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Abstract—Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to sup-
port persistent currents due to the Aharonov–Bohm flux, and the “spontaneous” persistent currents without the
flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-sym-
metric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal peri-
odicity, which is further restored at the increasing field, however. The dynamics of the Aharonov–Bohm loop
in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that
transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied
to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that
can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence
of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches
between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers. © 2005 Ple-
iades Publishing, Inc. 
1. PERSISTENT CURRENTS
IN MESOSCOPIC SYSTEMS

Persistent currents have been predicted for mesos-
copic conducting ballistic or quasiballistic loops ([1]1

and references therein, [2]) that do not show the effect
of superconductivity and that have been extended to
diffusive rings [3]. The current appears in the presence
of a magnetic field as a result of the Aharonov–Bohm
effect [4], demonstrating the special role of the vector
potential in quantum mechanics. As discussed in [5],
persistent currents are similar to orbital currents in nor-
mal metals first considered by Teller [6] in his interpre-
tation of Landau diamagnetism in metals [7], but are
specific to the doubly connected geometry of conduc-
tors (loops, hollow cylinders, etc.). Persistent currents
have been observed in indirect [8, 9] as well as direct
[10, 11] experiments, showing the single-flux-quantum
Φ0 = hc/e periodicity in the resistance of thin Nb wires
[8] and networks of isolated Cu rings [9], and in single-
loop experiments on metals [10] and semiconductors
[11]. In [12], the periodic variation of resistivity in

¶ The text was submitted by the author in English. 
1 This paper proved exact periodicity of ring energy as a function

of the magnetic flux with the period hc/e, although with an indef-
inite amplitude.
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molecular conducting cylinders (carbon nanotubes)
was attributed to the Altshuler–Aronov–Spivak effect
[13], a companion to the classical Aharonov–Bohm
mechanism with the twice smaller periodicity in mag-
netic flux Φ1 = hc/2e. A further trend in macromolecu-
lar persistent currents [14–16] is in the quantum com-
putational [17] prospects of using the Aharonov–Bohm
loops as qubits with an advantage of easier (radiation-
free) manipulation of qubit states, and in the increased
decoherence times compared to macroscopic
“Schrödinger cat” structures (Josephson junctions).

The present paper focuses on ballistic Aharonov–
Bohm rings, like those naturally found in molecular
crystals with metalloorganic complexes as the building
blocks [18, 19]. We approximate such macromolecular
structures as rings with resonant hopping of electrons
between the near-site atoms or complexes serving as
electron localization sites. As shown in [14], the small-
est (three-site) persistent current ring displays a
Λ-shaped energy configuration (Fig. 1) with two degen-
erate ground states, at the external flux through the ring
equal to half the normal-metal flux quantum, Φ = hc/2e.
At a certain number of electrons in the ring, persistent
current appears at zero field (the “spontaneous” cur-
rent). The spontaneous persistent current loop, to be
discussed below, achieves the degenerate state at zero
 © 2005 Pleiades Publishing, Inc.
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field or, if the degeneracy is lifted by the electron–
phonon coupling, at reasonably small fields.

Persistent current is a voltage-free nondecaying cur-
rent that exists as a manifestation of the fact that the
ground state of a doubly connected conductor in a mag-
netic field is a current-carrying one. This statement was
proved for ballistic loops [2] and for diffusive rings [3].
There is no principal difference between these
extremes. Counterintuitively, a ballistic structure does
not show infinite conductivity, as was sometimes
naively supposed; a dc resistance of the loop is infinite
rather than zero when a dc electric field is applied to the
system. In the case where a current is fed through the
structure, no voltage appears provided the magnitude of
the current is smaller than a certain critical value. This
applies to both elastic and inelastic scatterings. The
magnitude of the critical current of a ballistic ring
smoothly matches the current of the diffusive ring when
the mean free path of the electron becomes large. In a
dirty limit, l ! L, where l is the electron mean free path
and L is the ring circumference, the critical value of the
persistent current decreases proportionally to l/L

|0〉

|c〉

|1〉

Fig. 1. A Λ-shaped energy configuration in the Aharonov–
Bohm ring. Arrows indicate a transition between degenerate
states |0〉  and |1〉  through virtual transition to the control
state |c〉 .

J

Φ Φ
J

R
Φ L1

L2

(a) (b) (c)

Fig. 2. (a) Models of mesoscopic and nanoscopic Aha-
ronov–Bohm loops: a one-dimensional continuous loop;
(b) a discrete loop with regularly spaced centers of electron
localization (sites); (c) a 3-dimensional loop in the form of
a cylinder with a longitudinal dimension of L = 2πR and
transverse dimensions of L1, L2.
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according to [20], or to (l/L)1/2 according to numerical
simulation [5]. The nondecaying current does not even
require severe restrictions on the so-called “phase
breaking” mean free path lϕ . In fact, the normal-metal
supercurrent is an analogue of the “nonquantum”
Josephson effect [21, 22], the one in which the phase of
superconductor is considered a classical variable.
Stronger criteria (the dephasing length larger than the
system size, and the analogous requirement in the time
domain, that the “decoherence time” is larger than the
characteristic time of observation) apply to persistent
current rings as quantum computational tools, which
are analogs of macroscopic quantum tunneling [23–
26]. Persistent current is a thermodynamic property,
clearly distinct from the dissipative currents in conduc-
tors, and can in principle exist in a system that has the
vanishing Ohmic conductance.

2. SPONTANEOUS PERSISTENT CURRENTS

Persistent current in a ballistic ring appears due to
the Aharonov–Bohm flux. The current, however, can
also occur when the external magnetic field is zero, in
which case it is called the spontaneous current. Such a
situation was noticed accidentally by various authors,
in particular, [27, 28], but did not seem convincing, did
not attract attention due to fixed chemical potential con-
figuration studied, and was attributed to the effect of
Peierls instability in the ring [29–32] (with the latter
paper criticized [33, 34] in regard to the inaccuracy of
the mean-field approximation). In fact, the fixed-num-
ber-of-particle ring with an odd number of electrons
displays a number of structural instabilities, of which
the Peierls transformation [35] and the Jahn–Teller
effect [36] are the best known examples, or generally,
a more complex atom rearrangement when the ground
state proves degenerate in a symmetric configuration.

The origin of the spontaneous current can be under-
stood as follows. We consider a one-dimensional ring in
the field of a vector potential created by a thin, infinitely
long solenoid perpendicular to the plane of the ring and
piercing the ring (Fig. 2a). The electron energy in the
ring is

(1)

where A = Φ/L is the angular component of the vector
potential (Φ is the total magnetic flux of the solenoid)
and n = 0, ±1, ±2, …. Such a state corresponds to the
current

which is zero at Φ = 0 and n = 0, but is nonzero at n ≠ 0
even at zero flux. At T = 0, electrons, in the total number
N, occupy the lowest possible energies compatible with
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the Pauli exclusion principle, i.e., such that each state is
occupied with two electrons with opposite spins at
most. Therefore, the ground state of one or two elec-
trons is that of n = 0, and hence has zero current at
Φ = 0. But the state with the next electron number,
N = 3, already resumes at n = 1 or n = –1, or is in a
superposition of these states, α|1〉  + β|–1〉 , depending
on the way the state at the initial condition is prepared,
and therefore carries a current unless α ≠ β. If there is
no decoherence of the state due to the interaction of the
loop with the environment, the current persists in time
without any voltage applied along the loop. This
applies to a ballistic perfectly symmetric ring. The
inhomogeneity in the ring, as well as scattering of elec-
trons by impurities, may result in a nondegenerate cur-
rent-free state. This is illustrated in Fig. 3 for the ring
with a δ-functional barrier V0δ(x), which results in the
Kronig–Penney equation for energy,

(2)

The electron energy is ε = ε0k2, where k = kn is one of
solutions to Eq. (2) and ε0 = h2/2mL2. The same conclu-
sion is obtained for a discrete Aharonov–Bohm ring
(Fig. 2b), to be considered in detail below.

Figure 4 shows the maximum value of persistent
current, as well as that of the spontaneous current intro-
duced above, versus the number of electrons in a three-
dimensional ballistic ring (the one with the electron
mean free path l = ∞) modeled as a finite-length hollow
cylinder (Fig. 2c) with the rectangular cross section
L1 × L2 containing a finite number of perpendicular
electron channels

We note that the magnitude of the current in a ballistic
ring is not evF/L, as is sometimes suggested (vF is the
Fermi velocity), but

(see also [2]). The dependence Jmax(N) at T = 0 is irreg-
ular due to the contribution to the total current of both
the negative and positive terms originating from differ-
ent electron eigenstates.

Figure 5 explains the origin of persistent current as
a bistability effect in a ring. While the electron energy
has a minimum at Φ = 0 for an even number of elec-
trons, it acquires a maximum when the number of elec-
trons is odd. The inductive energy, to be included
below, shifts the position of minima in that curve only
very slightly. The spontaneous current has the same
order of magnitude as the maximum persistent current,

2πk( )cos
V0L
2ε0
--------- 2πk( )sin

2πk
----------------------+ 2πΦ

Φ0
------ 

  .cos=

N ⊥
L1L2kF

2

2π2
-----------------.=

Jmax

ev F

L
---------N ⊥

1/2∼
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and it is an inseparable part of the Aharonov–Bohm
effect in a ballistic ring.

In a one-dimensional loop, discrete quantum states
are

, (3)ψn
1

L
-------einθ=

–0.25

–0.5

0 0.25 0.50

Φ/Φ0

–0.50
–1.0

0

0.5

1.0

1.5
J/E, arb. units

1
2

3

3

1 2

Fig. 3. Ground state energies and currents in the continuous
ring with 3 electrons at various strengths of the barrier: g =
0 (1), 1 (2), 2 (3).
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Fig. 4. Persistent current versus the number of electrons in
a ring with ratio cross-sectional dimensions L : L1 : L2 =
10 : 1 : 1 (configuration with spin). The upper curve is the
maximum current in units of J0 = evF/L at given N; the dot-
ted curve is the amplitude of the first harmonic of Jpers(Φ);
and the curve at negative J is the spontaneous persistent cur-
rent, also in units of J0. The dashed curve is the square root
of the number of perpendicular channels N⊥ .
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where θ is the azimuthal angle, with the energies given
by (1) plus the inductive energy of the current. For the
loop with three electrons, this gives the total energy,

(4)

corresponding at Φ = 0 to two spin-1/2 states with n =
0 and one state with n = 1 or n = –1. The last term in
Eq. (4) is the magnetic inductive energy and + is the
inductance (of the order of the ring circumference, in
the units adopted). The current

is equal to

(5)

and is nonzero at f = 0 in either of the states ±. The ratio
of the magnetic energy to the kinetic energy is on the
order of

(6)

where a0 is the Bohr radius. This is a very small quan-
tity, and therefore the magnetic energy is unimportant
in the energy balance of the loop. The total flux in the
loop is f = fext + 2ηj(f), where fext is the external flux and
j(f) = J(f)/J0. The correction to the externally applied

E f( ) ε0 f 2 1
2
--- 1± f–( )2+

+J0
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---------- j2 f( ),+=
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---∂E
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------–=

J f( ) J0 1± 3 f–( ), J0
eε0

h
-------= =

η
+J0

2

2c2ε0

------------- e2

4πmc2R
-------------------- 10 6– a0

R
-----,∼≈=

0

0.05

0.5–0.5
0

Φ/Φ0

E, arb. units

1

2

Fig. 5. Examples of the occurrence of a bistable configura-
tion in a ring. Energy versus flux in a ring of 10 (1) and
11 (2) electrons. Curve 2 is shifted downward for conve-
nience but is not reset.
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flux is significant only at very small fields fext ~ η; oth-
erwise we can ignore this contribution.

When a persistent-current loop is placed in an elec-
tric field perpendicular to a magnetic field, the system
coherently switches between the discreet states of the
loop providing for quantum transitions (quantum logi-
cal gates) in the loop performing as a qubit in a quan-
tum computer. This aspect of persistent currents in bal-
listic loops is analyzed in Section 3.

The property of a nonzero spontaneous persistent
current thus demonstrated for noninteracting electrons
survives strong electron–electron coupling but col-
lapses when the coupling to the lattice is included. This
is considered in detail in Section 4. In what follows, the
structural transformation in the ballistic ring is investi-
gated in an exact way by considering the ring dynamics
in the tight-binding approximation [37, 38]. The “lat-
tice” (the atomic configuration of the loop) can respond
to the bistable state by a readjustment of atoms similar
to the Peierls transition (doubling of the lattice period
in a one-dimensional atomic chain, see, e.g., [39, 40]),
or by a more general lattice transformation that does not
reduce to simple doubling. When the loop is in the rigid
background in the periodic lattice on a substrate of a
much stronger bound solid, the degeneracy may not be
lifted, or may remain in a very narrow interval of the
externally applied field.

3. DYNAMICS OF PERSISTENT CURRENTS
IN CROSSED ELECTRIC 
AND MAGNETIC FIELDS

The Hamiltonian of the ring consisting of N sites
localizing electrons at equidistant angular positions is
θn = 2πn/N is

, (7)

where  is a fermionic operator creating (and an , anni-
hilating) the electron at the site Rn in the ring with the
periodic boundary condition aN + 1 = a1, and α =
2πΦ/NΦ0 is the phase related to the Aharonov–Bohm
flux threading the ring. Placing the ring in the homoge-
neous electric field perpendicular to the magnetic field
(Fig. 6) results in the extra term

(8)

being added to the Hamiltonian. The Hamiltonian H0 is
diagonalized by the angular momentum (i.e., m = 0, 1,

H0 τ an
+an 1+ eiα an 1+

+ ane iα–+( )
n 1=

N

∑–=

an
+

H1 V0
2πn

N
---------an

+ancos
n 1=

N

∑=
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…, N – 1) eigenstates  such that

(9)

These states have the energies

(10)

plotted versus the flux in Fig. 7. The electronic config-
uration at Φ = Φ0/2 has a Λ-shaped energy structure
with two degenerate ground states shown in Fig. 1,
which were suggested as |0〉  and |1〉  components of a
qubit in [14, 15]. The time evolution of angular-

momentum eigenstates  is periodic at certain val-
ues of V0 and at the value of the flux equal to half the
flux quantum Φ0/2 = hc/2e.

In the eigenbasis of the operators Am , the Hamilto-
nian H0 + H1 at N = 3 in the absence of an electric field
is transformed into the diagonal form (we scale all ener-
gies in units of τ)

(11)

and the Hamiltonian H1 becomes

(12)

where v  = V0/2τ. We let the m = 1 and m = 3 states be
denoted by |0〉  and |1〉 , in the qubit terminology, and the
excited state m = 2 by |c〉  (the “control” state coupling
qubit states to the “qugate,” or the quantum logic gate).

The eigenstates of H0 + H1 versus v  at Φ = Φ0/2 are
presented in Fig. 8. We assume that at t ≤ 0, the poten-
tial is V0 = 0, such that the system at t = 0 is a superpo-

sition of the angular momentum states  with cer-
tain amplitudes Cm(0). At a later time and at a constant
value of V0, Cn(t) evolves as

(13)

Am
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For a step function V(t) = V0θ(t), this gives the depen-
dence [14]

(14)

where εk(V0) are eigenenergies of the Hamiltonian H0 +
H1(V0) and Snm(V0) are the unitary matrices transform-
ing from the noninteracting eigenbasis (the one corre-
sponding to H0) to the eigenbasis of the full Hamilto-
nian H0 + H1. It is implied in Eq. (14) that at a fixed
value of V0, the time evolution is performed as the inter-
play between the three different eigenenergies. This is
sufficient evidence that if the eigenenergies are appro-
priately adjusted, the population of the auxiliary state

Cn t( ) Skn
1– V0( ) iEkt–( )Smk V0( )Cm 0( ),exp

m k,
∑=

Flux

+ –

+

E-field

Fig. 6. Scheme of a 3-site qubit in the electric field perpen-
dicular to the magnetic field.
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–2

0

1

2
ε/τ

1

2

3

Φ/Φ0

Fig. 7. Curves 1 and 3 are energy versus magnetic flux
dependences in the degenerate states carrying opposite cur-
rents. The current is found as the derivative j = –c∂ε/∂Φ.
Curve 2 corresponds to the zero-current virtual state at the
operating point of a qubit at the half-flux quantum Φ =
Φ0/2.
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(in the angular-momentum basis) can vanish for certain
initial conditions. At these time instants, the three-state
system instantaneously collapses into the qubit sub-
space without loss of any information if the auxiliary
state |c〉  was initially unoccupied. A necessary condi-
tion for the instantaneous collapse into the qubit sub-
space (i.e., the degenerate-level subspace) is a com-
mensuration condition between the eigenenergies
εk(V0), k = 1, 2, 3 such that the exponential factors in
Eq. (14) destructively interfere at fixed tune instants to
destroy the nondiagonal correlations. The required
commensuration can be expressed by the condition

(15)

for integer ν. Equation (15) guarantees periodic col-
lapses of the wavefunction onto the desired basis, and
the next step is to find whether the desired qugate oper-
ations can be realized simultaneously in this basis. For
the corresponding values of the potential respecting
Eq. (15), we find

(16)

In particular, we note that for ν = 1, we have  = –2
and at ν = 3, we have

and we succeeded in finding two qugates in our first few
attempts. As shown below, these two cases yield the bit-
flip and Hadamard transformations of the qubit [17].

ε3 ε1– ν ε2 ε3–( )=

V0 ν( ) 2
3ν
------ ν2 ν 1 ν 1–( ) ν2 4ν 1+ ++ + +[ ] .–=

V0
1( )

V0
3( ) 2

9
--- 13 2 22+( )– 4.9735,–= =

–8

–5

–6 –4 –2 0 2 4 6 8 10

V
–10

–10

0

5

10

15
E

1

2

3

Fig. 8. Energy versus electrostatic potential. Curves 1 and 3
(solid and dotted lines) are the energies that become degen-
erate at V0 = 0, and curve 2 (the dashed line) is the energy
of the auxiliary control state |c〉 . The arrows indicate the val-
ues of the potential V0 corresponding to the operational
points of the bit-flip and Hadamard gates.
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The ν = 1 case can be explicitly proved by verifying
the identity

(17)

where

At s = 0 (i.e., c = ±1), the transformation matrix of qubit
states is block-diagonalized in the subspace of states 1,
3 (i.e., the qubit states |0〉 , |1〉) and the upper state 2 (i.e.,
the auxiliary “control” state |c〉). In particular, for c =
−1, the bit-flip is performed between the qubit states.

In Fig. 9, the populations pn(t) = |Cn(t)|2 of the states
are plotted for the mentioned cases ν = 1 and ν = 3. The
instantaneous collapse to the qubit subspace is obtained
at t = t1 for ν = 1 and at t = t3 for ν = 3 if the auxiliary
level is unoccupied at t = 0. We found these critical
times as (in units of "/τ)

(18)

where the eigenenergies are

(19)

for V0 ≤ 0. We note that the configuration (t1, ν = 1) per-
forms the bit-flip |0〉   |1〉 , whereas (t3, ν = 3) creates
the equally populated Hadamard-like superpositions of
|0〉  and |1〉 . These operations are represented in the qubit
subspace by the matrices (overall phases are not shown)

(20)

The dotted lines show the time dependence of the aux-
iliary population. The arrows indicate the “operational
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point” of the qugate, the time of evolution correspond-
ing to the return to the invariant qubit. The G1 transfor-
mation manifests the bit-flip (NOT gate) and G3 is
similar to the Hadamard gate [17] except for the phase
shift π/2.

4. QUANTUM BISTABILITY 
AND SPONTANEOUS CURRENTS

IN A COUPLED ELECTRON–PHONON SYSTEM

In the tight-binding approximation, the Hamiltonian
of the loop in the secondary quantized form is given by

(21)

,

where τj is the hopping amplitude between two adjacent
configurational sites, j and j + 1,

(22)

and

(23)

is the Aharonov–Bohm phase (a Peierls substitution for

the phase of hopping amplitude). Next,  is the cre-
ation (and ajσ is the annihilation) operator of the elec-
tron at site j with spin σ; θj , j = 1, 2, …, N are the angles
of distortion of site locations from their equilibrium

positions  = 2πj/N satisfying the requirement

and g is the electron–phonon coupling constant. The
interaction in Eq. (22) reflects the property that the hop-
ping amplitude depends on the distance between the
localization positions and assumes that the displace-
ment θj – θj + 1 is small in comparison to 2π/N. U and V
are Hubbard parameters of the on-site and intrasite
interactions. W is the binding energy of the loop to
external environment (a substrate) such that the loop

H τ ja jσ
+ a j 1+ σ, e
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passes into the azimuthally symmetric configuration

θi =  as W  ∞.

The parameters are assumed such that the system is
not superconductive (e.g., U > 0; anyway, the supercon-
ductivity is not allowed for a 1D-system and it is for-
bidden for a small system). The last term in Hamilto-
nian (21) is the elastic energy and K is the stiffness
parameter of the lattice.

In the smallest loop, the one with three sites (N = 3),
only two free parameters of the lattice displacement, X1

and X2, remain:

(24)

θi
0

θ1 X1 X2, θ2+ X1– X2, θ3+ 2X2,–= = =

0.2

0.2

0.4 0.6 0.8 1.00

0.4

0.6

0.8

1.0
Occupation

t

(b)

|0〉

|1〉

|c〉

1

0.2

2 3 40

0.4

0.6

0.8

1.0
Occupation

t

(a)

|0〉 |1〉

|c〉

Fig. 9. Evolution diagrams of the quantum gate G1 (a) and
G3 (b). Solid and dashed lines are the time dependences of
the population of states |0〉  and |1〉 . The dotted line shows the
time dependence of the auxiliary-state population. The
arrow indicates the “operational point” of the qugate, i.e.,
the evolution time corresponding to the return to the invari-
ant qubit subspace.
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which are decomposed with respect to secondary quan-
tized Bose operators b1 and b2 as

(25)

System (21) is solved numerically with the ABC com-
piler [41], which includes the creation–annihilation

X1
3K
ω

------- 
 

1/4

b1 b1
++( ),=

X2 3
K

3ω
------- 

 
1/4

b2 b2
++( ).=
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E, J
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J

Fig. 10. Lower curve: current versus magnetic flux in a
3-site loop with 3 noninteracting electrons. Upper curve:
energy versus flux in the loop. The hopping parameter is
τ0 = –1. The energy is reset and arbitrarily shifted upward
for clarity.
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Fig. 11. Spontaneous persistent current versus flux for τ0 =
–1 and various values of the Hubbard parameter U: U = 0
(1), –2 (2), 2 (3), –5 (4), 5 (5), –10 (6), 10 (7).
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operators as its parameter types. These are generated as
compiler macros with sparse matrices

(26)

where 1(N) is the unit matrix of size 2N; , n = 1, …,
N are Fermi/Bose operators in a space of the same
dimension,

(27)

and a, u, and v  are the 2 × 2 matrices (with ⊗  being the
symbol of the Kronecker matrix product):

(28)

and

(29)

The bosons are considered hardcore bosons, such that
there are only two discrete states for each mode of dis-
placement. We calculate the ground state of Hamilto-
nian (21) as a function of the magnetic flux f (a classical
variable). In application to real atomic (macromolecu-
lar) systems, we can consider X1 and X2 as classical
variables because quantum uncertainties in the coordi-
nates (∆X1, 2 ~ ("/Mω)1/2) are typically much smaller
than the interatomic distances (M is the mass of an atom
and ω ~ 1013 s–1 is the characteristic vibration fre-
quency). The energy of the loop is calculated as a func-
tion of X1 and X2 and further minimized with respect to
X1 and X2 for each value of f. The nonzero values of X1
and X2 signify a “lattice” (the ionic core of the macro-
molecule) instability against the structural transforma-
tion, analogous to the Peierls transition.

In the noninteracting system (U, V, W, g = 0), the
energy versus the flux f shows a kink with a maximum
at f = 0 (Fig. 10) in the half-filling case, i.e., at a number
of electrons n equal to the number of sites N, as well as
in a broader range of values of n at larger N. Actually,
as is clear from Fig. 4, such a dependence is typical of
any N ≥ 3 system for a number of (fixed) values of n.

The 3-site loop’s E(f) dependence is shown in
Fig. 10 together with the dependence of the current
on f. The latter shows a discontinuity at f = 0 of the
same order of magnitude as the standard value of the

An Cn
N1( )

1
N2( )

, fermionic sector,⊗=

Bn 1
N1( )

Cn
N2( )

, bosonic sector,⊗=

Cn
N( )

Cn
N( ) u⊗( )N n– a ⊗ v( )n 1– ;=

a 0 0

1 0 
 
 

,=

u 1 0

0 1 
 
 

, v 1 0

0 η 
 
 

,= =

η
1, fermionic sector,–

1, bosonic sector.



=
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persistent current. The current at f = 0 is paramagnetic
because the energy vs. flux has a maximum rather than
a minimum at f = 0. The on-site interaction reduces the
persistent current amplitude near zero flux (Fig. 11) but
does not remove its discontinuity at f = 0. Therefore, the
strongest opponent of the Aharonov–Bohm effect, the
electron–electron interaction, leaves the current quali-
tatively unchanged.

On the other hand, the electron–phonon interaction
(considered here classically in regard to lattice vibra-
tion) flattens the E(f) dependence near the peak value
(see Fig. 12a). At large stiffnesses K, this flattening
remains important only for small magnetic fluxes,
much smaller than the flux quantization period ∆Φ =
Φ0. We note that the persistent current peak reduces in
its amplitude only slightly near Φ = 0. As is seen from
Fig. 12b, the electron–phonon interaction splits the sin-
gularity at Φ = 0 to two singularities at Φ = ±Φsing. Out-
side the interval –Φsing < Φ < Φsing, the structural trans-
formation is blocked by the Aharonov–Bohm flux. The
range of magnetic fluxes between –Φsing and Φsing deter-
mines the domain of the developing lattice transforma-
tion, which signifies itself with nonzero values of lattice
deformations X1 and X2. This property allows us to sug-
gest that the spontaneous persistent current state (a
peak of dissipationless charge transport at or near the
zero flux) remains at a nonzero Φ when the electron–
phonon coupling is not too strong or when the lattice
stiffness is larger than a certain critical value.

5. DISCUSSION

In conclusion, we considered the Aharonov–Bohm
effect in an angular-periodic macromolecular structure,
like that of an aromatic cyclic molecule, and estab-
lished the existence of a persistent current and also a
spontaneous current when the Aharonov–Bohm flux is
not applied to the ring. Strong coupling of electron hop-
ping to the ion core of the molecule removes the spon-
taneous current, which is nevertheless restored at a
(small) magnetic field, or when the loop has large stiff-
ness or is strongly bound to an external azimuthal-peri-
odic environment (a substrate). Degenerate states of the
loop at Φ = Φ0/2 and at Φ = 0 may serve as components
of a qubit that are operated by static voltages applied in
the plane of the loop perpendicular to the direction of
the Aharonov–Bohm flux.

The papers of Gatteschi et al. [18, 19] are particu-
larly noteworthy, in which an azimuthal-periodic
molecular structure (a “ferric wheel”
[Fe(OMe)2(O2CCH2Cl)]10) exhibited periodic variation
of its magnetization as a function of the magnetic flux;
we assume that the periodicity with large period can be
attributed to persistent currents. The above macromo-
lecular structure is more complex than the one we con-
sidered because it contains magnetic ions with strong
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
exchange interactions such that the actual magnetic
field in the ring may be larger than the externally
applied field. If this suggestion proves correct, it will
open the possibility of engineering macromolecular
structures (qubits and qugates) based on the Aharonov–
Bohm effect, for purposes of quantum computation.
Apart from this, the very existence of a nonzero nonde-
caying current in a nonsuperconductive system is, in
our opinion, of fundamental physical interest.
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