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We consider a rapidly rotating two-component Bose-Einstein condensate (BEC) containing a vor-
tex lattice. We calculate the dispersion relation for small oscillations of vortex positions (Tkachenko
modes) in the mean-field quantum Hall regime, taking into account the coupling of these modes
with density excitations. Using an analytic form for the density of the vortex lattice, we numer-
ically calculate the elastic constants for different lattice geometries. We also apply this method
to calculate the elastic constant for the single-component triangular lattice. For a two-component
BEC, there are two kinds of Tkachenko modes, which we call acoustic and optical in analogy with
phonons. For all lattice types, acoustic Tkachenko mode frequencies have quadratic wave-number
dependence at long-wavelengths, while the optical Tkachenko modes have linear dependence. For
triangular lattices the dispersion of the Tkachenko modes are isotropic, while for other lattice types
the dispersion relations show directional dependence consistent with the symmetry of the lattice.
Depending on the intercomponent interaction there are five distinct lattice types, and four structural
phase transitions between them. Two of these transitions are second-order and are accompanied
by the softening of an acoustic Tkachenko mode. The remaining two transitions are first-order and
while one of them is accompanied by the softening of an optical mode, the other does not have any
dramatic effect on the Tkachenko spectrum. We also find an instability of the vortex lattice when
the intercomponent repulsion becomes stronger than the repulsion within components.

PACS numbers: 03.75.Lm,03.75.Mn,03.75.Kk,67.40.Db

I. INTRODUCTION

One of the defining properties of superfluidity is that a superfluid responds to rotation by forming quantized vortices.
Generally, instead of forming multiply quantized vortices, it is more favorable for a superfluid to create many singly
quantized vortices and arrange them in a vortex lattice. Since the original predication of such structures by Abrikosov
[1], vortex lattices have been observed in type-II superconductors [2], superfluid helium [3], Bose-Einstein condensed
gases (BECs) [4, 5] and most recently in ultracold fermion superfluids[6].

Once a vortex lattice is formed in a superfluid, small deviations of the vortices from their equilibrium positions
require relatively small energy compared to other hydrodynamic modes of the system, and collective behavior of such
small deviations result in a low-energy branch in the excitation spectrum. The modes on this branch, which were
studied by Tkachenko in the context of superfluid helium [7], are called Tkachenko modes and in a simplified picture
can be thought of as phonons of the vortex lattice. Tkachenko modes strongly affect the dynamics of the superfluid
[8], and play an important role in many different problems, ranging from vortex melting [9] to neutron star glitches
[10].

Recent experiments on ultracold atoms have been successful in creating large vortex lattices in rotating harmonically
trapped BECs [4, 5]. Remarkable results about vortex dynamics have been obtained, including the observation of
Tkachenko modes over a large range of rotation frequencies [11]. In this experiment, after the formation of the
vortex lattice, a resonant laser beam was focused on the center of the condensate to excite the Tkachenko modes and
subsequently their frequency was measured. As the rotation frequency is increased, a clear reduction in the Tkachenko
mode frequencies is observed.

Theoretical study of Tkachenko modes of trapped BECs has been carried out by a number of groups [12, 13, 14,
15, 16, 17, 18, 19]. In particular, the effects of finite size of the vortex lattice and the compressibility of the BEC lead
to major differences in the Tkachenko spectrum compared with the Tkachenko modes of an incompressible superfluid
such as helium. As the rotation frequency of the cloud is increased, the compressibility of the BEC starts to play an
important role, reducing the shear modulus of the vortex lattice and thus the Tkachenko mode frequencies. When
the rotation frequency Ω becomes close to the chemical potential µ = gn, the gas enters the mean-field quantum Hall
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regime [20] where only the states in the lowest Landau level (LLL) are populated. Here, the trend of decrease in
Tkachenko frequencies continues. As the rotation frequency Ω gets closer to the trapping frequency ω, more vortices
enter the system, and mean-field description breaks down at the point where the number of vortices is comparable
to the number of particles [9]. In the strongly correlated regime, the vortex lattice is expected to melt into a vortex
liquid and subsequently go through a sequence of quantum Hall states ending with the Bosonic Laughlin state when
(ω − Ω)/ω ∼ 1/N , with N being the number of particles [21].

In the experiments of the JILA group, rotation frequencies up to 99% of the trapping frequency have been achieved
[22] and a calculation of the Tkachenko frequencies in the mean-field quantum Hall regime [13] found good agreement
with the observed frequencies. However, a number of papers have since argued that this calculation uses an incorrect
value for the shear modulus of the vortex lattice [14, 15]. When the recalculated value of the shear modulus, which is
an order of magnitude higher, is used, the experimental results seem to indicate that the gas is not in the LLL regime.
Although in this paper we mainly consider two-component BECs, our method is applicable to the single-component
lattice, and our calculations are in excellent agreement with the latter value for the shear modulus, suggested by Sonin
[14].

The versatility of the trapped cold atom experiments have enabled the creation of new superfluids, such as mixtures
and spinor condensates. In a remarkable experiment the JILA group has been able to create a two-component BEC
and study its behavior under rotation [23]. The equilibrium vortex lattice structures have been calculated by Mueller
and Ho [24], and separately by Kasamatsu, Tsubota, and Ueda [25]. Experimentally, an interlaced square lattice of
two-components has been observed. Furthermore, using an excitation procedure similar to the one-component case,
vortex lattice oscillations have been induced in the two-component BEC, however, these excitations were found to be
heavily damped and have not yielded a measurement for Tkachenko frequencies. Motivated by this experiment, in
this paper, we calculate the Tkachenko modes of a two-component vortex lattice, and investigate the structural phase
transitions between different lattice geometries.

We consider a large two-component vortex lattice in the LLL regime. To simplify the calculations, we assume
that both components have the same density and same scattering length within each component. As the scattering
length between atoms from different components is varied, the vortex lattice goes through structural phase transitions,
forming five different lattice geometries [24]. For all these lattice geometries, we calculate the elastic constants of the
vortex lattice, and subsequently the dispersion relations for long-wavelength Tkachenko modes. Our main results are
summarized below.

Unlike a single-component vortex lattice, where there is only one branch of Tkachenko modes, the two-component
lattice has two branches. The situation is similar to phonon modes of a diatomic solid compared with a monoatomic
solid. When the number of atoms per unit cell is doubled, so are the number of phonon modes. In analogy with
phonons, we call these branches acoustic Tkachenko modes, and optical Tkachenko modes. However, these names
are not intended to imply that one branch couples more strongly to light than sound, or vice versa. As a simple
picture, one may think that when an acoustic mode is excited two vortices inside the unit cell of the lattice oscillate
in-phase. In other words, acoustic modes are oscillations of the “center of mass” of the unit cell, while the vortices
positions with respect to the center of mass remain stationary. For an optical Tkachenko mode, vortices of different
components oscillate in opposite phase, leaving the “center of mass” of each unit cell stationary. In this paper,
we choose our interactions such that there is symmetry under the exchange of components, which makes the above
definitions of optical and acoustic unambiguous. If this symmetry is broken, as is the case with the parameters of
the JILA experiment, there will still be two modes, but both of them will contain a mixture of acoustic and optical
behavior.

For an incompressible superfluid such as helium, or at low rotation frequencies for BEC, Tkachenko modes in a
single-component vortex lattice have linear wave-vector dependence ωT ∝ k [8]. However, when compressibility of
the fluid becomes important, such as a BEC in the LLL, Tkachenko modes are quadratic in the wave-vector ωT ∝ k2

[13]. We find that a similar softening happens for the two-component vortex lattice. For an incompressible fluid,
acoustic Tkachenko modes have linear long-wavelength behavior, while the optical Tkachenko modes are gapped. For
a two-component BEC in the LLL, acoustic Tkachenko modes have quadratic wave-vector dependence ωac

T ∝ k2, while
the optical modes are not gapped any more, but have linear wave-vector dependence ωop

T ∝ k.
Another important property of the Tkachenko modes of a single-component system is their isotropy. Tkachenko

mode frequencies are independent of the direction of the excitation wave vector ~k. This can be traced back to the fact
that the underlying vortex lattice is triangular, and similar to acoustic waves in a triangular lattice, Tkachenko modes
have isotropic behavior [26]. For two-component vortex lattices, this behavior is not expected any more, and indeed
we find that when the underlying lattice has less than sixfold symmetry, both acoustic and optical Tkachenko modes
are anisotropic. In all cases the anisotropy reflects the reduced symmetry of the lattice, giving fourfold symmetric
dispersion relations for the square lattice, and twofold symmetric spectra for rhombic and rectangular lattices.

Another interesting point about the two-component vortex lattices is the possibility of structural phase transitions
between different lattice geometries. For a two-component BEC in the LLL there are five lattice structures and four



3

structural phase transitions between them. Two of these are continuous, second-order transitions, while the other
two are first-order transitions. In structural phase transitions of solids, second-order phase transitions are signalled
by the softening of an acoustic-phonon mode, while first-order transitions are usually, but not always, accompanied
by the softening of an optical-phonon mode. (A soft mode can be described as a branch of excitation that has zero
frequency over a large range of wave vectors [27].) We find that a similar scenario plays out for the vortex lattices
of two-component BECs, both second-order phase transitions have a soft acoustic Tkachenko mode. Of the two
first-order phase transitions, one is accompanied by a soft optical Tkachenko mode, while the other does not have a
direct effect on the long-wavelength Tkachenko spectrum of the system.

There are two other instabilities in the two-component BEC system. When the intercomponent attraction is
stronger than the repulsion within each component, the gas is unstable towards collapse. In the opposite limit, when
the intercomponent interaction is repulsive and stronger than the intracomponent repulsion we find an instability in
the optical Tkachenko mode spectrum, most possibly signaling a transition to a phase separated state.

The paper is organized as follows. In the next section, we introduce the Hamiltonian for the two-component rotating
gas in the LLL, and introduce the different lattice types that are found by energy minimization. In Sec. III, we outline
our method of calculation for elastic coefficients, and calculate the shear modulus of a one-component condensate as
an example. In Sec. IV, we write the coupled equations for the vortex modes and density modes, which are valid for
all lattice types. In the next five sections V -IX, we calculate the elastic energy for each lattice type, and by solving
the coupled equations, we find the dispersion relations of acoustic and optical Tkachenko modes. We also study the
directional dependence of the dispersion relations and the polarization of the Tkachenko modes for each lattice type.
In Sec. X, we discuss the structural phase transitions and identify the soft modes associated with each transition.
Finally, in Sec. XI, we summarize our results and discuss their consequences for experiments.

II. VORTEX LATTICES OF TWO-COMPONENT BEC

In this section, we consider the equilibrium vortex lattice configurations of a two-component BEC. This problem has
been studied in the LLL regime analytically by Mueller and Ho [24], and for general rotation frequencies numerically
by Kasamatsu et al. [25]. We confine ourselves to the LLL and our method of calculation of the elastic constants
relies on the analytic approach developed by Mueller and Ho.

We consider a two-component BEC in a quadratic trap with trapping frequency ω. The trap frequency, the mass of
the particles m, and the total number of particles are assumed to be the same for both components. We take the gas
to be rotating at frequency Ω, and assume that the total number of particles in each component is large enough to
form a large vortex lattice without a breakdown of the mean-field description of the system. Furthermore, we assume
that the scattering lengths of the particles are such that, interaction parameters satisfy

g11 = g22 = g, (1)

g12 = αg.

We investigate the behavior of vortex lattice geometry and the Tkachenko modes as the ratio of intercomponent
scattering length to intracomponent scattering length α is varied,

α =
g12

g
. (2)

We limit our discussion of vortex lattices to two dimensions, assuming that the vortex lattice is not modified along
the rotation axis. This assumption is not very restrictive, as it has been shown that if the cloud is sufficiently broad
in the third dimension, vortex bending is negligible except at the edges of the cloud [20]. In the opposite limit of a
two-dimensional condensate, our approach is formally valid, however, mean-field theory may not be reliable for such
a system. The energy functional for our system can be written as

E =
∑

i=1,2

∫

d2rΨ∗

i (r)

(

− ~
2

2m
∇2 +

1

2
mω2r2 − ΩLz

)

Ψi(r) + Vint. (3)

Here Ψi is the wave function of component i, Lz is the angular momentum along the rotation direction and Vint is
the interaction energy given as

Vint = g

∫

d2r

(

1

2

[

|Ψ1(r)|4 + |Ψ2(r)|4
]

+ α|Ψ1(r)|2|Ψ2(r)|2
)

. (4)
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When the rotation frequency is close enough to the trapping frequency the particles can only populate levels in the
LLL. For such a gas, which is in the mean-field quantum Hall regime, the wave functions have the form

Ψi(r) = fi(z)e−
zz̄

2σ2 , (5)

where z = x + iy and σ is the radius of the cloud. The requirement of analyticity on the wave function essentially
determines the form of the wave function in terms of the positions of the vortices (up to an entire function with no
zeros). Thus it is possible to introduce a variational wave function, using just the lattice basis vectors as variational
parameters.

For a two-component BEC, when both of the components are rotating at the same frequency, vortex lattices in each
component have the same lattice structure, but are shifted from each other. Thus in the LLL, we can determine the
wave functions for both components in terms of just three, two-dimensional vectors ~a1 and ~a2, the basis vectors of the

lattice, and ~d, the offset between the two lattices. Thus the vortices of the first component are at ~r1,n,m = n~a1 +m~a2,

with n, m integers, while the vortices of the second component are at ~r2,n,m = n~a1 + m~a2 + ~d. Although we need six
real numbers to describe these three vectors, the actual number of variational parameters is lower, namely 4. First of
all, the vortex density ν−1

c is fixed by rotation frequency Ω, thus it is possible to fix the length of one of the vectors
and scale all others by this length. Second, the rotational symmetry of the problem permits one to fix the overall
orientation of the vectors. We choose the first lattice basis vector ~a1 to lie along the x̂ direction, and denote its length
as a1. The remaining two vectors can then be written as

~a2 = a1(ux̂ + vŷ), (6)

~d = a1[(a + bu)x̂ + bvŷ].

The variational calculation is made in terms of the dimensionless parameters u, v, a, b, and then the length a1 is fixed
by requiring the wave function to have correct density of vortices νc = a2

1v.
Once the positions of the vortices are known one can write the variational wave function as a Jacobi Elliptic function

Θ, or as one of the doubly periodic functions that are related to the Θ up to an entire function, such as the σ function
or the modified ζ function [7]. In terms of the Jacobi theta function we can write

Ψ1(z) = N1Θ(ζ, τ) exp(
πz2

2νc
− zz̄

2l
), (7)

Ψ2(z) = N2Θ(ζ − (a + bu + ibv), τ) exp(
πz2

2νc
− zz̄

2l
).

Here ζ = z/a1, τ = u + iv, l =
√

~/mω, and N1, N2 are normalization constants to be determined. With these wave
functions we calculate the densities of the two-components as

|Ψ1(~r)|2 = Cg(~r)e−r2/σ2

, (8)

|Ψ2(~r)|2 = Cg(~r − ~d)e−r2/σ2

,

where the function g is periodic with lattice vectors,

g(~r + n~a1 + m~a2) = g(~r), (9)

for all integers n, m. The periodic part of the density admits a Fourier series representation in terms of the reciprocal-
lattice basis vectors,

g(~r) =
1

νc

∑

~K

g ~Kei~r· ~K , (10)

with the sum carried out over all reciprocal lattice points generated by ~K1 = 2π
νc

~a2 × ẑ and ~K2 = − 2π
νc

~a1 × ẑ. The
utility of using the Jacobi theta function is that the Fourier components of g ~K can be calculated with relative ease.

For ~K = m1
~K1 + m2

~K2 one has

g ~K = (−1)m1+m2+m1m2e−
νc

~K
2

8π

√

νc

2
. (11)
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FIG. 1: Lattice geometry for an overlapped triangular lattice (a), an interlaced triangular lattice (b), and a square lattice (c).
Unit cells are shown with dashed lines. (d) Unit cell geometry for an arbitrary lattice. White and black dots represent vortices
of different components. Definitions of a, b, u, v are given in Sec. II.

In the LLL, the lattice structure is entirely determined by the interaction energy. For the parameters used here
minimization of the interaction energy reduces to a minimization of the following simple quantity with respect to
u, v, a, and b:

J =
∑

~K

∣

∣

∣

∣

g ~K

g~0

∣

∣

∣

∣

2
(

1 + α cos( ~K · ~d)
)

. (12)

It must be noted that this expression is obtained in the limit of a very large vortex lattice, formally setting the cloud
radius σ to infinity. The minimization of J is done numerically with considerable ease as the Fourier coefficients of
the density g ~K are known analytically. For each value of α = g12/g, J can be calculated by truncating the rapidly
converging sum to the desired accuracy, and the values u∗, v∗, a∗, b∗ that minimize J can be found. These values
determine the lattice geometry for each component and also the offset of the lattices of two-components.

As the ratio of the intercomponent interaction to intracomponent interaction α is varied, five different lattice types
are found to minimize the interaction energy. Here, we give a brief description of each lattice, and in Secs. V - IX,
the Tkachenko spectrum for each lattice type is calculated.

When the interaction between the two-components is attractive, i.e., α < 0, the system minimizes its energy
by positioning the vortex lattices of two-components on top of each other. However, for very large attraction,
α < −1, there is an instability towards collapse. In the range −1 < α < 0, both components form triangular
lattices which overlap with each other (See fig. 1). This overlapped triangular lattice is described by the parameters

u∗ = 1/2, v∗ =
√

3/2, a∗ = b∗ = 0, which do not change with α in the given range. We find, however, that the elastic
constants of the lattice depend on α, and so do the Tkachenko modes.

If the intercomponent interaction becomes repulsive, it is no more favorable to put the two vortex lattices on top
of each other. Instead, the most favorable places to put the vortices of one-component would be the density maxima
of the other component. This simple insight holds true for all lattice types found by the minimization procedure,
however the lattice type of each component changes as α is varied. For weak repulsion between the components,
0 < α < 0.1724, each component forms a triangular lattice. Within a unit cell, there is more than one density
maximum, so it would seem that there are multiple positions for the vortex lattice of the second component to be
placed. However, these positions are related with the overall symmetry of the lattice, so the minimization procedure
gives the lattice parameters u∗ = 1/2, v∗ =

√
3/2, a∗ = b∗ = 1/3. Again, the overall structure of this interlaced

triangular lattice (see Fig. 1) does not change with α. At α = 0.1724, there is a first-order phase transition from an
interlaced triangular lattice to a rhombic lattice. In the range 0.1724 < α < 0.3733, the unit cell of vortex lattices of
each component are rhombuses. The vortex lattice of one-component is placed at the center of the rhombuses formed
by the vortex lattice of the other component. The angle of the rhombus η (see Fig. 2), varies continuously from 67.9◦

to 90◦, while the offset remains the same, a∗ = b∗ = 1/2. At α = 0.3733, there is a second-order phase transition
to a square lattice. In the range 0.3733 < α < 0.9256, the lattice is parametrized by u∗ = 0, v∗ = 1, a∗ = b∗ = 1/2
(see Fig. 2). As the interaction is increased further, there is a second-order phase transition to a rectangular lattice
at α = 0.9256. In a rectangular lattice, vortices of one-component are always found at the centers of the rectangles
formed by the vortices of the other component, i.e., a∗ = b∗ = 1/2. However, the aspect ratio of the rectangle increases
continuously.

For a nonrotating system, there is a phase-separation instability at α = 1. This instability is not found in the
results of the energy minimization described above. However, when the coupling between the density oscillations and
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FIG. 2: (a) Lattice geometry for a rectangular lattice; a unit cell is shown with dashed lines. (b) Change of the aspect ratio of
the rectangle v∗ with respect to interaction strength α. The unit cell grows in the y direction as α → 1. At α = 1, v∗ =

√
3.

(c) Lattice geometry of a rhombic lattice, dashed lines showing a unit cell. η is twice the opening angle of the rhombic unit
cell. (d) Plot of η vs α for the rhombic lattice. As α → 0.3732, η → 90◦, and the rhombus continuously changes to a square.
At α = 0.1724, η makes a jump from 60◦ to 67.958◦ .

vortex motion is taken into account, as in Sec. VIII, it is found that at this point there is an instability. Thus the
system is not described by a vortex lattice beyond α = 1.

After a survey of the possible lattice structures and the analytic method that is used to find these structures, in
the next section we describe how the same analytic approach can be used to calculate the elastic constants of the
discussed vortex lattices.

III. NUMERICAL CALCULATION OF ELASTIC CONSTANTS

The power of the analytic approach introduced in the previous section is that it can also be used to calculate the
energies of lattice structures which are slightly deformed from the minimum-energy configuration. As the numerical
calculation of the energy for a given lattice is quite simple, it is possible to evaluate the energy for configurations
where lattice parameters have small deviations from their minimum-energy values. Such small deviations can also be
described by a hydrodynamic approach. Assuming that the lattice deformations are sufficiently smooth, the vortex
lattice can be treated as an elastic medium. The form of the elastic energy is constrained by symmetries of the lattice,
and for small deformations, can always be taken as quadratic in displacements. Thus the long-wavelength behavior of
the lattice is described by an elastic energy that is quadratic in the vortex displacement field, and the problem reduces
to the calculation of the elastic constants, which are the coefficients of the quadratic terms in vortex displacements.

Our approach is to numerically calculate the energy of the vortex lattice close to the equilibrium position, and then
find the elastic coefficients of the vortex lattice by making quadratic fits to the calculated energy. As a demonstration
of this method, we first calculate the shear modulus of the triangular lattice of a one-component BEC. A vortex lattice
in a one-component BEC is parametrized by two two-dimensional vectors ~a1,~a2, the lattice basis vectors. The lattice
basis vectors define the equilibrium positions of the vortices, and we denote the deviation of the vortex at lattice site
n, m, from its equilibrium by the vector ~ǫn,m. So the position of the vortex ~rn,m is

~rn,m = n~a1 + m~a2 + ~ǫn,m. (13)

If the vortex displacements are sufficiently smooth over large length scales, one can describe a long-wavelength vortex
displacement field ~ǫ(x, y) = ǫx(x, y)x̂ + ǫy(x, y)ŷ by a suitable coarse-graining procedure. For a triangular lattice, the
elastic energy density can then be written as

εelastic = C1

(

∂ǫx

∂x
+

∂ǫy

∂y

)2

+ C2

[

(

∂ǫx

∂x
− ∂ǫy

∂y

)2

+

(

∂ǫx

∂y
+

∂ǫy

∂x

)2
]

. (14)

For a gas in the LLL, compression modulus is zero, C1 = 0 [8]. Using the analytic method introduced above, the
shear modulus C2 is determined as follows.
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FIG. 3: Contour plot of the energy for a one-component triangular lattice, Eq. (15). The inset is a closer view around the
equilibrium point. Circular contours indicate that quadratic fit of Eq. (16) is possible.

For a one-component vortex lattice, the minimum-energy configuration is found by minimizing

I =
∑

~K

∣

∣

∣

∣

g ~K

g~0

∣

∣

∣

∣

2

, (15)

and yields u∗ = 1/2, v∗ =
√

3/2, the triangular lattice. We calculate the energy around this point by varying u and v
from their equilibrium values. A contour plot of the energy around the equilibrium point is given in Fig. 3. To this
form we can successfully fit a quadratic form, giving us an elastic energy of the form

Eelastic =
gn2

2

[

Cu(u − u∗)
2 + Cv(v − v∗)

2 + Cuv(u − u∗)(v − v∗)
]

, (16)

and determine

Cu = 0.3177, (17)

Cv = 0.3177,

Cuv = 0.000.

The fact that Cu = Cv shows that there is only one shear modulus for a triangular lattice, and validates our numerical
procedure. To find the connection between Cu and the shear modulus C2, we must determine the displacement field
corresponding to small changes of the lattice basis vectors. By taking into account that the unit-cell volume is fixed
by rotational frequency, the correspondence between u, v and vortex displacement field is found as

∂ǫx

∂y
=

u − u∗

v∗
,

∂ǫx

∂x
= −v − v∗

2v∗
, (18)

∂ǫx

∂y
=

v − v∗
2v∗

,
∂ǫx

∂y
= 0.

By substituting these expressions in Eq. (14), using u∗ = 1/2, v∗ =
√

3/2 and comparing with Eq. (16) we obtain

C2 =
3

8
Cu = 0.1191gn2. (19)

This value is an order of magnitude larger than the value used by Baym [13], and is in excellent agreement with Sonin
[14]. This is not surprising, as our method of obtaining the shear modulus is equivalent to the deformation of the
lattice used by Sonin. However, the simplicity of our numerical method enables us to calculate the elastic coefficients
of more complex lattices, such as the two-component lattices discussed in this paper.

For a two-component lattice, the energy of the lattice depends not only on the lattice basis vectors, but also on the
offset of two lattices from each other. Hence there are four variational parameters u, v, a, b. Elastic energy around the
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minimum-energy point has to be expressed as a quadratic form in all of these variables. We numerically calculate the
energy of the lattice for many points around the minimum-energy point and then express the elastic energy by fitting
to a form

Eelastic =
gn2

2

[

Cu(u − u∗)
2 + Cv(v − v∗)

2 + Cuv(u − u∗)(v − v∗) + Ca(a − a∗)
2 + Cb(b − b∗)

2 + Cab(a − a∗)(b − b∗)
]

.

(20)
Here, due to the symmetry between component 1 and component 2, it is not necessary to include terms that mix
displacements a, b with deformations of the lattice u, v. This is essentially the decoupling of optical Tkachenko modes
from acoustic Tkachenko modes as discussed in Sec. I.

In the next section, we give the hydrodynamic equations for a two-component condensate, but leave the form of
the elastic energy unspecified. In the following sections, the form of the elastic energy and the values of the elastic
constants are given separately for each lattice type. After the elastic energy is specified, hydrodynamic equations are
solved and the dispersion relations for Tkachenko modes are obtained.

IV. HYDRODYNAMIC EQUATIONS

The oscillations of vortices about their equilibrium positions can be described by a hydrodynamic theory by treating
the vortex lattice as an elastic medium. For trapped BECs it is important to take into account the compressibility
of the gas, as the vortex lattice oscillations are coupled to density oscillations in a nontrivial way. The superfluid
hydrodynamics that takes this effect into account has been developed by a number of groups in the context of
superfluid He [8], and more recently applied to rotating BECs by Baym [13]. Here we describe the hydrodynamics of
a two-component vortex lattice by generalizing this hydrodynamics to a two-component BEC.

As the hydrodynamic variables, we use the densities of each component ni(~r, t), corresponding velocity fields ~vi(~r, t),
and the vortex displacement fields ~ǫi(~r, t) introduced in the previous section. Here i = 1, 2 is component index, giving
us a total of six hydrodynamic fields. However, not all of these fields are independent, as is apparent in the calculation
below. We also set ~ = 1 in the calculation for convenience.

The long-wavelength average of the velocity field is not irrotational, but is linked to the compressions of the vortex
lattice,

~∇× ~vi = −2Ω~∇ · ~ǫi, i = 1, 2. (21)

Similarly the superfluid acceleration equation holds for each component

m

(

∂~vi

∂t
+ 2~Ω × ∂~ǫi

∂t

)

= −~∇µi, i = 1, 2. (22)

Here µi is the chemical potential of component i. Below we leave the index i unspecified to indicate that the equation
is valid for both components.

The conservation of particle number results in the continuity equation

∂ni

∂t
+ ~∇ · (ni~vi) = 0, (23)

while momentum conservation gives

m

(

ni
∂~vi

∂t
+ 2ni

~Ω × ~vi

)

+ ~∇Pi = −~σi. (24)

Here Pi is the pressure, related to the chemical potential as ~∇Pi = ni
~∇µi, and for a weakly interacting two-component

condensate satisfies

~∇P1 = gn~∇n1 + αgn~∇n2, (25)

~∇P2 = gn~∇n2 + αgn~∇n1.

The stress vectors σi are obtained by taking the functional derivative of the elastic energy with respect to vortex
displacement fields, as in elasticity theory,

~σi =
δEelastic

δ~ǫi
. (26)
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Using Eqs. (24) and (21), we have

2m~Ω ×
(

∂~ǫi

∂t
− ~vi

)

=
~σi

n
. (27)

The curl and divergence of these equations lead to

~∇ ·
(

∂~ǫi

∂t
− ~vi

)

=
~∇× ~σi

2Ωnm
, (28)

and

~∇× ∂~ǫ

∂t
+ 2Ω~∇ · ~ǫi = −

~∇ · ~σi

2Ωnm
. (29)

Similarly, the divergence of the superfluid acceleration equation gives

(

− ∂2

∂t2
+

gn

m
∇2

)

n1 + α
gn

m
∇2n2 = 2Ωn~∇× ∂ ~ǫ1

∂t
, (30)

(

− ∂2

∂t2
+

gn

m
∇2

)

n2 + α
gn

m
∇2n1 = 2Ωn~∇× ∂ ~ǫ2

∂t
.

At this stage it is preferable to take advantage of the symmetry of the equations under the exchange of component
1 with component 2. We define the symmetric and antisymmetric variables as

n+ = n1 + n2, ~ǫ+ = ~ǫ1 + ~ǫ2, ~σ+ = ~σ1 + ~σ2, (31)

n− = n1 − n2, ~ǫ− = ~ǫ1 − ~ǫ2, ~σ− = ~σ1 − ~σ2.

In terms of these variables we obtain two sets of three equations, where each set is decoupled from the other. The
polarization of the Tkachenko modes are controlled by the polarization equation

~∇× ∂~ǫ±
∂t

+ 2Ω~∇ · ~ǫ± = − 1

2mnΩ
~∇ · ~σ±. (32)

The usual sound mode equations for a two-component fluid are modified by the dynamics of the vortex lattice as

−∂2n±

∂t2
+ (1 ± α)

gn

m
∇2n± = 2nΩ~∇× ∂~ǫ±

∂t
. (33)

The dynamics of the vortex lattice and its interaction with the density modes is governed by

~∇ · ∂2~ǫ±
∂t2

+
1

n

∂2n±

∂t2
=

1

2nmΩ

∂

∂t
~∇× ~σ±. (34)

Equations (32)-(34) form a linear set of six equations. However, as the stresses σ±, depend only on the lattice dis-
placements ǫ±, with the same sign, the three symmetric variable (+) equations are decoupled from the antisymmetric
variable (−) equations. Thus the “+” set describes the acoustic Tkachenko modes and their coupling with the “in-
phase” sound mode, while the “−” set describes the optical Tkachenko modes and their coupling to the “out-of-phase”
sound mode.

In the following sections, we specify the elastic energy Eelastic for each lattice type, and calculate the dispersion
relations of both acoustic and optical Tkachenko modes. Each section starts with a brief description of the properties
of the lattice type under consideration. Subsequently we give the form of the elastic energy for this lattice type
and the values of the numerically calculated elastic constants. We then outline the solutions of the Tkachenko mode
equations Eqs. (32)-(34), for the specific form of the elastic energy, and derive the dispersion relations of the acoustic
and optical modes. Each section is concluded by a discussion of the properties of the dispersion relation.

V. OVERLAPPED TRIANGULAR LATTICE

When the interaction between the two-components is attractive, it is energetically preferable to have the density
minima of the two-components to coincide. However, if the intercomponent attraction is too strong there will be a
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collapse type instability. This insight is validated by the calculations mentioned in Sec. II, where for −1 < α < 0,
the equilibrium lattice structure is triangular for both components and the vortex lattices of the two-components
coincide. This overlapped triangular lattice is described by

u∗ = 1/2, v∗ =
√

3/2, a∗ = b∗ = 0. (35)

The elastic energy in all the vortex lattices can be separated into two parts, elastic energy due to acoustic displace-
ments ǫ+, and elastic energy due to optical displacements ǫ−. There will not be any terms that contain both, as such
contributions to energy change sign under the exchange of components. So we can write

Eelastic = Eac
elastic + Eop

elastic. (36)

The acoustic contribution to the elastic energy will have the same form that is valid for a triangular lattice. In the
LLL the hydrostatic compression modulus is zero and we need to consider only the shear modulus,

Eac
elastic =

∫

d2rCac

[

(

∂ǫx
+

∂x
− ∂ǫy

+

∂y

)2

+

(

∂ǫx
+

∂y
+

∂ǫy
+

∂x

)2
]

. (37)

Similarly, the only quadratic form one can make from ǫ− which does not break the sixfold symmetry of the lattice is

Eop
elastic =

∫

d2rCop (~ǫ−)
2
. (38)

The two elastic constants, Cac and Cop, control the acoustic and optical Tkachenko modes, respectively. These two
constants, however, have different dimensions, as is clear from their definition. We first nondimensionalize these
constants as follows.

For the acoustic shear modulus, we can define a dimensionless quantity C̃ac,

C̃ac =
Cac

gn2
. (39)

As explained in Sec. III, we can fit the energy near the minimum to a quadratic form,

Eac
elastic =

1

2
gn2Cu

[

(u − u∗)2 + (v − v∗)
2
]

, (40)

which yields for the triangular lattice with v∗ =
√

3/2

C̃ac =
3

8
Cu. (41)

The results of numerical calculation for Cu are displayed in Fig. 4. At α = 0, the shear modulus for the acoustic
modes takes the single-component value (per component) as expected from two noninteracting vortex lattices. As
α is decreased towards −1, the shear modulus decreases linearly, signalling the collapse instability expected due to
attractive interaction between the components.

Similarly the optical elastic constant can be nondimensionalized as

C̃op =
d2

gn2
Cop, (42)

where d is the lattice constant for the triangular lattice, which is related to rotation frequency as

d2 =
2π√
3mΩ

. (43)

The optical part of the elastic energy can be fitted to the rotationally invariant form

Eop
elastic =

gn2

2
Cab[(a − a∗) + u∗(b − b∗)]

2 + [v∗(b − b∗)]
2. (44)

which results in

C̃op =
1

2
Cab. (45)
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FIG. 4: Elastic constants (Cab, Cu) of overlapped (−1 < α < 0) and interlaced (0 < α < 0.1723) triangular lattices with respect
to α. As the attraction between the components increases (α → −1), Cab increases, and Cu decreases linearly. When there is
no interaction between components (α = 0), Cab = 0 which causes the discontinuity in the transition to interlaced triangular
lattice. At α = 0, the value of Cu is equal to the shear modulus of a one-component vortex lattice.

The result of numerical calculation for Cab is plotted in Fig. 4. As α is decreased towards −1, it gets harder to
separate the vortices of two-components, as expected from the increasing attraction between the components.

Once the elastic constants are known, the calculation of the Tkachenko modes for different lattices are straightfor-
ward, albeit tedious. In this section, we give a detailed calculation, while for all other lattice types we simply present
the results of the calculation.

We first start with the calculation of the acoustic Tkachenko modes. With the form of the elastic energy given
above, the acoustic stress is

~σ+ = −4Cac∇2~ǫ+. (46)

Fourier transforming, we get ~σ+ = 4Cack2~ǫ+. Now, we also Fourier transform the polarization equation (32) to obtain

ǫy
+ =

N1

D1

ǫx
+, (47)

with

N1 = −iωky − 2Ωkx − 2Cac

mnΩ
k2kx, (48)

D1 = −iωkx + 2Ωky +
2Cac

mnΩ
k2ky.

Substituting the above result into Fourier transforms of Eqs. (33) and (34), we obtain

(

ω2 − (1 + α)
gn

m
k2

)

n+ + n

(

4Ω2 +
4Cac

nm
k2

)

ωk2

D1

ǫx
+ = 0 (49)

and

−ω2

n
n+ +

(

4Cac

nm
k2 − ω2

)

ωk2

D1

ǫx
+ = 0. (50)

By scaling the wave vector in frequency units,

k′ =

√

gn

m
k, (51)

and using dimensionless elastic constants we obtain the characteristic equation as

ω4 − ω2
[

4Ω2 + (1 + α + 8C̃ac)k′2
]

+ (1 + α)4C̃ack′4 = 0. (52)
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This equation describes two different modes, one is a gapped sound mode, also called the inertial mode, while
the other is the acoustic Tkachenko mode of the triangular lattice. To the lowest order in the long-wavelength
approximation we get

ωac
I = 2Ω +

1 + α + 8C̃ac

4Ω
k′2, (53)

ωac
T =

√

(1 + α)C̃ac
k′2

Ω
.

The inertial mode is gapped, starting at 2Ω, and the second mode is the acoustic Tkachenko mode which has quadratic
dispersion at long-wavelengths, similar to the Tkachenko mode in a one-component vortex lattice.

Calculation of the optical Tkachenko mode, similarly, starts by evaluating the optical part of the stress as

~σ− = 4Cop~ǫ−. (54)

From the polarization equation we get

ǫy
− =

N1

D1

ǫx
−, (55)

with

N1 = ωky − i

(

2Ω +
2Cop

mnΩ

)

kx (56)

D1 = ωkx + i

(

2Ω +
2Cop

mnΩ

)

ky

which results in two coupled equations obtained from Eqs. (33) and (34)

(

ω2 − (1 − α)
gn

m
k2

)

n− + n

(

4Ω2 +
4Cop

mn

)

i
ωk2

D1

ǫx
− = 0, (57)

and

ω2

n
n− +

[

ω2 − 2Cop

Ωnm

(

2Ω +
2Cop

Ωnm

)]

i
ωk2

D1

ǫx
− = 0. (58)

Once again, using k′ =
√

gn
m k, and the dimensionless elastic constants we obtain the dispersion relation for two

modes,

ωop
I = 2Ω

√

1 +

√
3

π
C̃op

gn

Ω
+

1 − α

4Ω
k′2, (59)

ωop
T =

√√
3

2π
C̃op

gn

Ω
k′.

These results are obtained to the lowest nonvanishing order in k′ and also to the lowest order in gn
Ω

, which is a small
parameter in the LLL regime.

The typical spectrum of the Tkachenko modes and the gapped sound modes are displayed in Fig. 5. The following
properties of Tkachenko modes are revealed as a result of the above calculation.

First, we see that doubling the number of components in the BEC results in a doubling of the modes. Because
the vortex lattice oscillations are coupled to density oscillations in a compressible fluid, there are four branches
of excitation. The two inertial modes correspond to in-phase and out-of-phase oscillations of the densities of two-
components and are gapped, starting essentially at twice the rotation frequency. As a second point, we find that the
acoustic Tkachenko mode has quadratic k dependence at long-wavelength while the optical Tkachenko mode goes
linearly with k. In an incompressible fluid, we would expect to find the acoustic modes with linear dispersion and the
optical modes to be gapped. This result can be obtained by explicitly decoupling the density in the above calculation.
Thus the extra factor of k in the dispersion is a result of the coupling between the density and the vortex lattice
oscillations.
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FIG. 5: Spectrum for overlapped triangular lattice, (a), (c), at α = −0.5, and interlaced triangular lattice (b), (d) at α = 0.1.
k′ and ω are scaled to rotation frequency Ω, and gn

Ω
= 0.1. Dispersion relations are the same for both lattice types, Eqs. (53)

and (59). However, the elastic constants are different (see Fig. 4). Both acoustic and optical inertial modes, (a), (b), are
gapped. For both lattices optical Tkachenko modes are linear while acoustic Tkachenko modes are quadratic in k.

While these two properties apply to all the lattice types considered below, there are some properties that are specific
to the overlapped triangular lattice discussed in this section. First of all, the dispersion relation for both the optical

and the acoustic Tkachenko modes are isotropic, i.e., independent of the direction of ~k. The isotropy of the excitations
is a direct consequence of the sixfold symmetry of the underlying lattice. The elastic (sound) waves in a triangular
lattice also show isotropic behavior [26] and as we view the Tkachenko modes as the elastic excitations of the vortex
lattice, this result is not unexpected. However, for the other, nontriangular, lattice types considered below, Tkachenko
mode spectrum is anisotropic. A second property is revealed by investigating the behavior of the modes for changing
α. As α goes to zero, the optical Tkachenko mode becomes softer and softer, revealing that the two lattices become
mostly independent. Indeed at α = 0 there is a first-order phase transition to the interlaced triangular lattice. As
α approaches −1, this time it is the acoustic mode that becomes soft, and there is an instability towards collapse at
exactly α = −1. It is interesting to note that although our approach cannot describe this collapse, its signature is
still present in the Tkachenko mode spectrum.

VI. INTERLACED TRIANGULAR LATTICE

For a single-component vortex lattice the equilibrium configuration is always the triangular lattice. When the
interaction between the components of a two-component vortex lattice is weak, both vortex lattices stay triangular.
The offset between the two-components is, however, decided by the sign of the intercomponent interaction. For
attractive interaction α < 0, the resulting lattice is the overlapped triangular lattice discussed in the previous section.
For weak and repulsive interaction, it is energetically favorable to place the vortices of one-component at the density
maxima of the other component. The resulting, interlaced triangular lattice is described by

u∗ =
1

2
, v∗ =

√
3

2
, a∗ = b∗ =

1

3
. (60)

The interlaced triangular lattice is the minimum-energy configuration for 0 < α < 0.1724, and is displayed in Fig. 1.
The elastic energy and the Tkachenko mode equations follow directly from the symmetry of the lattice. As the

interlaced triangular lattice has exactly the same symmetry as the overlapped triangular lattice discussed in the
previous section, the calculation given in the previous section is valid also for the interlaced triangular lattice. It is
only the values of the elastic constants C̃ac and C̃op, and their dependence on α, that is different from the previous
case.
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As a result, the acoustic modes are given by

ωac
I = 2Ω +

1 + α + 8C̃ac

4Ω
k′2, (61)

ωac
T =

√

(1 + α)C̃ac
k′2

Ω

and the optical modes are given by

ωop
I = 2Ω

√

1 +

√
3

π
C̃op

gn

Ω
+

1 − α

4Ω
k′2, (62)

ωop
T =

√√
3

2π
C̃op

gn

Ω
k′.

Here the relations between Cop, Cac and Cu, Cab, remain the same as in the previous section. A plot of the elastic
constants is given in Fig. 4.

As in the previous section, we see that the acoustic Tkachenko mode is quadratic in k, at long-wavelengths, while
the optical Tkachenko mode is linear in k. As a consequence of the sixfold symmetry of the underlying lattice, both
modes are isotropic. A typical spectrum of the Tkachenko modes is displayed in Fig. 5. Just as the optical Tkachenko
mode becomes soft for the overlapped triangular lattice as α = 0 is approached from below, a similar softening takes
place for the interlaced triangular lattice. So both sides of the first-order transition have dynamics characterized by
a soft optical mode.

VII. SQUARE LATTICE

The lattice type which is energetically favorable over the largest range of intercomponent interaction is the square
lattice. For 0.3733 < α < 0.9256, one-component’s vortex lattice forms a square lattice while the other components
vortices are situated at the centers of the squares (see Fig. 1). This lattice is characterized by

u∗ = 0, v∗ = 1, a∗ = b∗ =
1

2
. (63)

For the square lattice we can write the elastic energy due to optical and acoustic deformations as

Eelastic = Eac
elastic + Eop

elastic (64)

with

Eac
elastic =

1

2

∫

d2r

[

Cac
1

∂ǫx
+

∂x

∂ǫy
+

∂y
+ Cac

2

(

∂ǫx
+

∂y
+

∂ǫy
+

∂x

)2
]

, (65)

Eop
elastic =

∫

d2rCop (~ǫ−)
2
.

For acoustic modes we define the dimensionless elastic constants

C̃ac
1 =

Cac
1

gn2
, C̃ac

2 =
Cac

2

gn2
, (66)

and fit the acoustic part of the elastic energy to the form

Eac
elastic =

gn2

2

[

Cu(u − u∗)
2 + Cv(v − v∗)

2
]

, (67)

which yield

C̃ac
1 = −4Cv, C̃ac

2 = Cu. (68)

The variation of elastic constants Cu and Cv are plotted in Fig. 6.
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FIG. 6: Elastic constants (Cab, Cu, Cv) of square lattice, Eqs. (67) and (75). As the components attract each other more, Cab

increases linearly. Both limits of α lead to second-order phase transitions. Cu and Cv vanish at α = 0.3733 and α = 0.9255,
respectively.

The calculation of acoustic Tkachenko mode frequencies proceed similar to the previous sections. However, for the
square lattice, the equations are not isotropic, for example the polarization equation (32) gives

ǫy
+ =

N1

D1

ǫx
+, (69)

with

N1 =

(

−iωky − 2Ωkx − 4Cac
2 + Cac

1

2nmΩ
kxk2

y

)

, (70)

D1 =

(

−iωkx + 2Ωky +
4Cac

2 + Cac
1

2nmΩ
kyk2

x

)

.

We find, in the long-wavelength limit, the inertial mode frequency

ωac
I = 2Ω +

1 + α + 2C̃ac
2

4Ω
k′2, (71)

and the acoustic Tkachenko mode frequency

ωac
T =

√

1 + α

2

√

[

C̃ac
2 f2(θ) − C̃ac

1 f1(θ)
]

)
k′2

Ω
. (72)

Here, we have

f1(θ) =
1

4
sin2(2θ), f2(θ) = cos2(2θ), (73)

where θ is the angle from the x̂ direction when the basis vectors of the vortex lattice are taken along x̂ and ŷ.
For the optical spectrum, we define the dimensionless elastic constant

C̃op =
d2

gn2
Cop, (74)

where the lattice constant d is given by d2 = π
Ωm . The optical part of the elastic energy can be numerically fitted to

a form

Eop
elastic =

gn2

2
Cab

[

(a − a∗)
2 + (b − b∗)

2
]

, (75)

which yields

C̃op =
Cab

2
. (76)
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FIG. 7: Dispersion relation of the acoustic Tkachenko modes for the square lattice, Eq. (72) for α = 0.4 (a), and α = 0.85 (b).
Underlying contour plots are given to illustrate the anisotropy of the modes.

The dependence of the elastic constant Cab on α is plotted in Fig. 6.
The gapped inertial mode and the optical Tkachenko mode are calculated to the lowest order in k′ and gn

Ω
as

(ωop
I )2 = 4Ω2

[

1 +
2gn

πΩ
C̃op

]

+ (1 − α)k′2, (77)

and

ωop
T =

√

1 − α

π + 2 gn
Ω

C̃op

√

gn

Ω
C̃op k′, (78)

respectively.
The above results reveal a number of properties of the Tkachenko modes of a square vortex lattice. Similar to the

triangular lattice, there are two gapped modes, which are the sound modes of the two-component condensate modified
by the interactions with the vortex oscillations. The remaining two gapless modes are the acoustic Tkachenko mode
and the optical Tkachenko mode, which have k2 and k dispersion, respectively. Both the two gapped modes and the
optical Tkachenko mode have isotropic behavior, however, the underlying square lattice causes the acoustic Tkachenko
mode dispersion to be anisotropic. The anisotropy of the acoustic Tkachenko mode is more transparent when written
as

ωac
T =

√

2(1 + α)
[

Cu cos2(2θ) + Cv sin2(2θ)
]k′2

2Ω
. (79)

The acoustic mode spectrum is plotted in Fig. 7 for two different values of α. We notice that depending on the elastic
constants two different types of softening happens for the acoustic Tkachenko modes. If Cu = 0, then the acoustic
modes along the directions

θ = 0, π/2, π, 3π/2 (80)

become soft. We see from the numerical fit that Cu becomes zero near α = 0.3733 and these soft modes control the
dynamics of the second-order phase transition to the rhombic lattice. The other possibility for soft mode formation
is when Cv = 0. In this case the soft acoustic modes are along the directions

θ = π/4, 3π/4, 5π/4, 7π/4. (81)

These soft modes, then, signal the second-order phase transition to the rectangular lattice, at α = 0.9256.

VIII. RECTANGULAR LATTICE

When the interactions between the components are close to the interactions within each component, the energetically
favorable lattice becomes a rectangular lattice. The rectangular lattice has a∗ = b∗ = 1/2, so vortices of one-component
are placed at the centers of the rectangles formed by the vortices of the other component. The ratio of the long side
of the rectangles to their short side, v∗, increases with increasing α (see Fig. 2).

The elastic energy can once again be separated as

Eelastic = Eac
elastic + Eop

elastic. (82)
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FIG. 8: Elastic constants (Ca, Cb, Cu, Cv) of rectangular lattice. The upper figure shows optical elastic constants(Ca, Cb). As
α → 1, Ca vanishes. The lower figure shows acoustic elastic constants (Cu, Cv). As α → 1, Cu → Cv and there remains only
one acoustic elastic constant similar to the one-component triangular lattice.

Here, we express the acoustic part of the elastic energy as

Eac
elastic =

1

2

∫

d2r

[

Cac
1

(

∂ǫx
+

∂x
− ∂ǫy

+

∂y

)2

+ Cac
2

(

∂ǫx
+

∂y
+

∂ǫy
+

∂x

)2
]

, (83)

a form that is essentially the same as the square lattice, as the hydrostatic compression modulus is zero. The optical
part is

Eop
elastic =

∫

d2r
[

Cop
1

(

ǫx
−

)2
+ Cop

2

(

ǫy
−

)2
]

. (84)

For the acoustic modes, we define the dimensionless elastic constants

C̃ac
1 =

Cac
1

gn2
, C̃ac

2 =
Cac

2

gn2
, (85)

and fit the acoustic part of the elastic energy to the form

Eac
elastic =

gn2

2

[

Cu(u − u∗)
2 + Cv(v − v∗)

2
]

, (86)

which results in

C̃ac
1 = v2

∗Cv, C̃ac
2 = v2

∗Cu. (87)

The numerical results for elastic constants Cu and Cv are given in Fig. 8.
As a result, we calculate the acoustic Tkachenko mode frequency

ωac
T =

√

1 + α

2

√

C̃ac
1 sin2(2θ) + C̃ac

2 cos2(2θ)
k′2

Ω
, (88)

and the acoustic inertial mode frequency

(ωac
I )2 = 4Ω2 + [1 + α + 2(C̃ac

1 + C̃ac
2 )]k′2. (89)

For the optical modes, we nondimensionalize

C̃op
1 =

d2
1

gn2
Cop

1 , C̃op
2 =

d2
2

gn2
Cop

2 , (90)

where d1 and d2 are the sides of the rectangular unit cell with

d2
1 =

π

Ωmv∗
, d2

2 =
πv∗
Ωm

. (91)
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FIG. 9: Dispersion relation of the optical Tkachenko mode of the rectangular lattice, Eq. (94), for α = 0.95, gn

Ω
= 0.1. The

underlying contour plot reflects the symmetry of the rectangular lattice.

When the elastic energy is fitted to the numerical form

Eop
elastic =

gn2

2

[

Ca(a − a∗)
2 + Cb(b − b∗)

2
]

, (92)

we obtain

C̃op
1 =

Ca

2
, C̃op

2 =
Cb

2
, (93)

The dependence of Ca and Cb on α is plotted in Fig. 8.
As a result of the calculation, we obtain the optical Tkachenko mode dispersion

ωop
T =

√

1 − α

π

gn

Ω

√

C̃op
2

v∗
cos2(θ) + C̃op

1 v∗ sin2(θ) k′, (94)

and the inertial mode frequencies

(ωop
I )2 = 4Ω2

[

1 +
gn

πΩ

(

v∗C̃
op
1 +

1

v∗
C̃op

2

)]

+ (1 − α)k′2. (95)

A number of important conclusions can be deduced from the above results. First of all, both the acoustic and
optical Tkachenko modes are anisotropic, while the inertial modes are isotropic for the rectangular lattice. While the
anisotropy of the acoustic Tkachenko mode, is similar to the anisotropy obtained for the square lattice, the anisotropy
of the optical modes can be understood by a different mechanism. The rectangular lattice can be thought of as
alternating planes of vortices of different components. It is easier to move the vortices in these planes, rather than
perpendicular to these planes. A typical dispersion of optical Tkachenko modes is given in Fig. 9.

As a second property, we see that near α = 0.9256 there is a soft acoustic mode, signaling a second-order transition
to the square lattice. Thus both sides of the transition from square to rectangular lattice have a soft acoustic mode.

When intercomponent interaction is equal in strength to the interaction within the components, i.e., α = 1, a
number of interesting phenomena are expected. First, at α = 1, there is no distinction between different components,
and one would expect the results to be the same as that of a single-component vortex lattice. Indeed, at this point,
v∗ =

√
3, and the resulting rectangular lattice is equivalent to a single-component triangular lattice. Furthermore,

the acoustic mode spectrum becomes isotropic exactly at this point, as can be seen in Fig. 10.
However, the point α = 1, where the intercomponent interaction is the same as the interaction between the

components, is special in another way. For a nonrotating two-component BEC, there is an instability towards phase-
separation at this point. In previous studies of two-component BECs with vortex lattices, this instability was not
observed. However, we find that at α = 1 the optical Tkachenko mode becomes soft, and the system is unstable
beyond α = 1. This is reflected in the

√
1 − α term, in the dispersion relation Eq. (94). Thus we find that there is

an instability beyond α = 1, for rapidly rotating two-component condensates. As previous studies of this system did
not take the coupling between the vortex movement and density oscillations into account, it is not surprising that
this instability was not observed.

Although we find that there is an instability at α = 1, it is not clear that this instability leads directly to phase-
separation. The analog of the sound mode that is unstable in a nonrotating system is the optical inertial mode. As
this mode has a gap, there is no instability in the long-wavelength. We find that the dispersion of the optical inertial
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FIG. 10: Dispersion relation of the acoustic Tkachenko modes of the rectangular lattice, Eq. (88) for α = 0.95 (a) and for
α = 1.0 (b). At α = 1.0, the dispersion relation becomes isotropic. The similarity between (a) and Fig. 7(b) is due to the
second-order phase transition between square and rectangular lattices.

mode has a k2 term with a negative coefficient, but this is not sufficient to claim that there will be an instability at a
finite value of k, as higher-order terms such as k4 may prevent the dispersion from reaching zero frequency. Instead
there may be a phase with partial phase-separation and disordered distribution of vortices beyond α = 1. Further
investigation of this instability is needed to determine the nature of the phase beyond α = 1.

IX. RHOMBIC LATTICE

The final lattice type we consider is the rhombic lattice, which is the minimum-energy configuration for 0.1724 <
α < 0.3733. This lattice is an intervening phase between the interlaced triangular lattice and the square lattice
discussed in previous sections. At α = 0.1724 there is a first-order transition from the interlaced triangular lattice,
where a∗ and b∗ change discontinuously from 1/2 to

a∗ = b∗ =
1

3
. (96)

The unit cell also becomes a rhombus, while the acute angle of the rhombus η continuously changes from 67.96◦ to
90◦. A plot of the lattice geometry and the change of η is given in Fig. 2.

The rhombic lattice has twofold (reflection) symmetry along the axis that makes an angle η/2 with the primitive
basis vectors. However, instead of expressly taking advantage of this symmetry, we use a general form for the elastic
energy. Writing

Eelastic = Eac
elastic + Eop

elastic, (97)

we use

Eac
elastic =

1

2

∫

d2r

[

Cac
1

(

∂ǫx
+

∂x
− ∂ǫy

+

∂y

)2

+ Cac
2

(

∂ǫx
+

∂y
+

∂ǫy
+

∂x

)2

+ Cac
3

(

∂ǫx
+

∂y
+

∂ǫy
+

∂x

) (

∂ǫx
+

∂x
− ∂ǫy

+

∂y

)

]

, (98)

and

Eop
elastic =

∫

d2r
[
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1

(

ǫx
−

)2
+ Cop

2

(
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−
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−

]

. (99)

For the acoustic modes, we define dimensionless quantities

C̃ac
1 =

Cac
1

gn2
, C̃ac

2 =
Cac

2

gn2
, C̃ac

3 =
Cac

3

gn2
, (100)

and fit the acoustic part of the elastic energy to the form

Eac
elastic =

gn2

2

[

Cu(u − u∗)
2 + Cv(v − v∗)

2 + Cuv(u − u∗)(v − v∗)
]

, (101)

which yields

C̃ac
1 = v2

∗Cv, C̃ac
2 = v2

∗Cu, C̃ac
3 = −v2

∗Cuv. (102)
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FIG. 11: Optical elastic constants [upper, Eq. (108)] and acoustic elastic constants [lower, Eq. (101)] of rhombic lattice with
respect to α. As α → 0.3732, Ca → Cb, and Cu, Cv vanish, leaving two optical elastic constants, and one acoustic elastic
constant for the square lattice. In the opposite limit α → 0.1724, six elastic constants remain due to the discontinuity in the
transition to interlaced triangular lattice.

FIG. 12: Dispersion relation of the acoustic Tkachenko mode of the rhombic lattice, Eq. (104), for α = 0.2. The anisotropy
reflects the twofold symmetry of the rhombic lattice (see Fig. 13).

The numerical results for elastic constants Cu, Cv, and Cuv are given in Fig. 11.
We find the acoustic inertial mode dispersion

(ωac
I )2 = 4Ω2 + [1 + α + 2(C̃ac

1 + C̃ac
2 )]k′2, (103)

and the acoustic Tkachenko mode dispersion

ωac
T =

√

1 + α

2

√

4C̃ac
1

k2
xk2

y

k4
+ C̃ac

2

(k2
x − k2

y)2

k4
+ 2C̃ac

3

kxky(k2
y − k2

x)

k4

k′2

Ω
. (104)

The anisotropy of the Tkacheko mode is more transparent when represented in terms of θ, the angle from the x̂ axis,

ωac
T =

√

1 + α

2

√

C̃ac
1 sin2(2θ) + C̃ac

2 cos2(2θ) − C̃ac
3 sin(4θ)

k′2

Ω
. (105)

For the optical modes, we define the dimensionless elastic constants,

C̃op
1 =

d2

gn2
Cop

1 , C̃op
2 =

d2

gn2
Cop

2 , C̃op
3 =

d2

gn2
Cop

3 , (106)

where the side length of the rhombus d is

d2 =
π

Ωm sin(η)
. (107)

We use a numerical fit to the energy of the general form

Eop
elastic =

gn2

2

{

Cax[(a − a∗) + u∗(b − b∗)]
2 + Cbyv2

∗(b − b∗)
2 + Cab[(a − a∗) + u∗(b − b∗)]v∗(b − b∗)

}

, (108)
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FIG. 13: Polar plot of the frequency of the acoustic [left, Eq. (104)] and the optical [right, Eq. (111)] Tkachenko modes for
the rhombic lattice (k = 0.1, gn

Ω
= 0.1, α = 0.2). η/2 is the opening angle of the rhombic unit cell at α = 0.2.

which yields

C̃op
1 =

Cax

2
, C̃op

2 =
Cby

2
, C̃op

3 =
Cab

2
, (109)

The dependence of Cax, Cby , and Cab on α is plotted in Fig. 11.
We find the optical inertial mode

(ωop
I )2 = 4Ω2

[

1 +
gn

πΩ
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(

C̃op
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2

)]

+ (1 − α)k′2, (110)

and the optical Tkachenko mode

ωop
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√

1 − α

π

gn

Ω
sin(η)

√

C̃op
2 cos2(θ) + C̃op

1 sin2(θ) − 1

2
C̃op

3 sin(2θ) k′. (111)

For the rhombic lattice, both the acoustic and the optical Tkachenko modes are anisotropic. A typical dispersion
for the acoustic Tkachenko modes is displayed in Fig. 12. In the calculation above we have not implicity assumed
the twofold symmetry of the rhombic lattice, however, the resulting dispersion relations respect this symmetry. As
an example the polar plot of optical and acoustic mode frequencies is given in Fig. 13. This symmetry can be viewed
as a validation of the numerical approach we use to calculate the elastic coefficients.

Another property of the Tkachenko modes of the rhombic lattice is that the transition to the square lattice at
α = 0.3733 is accompanied by a soft acoustic mode. However, the first-order transition to the triangular lattice does
not have any soft acoustic or optical Tkachenko mode.

X. STRUCTURAL PHASE TRANSITIONS

The two-component vortex lattice system has five different equilibrium lattice types and four structural phase
transitions between them. In this section, we comment on the interplay between these transitions and the Tkachenko
modes of the lattice. Our aim is to give an overall picture of the physics in this system as the intercomponent
interaction α is varied. We start from α = −1, and consider all transitions as α is increased.

For α < −1, the two-component BEC system is unstable towards collapse due to the strength of attraction between
the components. This instability is apparent in the Tkachenko mode spectrum of the overlapped triangular lattice
for α values greater than but close to −1. Here there is a soft acoustic Tkachenko mode, as discussed in Sec. V.

At α = 0, when there is no interaction between the two-components of the BEC, the vortex lattice geometry changes
from overlapped triangular lattice to the interlaced triangular lattice. This first-order transition leaves the unit cell
geometry the same, however, there is a discontinuous jump in the relative positions of vortices within the unit cell.
On both sides of the transition there is a soft optical Tkachenko mode. Thus the reordering inside the unit cell is
accompanied by a soft long-wavelength mode as expected.

As the intercomponent repulsion is increased further, there is a first-order phase transition from the interlaced
triangular lattice to the rhombic lattice, at α = 0.1724. In this transition, both the unit cell geometry and the
positions of vortices inside the unit cell change discontinuously. We find no signature of this transition in the long-
wavelength optical or acoustic modes. The instability mechanism causing this transition must include both optical
and acoustic Tkachenko modes, and must take place at wavelengths comparable to the lattice spacing. Thus this
instability is not captured by our linear, long-wavelength approach.
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Between α = 0.1724 and α = 0.3733 the rhombic lattice is the minimum-energy configuration, and at α = 0.3733
there is a second-order phase transition to the square lattice. On both sides of this transition there is a soft acoustic
Tkachenko mode. The acoustic modes have anisotropic dispersion for both square and rhombic lattices, and the soft

mode has a wave vector ~k, that is parallel to the primitive lattice basis vectors ~a1 = dx̂, or ~a2 = dŷ. As in the
structural phase transitions of solids, a second-order phase transition is accompanied by a soft acoustic mode.

The final structural phase transition between different lattice geometries takes place at α = 0.9256, between the
square and rectangular lattices. This is a second-order phase transition, and we find that there is a soft acoustic

Tkachenko mode on both sides of the transition. The soft mode has a wave vector ~k that makes an angle of π/4 with

the primitive lattice basis vectors, ~k ‖ (~a1 + ~a2).
For a nonrotating system there is a phase-separation instability at α = 1. We find that at this point the optical

Tkachenko modes of the rotating system become soft. However, as discussed in Sec. VIII, it is not clear if this
instability directly leads to phase-separation, or to another phase.

XI. CONCLUSION

We conclude by giving a summary of our main results and discuss their relevance to the recent experiment on the
vortex lattice of the two-component rubidium BEC.

We considered a rapidly rotating two-component BEC, and calculated the Tkachenko mode dispersion relations
for different lattice geometries. We find that a two-component vortex lattice has two branches of Tkachenko modes,
which we call acoustic and optical Tkachenko modes in analogy with phonons. The acoustic Tkachenko modes have
k2 dispersion at long-wavelengths while the optical Tkachenko modes have linear, k, dispersion. For all lattice types
other than triangular lattices, the dispersion relations are anisotropic. By investigating the behavior of Tkachenko
modes near structural phase transitions, we identified the soft modes that are responsible for the phase transitions.
Out of the four structural phase transitions two are of second-order, while the remaining two are first-order. The
second-order transitions are accompanied by the softening of an acoustic mode. For one of the first-order phase
transitions we identified a soft optical Tkachenko mode, while for the other first-order transition, no such long-
wavelength mode was found. We also found that if the intercomponent repulsion is stronger than the interactions
within each component, the vortex lattice is unstable. This instability may lead to phase-separation, as is the case
for a nonrotating two-component BEC.

In a recent experiment at JILA [23], a rapidly rotating two-component Rb condensate was created. It was found
that the equilibrium vortex lattice configuration is square. Furthermore, when the lattice was perturbed, a Tkachenko
like mode was observed, however, this mode was found to be heavily damped, thus it has not been possible to measure
the Tkachenko mode frequencies.

There are three important points to consider when comparing our results with this experiment. First the interaction
parameters for the Rb system used in the experiment are different from what was considered in this paper, most
importantly, interaction parameters within each component are not the same,

g11 6= g22. (112)

In this case, one would expect the acoustic and optical Tkachenko modes to be coupled. However, this coupling should
be relatively small, as

2(g11 − g22)

g11 + g22

≈ 0.05. (113)

When the interaction strengths within each component is different, we may redefine

α =
g12√
g11g22

, (114)

which for the Rb system is very close to 1. Although the calculations in the LLL indicate that a rectangular lattice is
more favorable, experimentally the lattice structure is found to be a square within experimental error. This implies,
as a second point, that one must take into account that the experimental system is not fully in the LLL regime. As the
third and final point, the experimental system is of finite extent. The overall density profile in the system is affected
by the finite size of the system and may cause in shifts in vortex positions [28]. More importantly, the coupling
between vortex oscillations and the density modes, coupled with other loss mechanisms, damp the Tkachenko modes.

The above limitations prevent a direct quantitative comparison of data with the theory presented in this paper.
There are, however, some important qualitative conclusions that can be drawn. A puzzling result of the experiment is



23

that the Tkachenko excitations in the two-component BEC are more heavily damped compared to a single-component
system. It is thought that the main damping mechanism is the coupling to surface modes near the edges of the cloud,
but this mechanism would be independent of whether one is using a one-component or a two-component condensate.
We believe that there are two effects that contribute to this apparently high damping rate. The method used in the
experiment to excite Tkachenko modes is to focus a resonant laser beam onto the center of the condensate. This method
excites Tkachenko modes isotropically, giving equal weight to every direction. However, our calculations show that
Tkachenko modes in a square (or rectangular) lattice are anisotropic. This anisotropy is very pronounced if the system
is close to square to rectangular structural phase transition, which the experimental system could be as indicated
by the ratio of its interaction strengths. When Tkachenko modes are excited isotropically, because oscillations along
different directions have different frequencies, there will be a significant dephasing effect. We believe a significant part
of the observed damping is due to this dephasing. A second effect is that, because of the coupling between the acoustic
and the optical modes, during the excitation also optical Tkachenko modes are excited. By making measurements
on the vortex positions of one-component it is not possible to distinguish one type of oscillation from the other. We
believe, if the excitation mechanism can be made anisotropic, for example by using a resonant laser with an elliptical
focus, it should be possible to observe smaller damping rates.

It is also interesting to note that it should be possible to measure optical Tkachenko modes, using the same
interference technique used in the experiment to prove that the vortices form interlaced lattices. An optical Tkachenko
mode, once excited, would cause oscillations in the visibility of the obtained “vortex lattice interference” fringes.

Acknowledgments

This work was supported by TUBITAK-KARIYER Grant No. 104T165 and a TUBA-GEBIP grant. M.Ö. Oktel
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