is equal to 1 if m ∈ I
′

l \C and 0 otherwise for m ∈ I
′

l . The solution is

infeasible if there exists i ∈ I
′

j∩I
′

l such that xij +xil = 2. Then the corresponding cut

has infinite capacity since wii = ∞ for all i ∈ I
′

j ∩ I
′

l . Therefore, any feasible solution
of the minimization problem is a cut with a finite capacity and vice versa. Besides,
the cost of a feasible solution is the same as the capacity of the corresponding cut.
So ω is the same as the optimal value of the minimization problem.
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HUB LOCATION WITH MODULAR ARC CAPACITIES 515

Theorem 4.15. Let (j, l) ∈ A, Ij ⊆ I \ {j, l}, Il ⊆ I \ {j, l}, and A
′
= {(i, j) :

i ∈ Ij} ∪ {(m, l) : m ∈ Il}. Consider inequality (4.7) with integer coefficients.

Let u ∈ I \ (Il ∪ {j, l}) and define I
′

j = {i ∈ Ij : αij − til − tiu > 0} and

I
′

l = {m ∈ Il : αml − tjm > 0}. Consider the graph Gul = (Nul, Aul). The node

set is Nul = {o, d} ∪ I
′

j ∪ I
′

l , and nodes o and d are dummy nodes. The arc set is

Aul = {(o, i) : i ∈ I
′

j} ∪ {(i,m) : i ∈ I
′

j ,m ∈ I
′

l} ∪ {(m, d) : m ∈ I
′

l}. The capacity of
arc (i,m) ∈ Aul is as follows:

wim =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αmj − tml − tmu if i = o and m ∈ I
′

j ,

∞ if i = m and i ∈ I
′

j ∩ I
′

l ,

tim if i ∈ I
′

j and m ∈ I
′

l \ {i},
αil − tji if m = d and i ∈ I

′

l .

Let ω be the capacity of a minimum capacity cut separating nodes o and d in the
graph Gul = (Nul, Aul). Compute

αul = −π +

⌈
tjl + tju −

∑
i∈I

′
j

(αij − til − tiu) −
∑
m∈I

′
l

(αml − tjm) + ω

⌉
.

If inequality (4.7) is facet defining for Pjl(A
′
), then inequality

zjl ≥
∑
i∈Ij

αijxij +
∑
m∈Il

αmlxml + αulxul + π

is facet defining for Pjl(A
′ ∪ {(u, l)}).

4.3. Facets of Pjl. We present families of facet defining inequalities of Pjl for
(j, l) ∈ A. By Theorem 4.7, these inequalities are also facet defining for PA.

We use sequential lifting to derive facet defining inequalities for Pjl. We start with

the inequality zjl ≥ �tjl�, which is facet defining for Pjl(∅). For a subset I
′ ⊆ I \{j, l}

and an order φ on I
′
, we first lift the variables xij for i ∈ I

′
in the order φ. The

remaining variables are lifted in the following order: xjm for m ∈ I \ {j}, xuv with

u ∈ I \{j, l} and v ∈ I \{j, u}, xlm with m ∈ I \{l}, and xuj with u ∈ I \ (I
′ ∪{j, l}).

As all lifting coefficients are optimal, the resulting inequality is facet defining for Pjl.

Theorem 4.16. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αij = −�tjl� +

⌈
tjl + til −

∑
m∈I′ :φ(m)<φ(i)

(αmj − tml)
+

⌉
.

Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+

∑
i∈I′

αij

(
xij −

∑
m∈I\{l,i}

xlm

)
(4.8)

is facet defining for Pjl.
Proof. Inequality zjl ≥ �tjl� is facet defining for Pjl(∅). We lift variables xij for

i ∈ I
′
in the order φ. Let

F i
jl =

{
(x, zjl) ∈ Fjl

({
(m, j) ∈ A : φ(m) ≤ φ(i)

})
: xij = 1

}
.
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516 HANDE YAMAN

The optimal lifting coefficient for xij is

αij = min
(x,zjl)∈F i

jl

(
zjl − �tjl� −

∑
m∈I′ :φ(m)<φ(i)

αmjxmj

)
.

For x such that xij = 1, the lowest value of zjl is⌈
tjl + til +

∑
m∈I′ :φ(m)<φ(i)

tmlxmj

⌉
.

Thus,

αij = min
(x,zjl)∈F i

jl

(⌈
tjl + til +

∑
m∈I′ :φ(m)<φ(i)

tmlxmj

⌉
−

∑
m∈I′ :φ(m)<φ(i)

αmjxmj

)
− �tjl�.

By induction, one can show that αmj is an integer for each m ∈ I
′
such that φ(m) <

φ(i). So,

αij = −�tjl� + min
(x,zjl)∈F i

jl

⌈
tjl + til +

∑
m∈I′ :φ(m)<φ(i)

(tml − αmj)xmj

⌉
.

The minimization problem can be solved by setting xmj = 1 for m ∈ I
′
with φ(m) <

φ(i) if αmj − tml ≥ 0 and at 0 otherwise.
Next we lift variables xjm. For m ∈ I \ {j}, Theorem 4.11 implies that αjm =

−�tjl�.
Now consider some xuv with u ∈ I \ {j, l} and v ∈ I \ {j, u}. We prove by

induction that αuv = 0. If xuv is the first variable with u ∈ I \{j, l} and v ∈ I \{j, u}
to lift, then as xjv is already lifted and for each m ∈ I \ {u, v, j}, xum and xmu are
not yet lifted, condition set (i) of Theorem 4.13 is satisfied and the lifting coefficient
of xuv is zero. Otherwise, assume that those xim with i ∈ I \ {j, l} and m ∈ I \ {j, i}
that are already lifted have zero coefficient. Then as xjv is already lifted and for each
m ∈ I \{u, v, j}, xum is not lifted or it has zero lifting coefficient and xmu is not lifted
or it has zero lifting coefficient, condition set (i) of Theorem 4.13 is satisfied. Hence,
the lifting coefficient of xuv is zero.

We lift variables xlm. For m ∈ I \{l}, as by Proposition 4.10 αij ≥ 0 for all i ∈ I
′

and αji ≤ 0 for all i ∈ I\{j}, Theorem 4.12 implies that αlm = −
∑

i∈I′\{m} αij−�tjl�.
Finally variables xuj with u ∈ I \ (I

′ ∪{j, l}) are lifted by applying Theorem 4.13
repeatedly. As xlj is already lifted and for each m ∈ I \{u, j, l}, the lifting coefficients
of xum and xmu are zero, condition set (ii) of Theorem 4.13 is satisfied and the lifting
coefficient of xuj is zero.

The three corollaries below present facet defining inequalities that are special
cases of inequalities (4.8) for |I ′ | ≤ 2.

Corollary 4.17. For (j, l) ∈ A, inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
(4.9)

is facet defining for Pjl.
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HUB LOCATION WITH MODULAR ARC CAPACITIES 517

Corollary 4.18. For (j, l) ∈ A and u ∈ I \ {j, l}, inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)

+

(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

)
(4.10)

is facet defining for Pjl.
Corollary 4.19. Let (j, l) ∈ A and u, v ∈ I \ {j, l} such that u �= v. Let

a = min{�tjl + tul + tvl� − �tjl + tul�, �tjl + tvl� − �tjl�}. Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+ a

(
xvj −

∑
m∈I\{l,v}

xlm

)

+

(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

)
(4.11)

is facet defining for Pjl.

Theorem 4.20. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αil = −�tjl� +

⌈
tjl + tji −

∑
m∈I′ :φ(m)<φ(i)

(αml − tjm)+

⌉
.

Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+

∑
i∈I′

αil

(
xil −

∑
m∈I\{j,i}

xjm

)
(4.12)

is facet defining for Pjl.
Proof. Analogous to the proof of Theorem 4.16.
Facet defining inequalities can also be obtained by fixing the values of some vari-

ables to 1 and applying sequential lifting.
Let A0 and A1 be disjoint subsets of A. For (j, l) ∈ A, define

F jl(A0, A1) = Fjl ∩
{
(x, zjl) : xim = 0 ∀(i,m) ∈ A0 and xim = 1 ∀(i,m) ∈ A1

}
and

P jl(A0, A1) = conv
(
F jl(A0, A1)

)
.

Let I
′ ⊆ I\{j, l} and A1 = {(i, j) ∈ A : i ∈ I

′}. Inequality zjl ≥ �
∑

m∈I′ tml+tjl�
is facet defining for P jl(A \ A1, A1). To derive a facet defining inequality for Pjl,

we first lift (1 − xij) for i ∈ I
′

in some order φ, then xjm for m ∈ I \ {j}, xuv

with u ∈ I \ {j, l} and v ∈ I \ {j, u}, xlm with m ∈ I \ {l}, and finally xuj with

u ∈ I \ (I
′ ∪ {j, l}).

Theorem 4.21. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αij = −
⌈ ∑

m∈I′

tml + tjl

⌉
+

⌈
tjl +

∑
m∈I′\{i}

tml −
∑

m∈I′ :φ(m)<φ(i)

(tml + αmj)
+

⌉
.
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518 HANDE YAMAN

Inequality

zjl ≥
∑
i∈I′

αij

(
1 − xij − xli −

∑
m∈I\{j}

xjm

)

+

⌈ ∑
m∈I′

tml + tjl

⌉(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
(4.13)

is facet defining for Pjl.

Proof. Let A1 = {(i, j) ∈ A : i ∈ I
′}. Inequality zjl ≥ �

∑
m∈I′ tml + tjl� is facet

defining for P jl(A \A1, A1). We lift (1 − xij) for i ∈ I
′
in the order φ. Let

F i
jl = F jl

(
A \A1 ∪ {(i, j)}, A1 \ {(m, j) : φ(m) ≤ φ(i)}

)
.

The optimal lifting coefficient for (1 − xij) is

αij = min
(x,zjl)∈F i

jl

(
zjl −

∑
m∈I′ :φ(m)<φ(i)

αmj(1 − xmj)

)
−
⌈ ∑

m∈I′

tml + tjl

⌉
.

For x such that xij = 0, the lowest value for zjl is

zjl =

⌈
tjl +

∑
m∈I′ :φ(m)>φ(i)

tml +
∑

m∈I′ :φ(m)<φ(i)

tmlxmj

⌉
.

Then

αij = min
(x,zjl)∈F i

jl

(⌈
tjl +

∑
m∈I′ :φ(m)>φ(i)

tml +
∑

m∈I′ :φ(m)<φ(i)

tmlxmj

⌉

−
∑

m∈I′ :φ(m)<φ(i)

αmj(1 − xmj)

)
−
⌈ ∑

m∈I′

tml + tjl

⌉
.

By induction, one can again show that αmj is integer for each m ∈ I
′

such that
φ(m) < φ(i). So

αij = −
⌈ ∑

m∈I′

tml + tjl

⌉
+ min

(x,zjl)∈F i
jl

⌈
tjl +

∑
m∈I′\{i}

tml

−
∑

m∈I′ :φ(m)<φ(i)

(tml + αmj)(1 − xmj)

⌉

= −
⌈ ∑

m∈I′

tml + tjl

⌉
+

⌈
tjl +

∑
m∈I′\{i}

tml −
∑

m∈I′ :φ(m)<φ(i)

(tml + αmj)
+

⌉
.

Next, we lift variables xjm. For m ∈ I \{j}, αjm = −
∑

i∈I′ αij−�
∑

i∈I′ til + tjl�
since xij = 0 for all i ∈ I

′
as xjm = 1.

Now we lift variables xuv with u ∈ I \ {j, l} and v ∈ I \ {j, u}. As condition set
(i) of Theorem 4.13 is satisfied, these variables have zero lifting coefficient (see the
proof of Theorem 4.16).
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HUB LOCATION WITH MODULAR ARC CAPACITIES 519

Next, we lift variables xlm. Let m ∈ I \ {j, l}. Since αij ≤ 0 for all i ∈ I
′
and αji

is the same for all i ∈ I \ {j}, by Theorem 4.12, the optimal lifting coefficient for xlm

is

αlm = −
∑
i∈I′

αij −
⌈∑

i∈I′

til + tjl

⌉
+ min

{ ∑
i∈I′\{m}

αij ,
∑
i∈I′

αij +

⌈∑
i∈I′

til + tjl

⌉}
.

If m �∈ I
′
, then αlm = −�

∑
i∈I′ til + tjl�. If m ∈ I

′
, then

αlm = −
∑
i∈I′

αij −
⌈∑

i∈I′

til + tjl

⌉
+ min

{∑
i∈I′

αij − αmj ,
∑
i∈I′

αij +

⌈∑
i∈I′

til + tjl

⌉}
.

This is the same as min{−αmj − �
∑

i∈I′ til + tjl�, 0}. As

⌈
tjl +

∑
i∈I′\{m}

til −
∑

i∈I′ :φ(i)<φ(m)

(til + αij)
+

⌉
≥ 0,

we get αlm = −αmj − �
∑

i∈I′ til + tjl�.
We lift xlj . As

∑
i∈I\{j} xji = 0, αlj = −�

∑
i∈I′ til + tjl�.

Finally variables xuj with u ∈ I \ (I
′ ∪{j, l}) are lifted by applying Theorem 4.13

repeatedly and their lifting coefficients are zero (see proof of Theorem 4.16).
The resulting inequality is

zjl ≥
⌈ ∑

m∈I′

tml + tjl

⌉
+

∑
i∈I′

αij(1 − xij) −
∑

m∈I\{j}

(∑
i∈I′

αij +

⌈∑
i∈I′

til + tjl

⌉)
xjm

−
∑

m∈I\(I′∪{l})

⌈∑
i∈I′

til + tjl

⌉
xlm −

∑
m∈I′

(
αmj +

⌈∑
i∈I′

til + tjl

⌉)
xlm.

Rearranging terms, we obtain inequality (4.13).
For I

′
= ∅ and I

′
= {u}, inequality (4.13) reduces to inequalities (4.9) and (4.10),

respectively. Inequality (4.13) for I
′
= {u, v}, φ(u) = 1 and φ(v) = 2 is given in the

following corollary.
Corollary 4.22. Let (j, l) ∈ A and u, v ∈ I \ {j, l} such that u �= v. Let

a = max{�tjl + tul + tvl� − �tjl + tul�, �tjl + tvl� − �tjl�}. Inequality

zjl ≥
(
�tjl + tvl� − a

)(
1 −

∑
m∈I\{j}

xjm

)
− �tjl + tul + tvl�

∑
m∈I\{l}

xlm

+

(
�tjl + tul + tvl� − �tjl + tvl�

)
(xuj + xlu) + a(xvj + xlv)(4.14)

is facet defining for Pjl.

Theorem 4.23. Let (j, l) ∈ A, I
′ ⊆ I \{j, l} and φ be an order on I

′
. For i ∈ I

′
,

αil = −
⌈ ∑

m∈I′

tjm + tjl

⌉
+

⌈
tjl +

∑
m∈I′\{i}

tjm −
∑

m∈I′ :φ(m)<φ(i)

(tjm + αml)
+

⌉
.
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520 HANDE YAMAN

Inequality

zjl ≥
∑
i∈I′

αil

(
1 − xil − xji −

∑
m∈I\{l}

xlm

)

+

⌈ ∑
m∈I′

tjm + tjl

⌉(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
(4.15)

is facet defining for Pjl.
Proof. The proof is analogous to the proof of Theorem 4.21.
Finally, using Theorems 4.14 and 4.15, we find the following facet defining in-

equalities.
Proposition 4.24. Let (j, l) ∈ A and u, v ∈ I \ {j, l} such that u �= v. Let

a = min{�tjl + tjv� − �tjl�, �tjl + tjv + tul + tuv� − �tjl + tul�}. Inequality

zjl ≥ �tjl�
(

1 −
∑

m∈I\{j}
xjm −

∑
m∈I\{l}

xlm

)
+ a

(
xvl −

∑
m∈I\{j,v}

xjm

)

+

(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

)
(4.16)

is facet defining for Pjl.
Proof. Inequality zjl ≥ �tjl� is facet defining for Pjl(∅). Now lift first xuj and

then xvl using Theorems 4.14 and 4.15, respectively. Inequality

zjl ≥ �tjl� + (�tjl + tul� − �tjl�)xuj + axvl

is facet defining for Pjl({(u, j), (v, l)}). Next, by Theorem 4.11, optimal lifting coef-
ficient for xjm with m ∈ I \ {j, v} is −�tjl� − a and for xjv is −�tjl�. The optimal
coefficient of xlm for m ∈ I \ {l, u} is −�tjl + tul� and for xlu is −�tjl�.

Next, we lift variables xij with i ∈ I \ {u, l, j}. As xlj is already lifted and for
m ∈ I \ {i, j, l}, xim and xmi are not lifted, condition set (ii) of Theorem 4.13 is
satisfied and the lifting coefficient of xij is zero.

For xil with i ∈ I \{v, j, l}, as xjl is already lifted and for m ∈ I \{i, j, l}, xim and
xmi are not lifted, condition set (i) of Theorem 4.13 is satisfied. So lifting coefficient
of xil is zero.

Inequality (4.16) is facet defining for Pjl(A
′
), where A

′
= A \ {(i, k) : i ∈ I \

{j, l}, k ∈ I \ {i, j, l}}. Next we lift xik with i ∈ I \ {j, l} and k ∈ I \ {i, j, l}. Optimal
lifting coefficient is

αik = min
(x,zjl)∈Fjl(A

′∪{(i,k)}):xik=1
σ(x, zjl),

where

σ(x, zjl) =

(
zjl − �tjl�

(
1 −

∑
m∈I\{j}

xjm −
∑

m∈I\{l}
xlm

)
− a

(
xvl −

∑
m∈I\{j,v}

xjm

)

−
(
�tjl + tul� − �tjl�

)(
xuj −

∑
m∈I\{l,u}

xlm

))
.
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If i �= v and k �= v, then let x = exik + exjk + exvl and zjl = 0. If i �= v and k = v,
then let x = exiv + exjv and zjl = 0. If i = v and k �= u, then x = exvk + exlk + exuj
and zjl = 0. Finally, if i = v and k = u, then x = exvu + exlu and zjl = 0. Solution

(x, zjl) ∈ Fjl(A
′ ∪ {(i, k)}) with xik = 1 and σ(x, zjl) = 0. We know by Proposition

4.10 that αik ≥ 0. Therefore, αik = 0. Repeating the same argument, we can prove
that lifting coefficients of all variables xik with i ∈ I \ {j, l} and k ∈ I \ {i, j, l} are
zero.

An important issue is the separation of these inequalities. Inequalities (4.9),
(4.10), (4.11), (4.14), and (4.16) can be separated in polynomial time by enumeration.
The separation of inequalities (4.8), (4.12), (4.13), and (4.15) asks to choose a subset
I

′ ⊆ I \ {j, l} and to find an order φ on I
′
. We do not know the complexity of these

problems.

5. Conclusion. In this paper, we presented polyhedral results for the HLM. By
previous results, it was easy to characterize the facet defining inequalities that involve
only the assignment or the capacity variables. It remained to investigate strong valid
inequalities that involved both types of variables. We presented valid inequalities,
results that give the optimal lifting coefficients of some variables as well as families of
facet defining inequalities.

A future research direction is to study similar lifting results for PB where B ⊆ A
is not necessarily a singleton. Another one is to find efficient separation algorithms for
the inequalities given here and incorporate these results in a branch and cut algorithm.

Acknowledgments. The author is grateful to an anonymous referee for his or
her helpful comments on the structure and presentation and for drawing attention to
several errors.

REFERENCES

[1] P. Avella and A. Sassano, On the p-median polytope, Math. Program., 89 (2001), pp. 395–
411.

[2] E. Balas and M. W. Padberg, Set partitioning: A survey, SIAM Rev., 18 (1976), pp. 710–760.
[3] J. F. Campbell, A. T. Ernst, and M. Krishnamoorthy, Hub location problems, in Facility

Location: Applications and Theory, Z. Drezner and H. W. Hamacher, eds., Springer, New
York, 2002, pp. 373–407.
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[6] H. W. Hamacher, M. Labbé, S. Nickel, and T. Sonneborn, Adapting polyhedral properties
from facility to hub location problems, Discrete Appl. Math., 145 (2004), pp. 104–116.

[7] J. G. Klincewicz, Hub location in backbone/tributary network design: A review, Location
Sci., 6 (1998), pp. 307–335.
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