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Abstract

We consider an ultracold plasma that has bosonic ions, at zero temperature. Assuming that ions are trapped by a harmonic trap, w
the size of the cloud for both screened and bare Coulomb interactions. Our results indicate that if clouds containing around 104 ions are confined
with a trapping frequency of 10 kHz, stable radius is 15 µm for a fully screened two-component plasma while the radius increases to 2
one component plasma.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The advances in trapping and cooling methods for neu
atoms have led to remarkable experiments where quantum
chanical nature of bosonic and fermionic particles can be s
ied at very low temperatures. The systems where the tem
atures are low enough for quantum mechanical effects t
dominant are called ultracold systems. After the study of Bo
Einstein condensation, using neutral bosonic atoms[1], study of
ultracold atoms have expanded into the investigation of ferm
systems[2] and ultracold molecule production via Feshba
resonances[3]. All these experiments have the common pro
erty that the investigated particles are neutral.

Another new direction in ultracold systems is the creation
an ultracold plasma[4]. An ultracold plasma is created by rap
ionization from an ultracold gas, and so far its investigation
only be done in a dynamical state. In current experiments
ter rapid ionization, a fraction of the electrons leave the clo
while the remaining cloud has a central region which is a neu
two component plasma[5–12]. The electron pressure inside t
plasma causes rapid expansion of the cloud, limiting the ob
vation time to hundreds of microseconds and complicating
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investigation of the properties of the ultracold plasma. Althou
the dynamical properties have yielded interesting phenom
creation of a stable ultracold plasma will be interesting b
from a basic science point of view and may lead to new tech
logical advances in fields ranging from precision measurem
to quantum computation.

For an ultracold plasma, the electron Coulomb coupling
rameterΓe � e2n1/3/kBT , which measures the ratio of avera
interaction energy between electrons to their thermal en
is close to unity[5–12]. The regime where this parameter
larger than unity is unexplored and proposes many fundam
tal questions. Especially when quantum mechanical corr
tions between the constituent particles are taken into acco
one can expect many new phenomena to emerge. As exam
for the fundamental questions about this system, one can
“What is the nature of plasma oscillations when particles
strongly interacting and quantum degenerate?” or “Can e
trons and ions coherently combine and dissociate, leadin
natural atom–plasma oscillations?”. Before attempting to ta
such questions, in this Letter, we consider a simple mode
quantum degenerate plasma where the ions form a Bose
densate, and understand the dependence of the size of s
cloud on interactions.

So far, in ultracold plasma experiments, plasma is produ
by rapid ionization from a cold gas trapped in a magneto-op
trap[5–12]. In the rapid ionization process, most of the ene
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is absorbed by the electrons, leaving the ion cloud at app
mately same temperature as the original atom cloud. In pr
ple electron temperature can also be controlled by tuning
excitation frequency very close to ionization threshold. A
by exciting atoms to Rydberg states, plasma formation thro
collisions has been demonstrated[13–18]. Initial temperature
of the atomic cloud can be made very small, for example, R
berg atom and ultracold plasma formation from a Bose Eins
condensate has been demonstrated[19].

Although stable trapping of ultracold plasma has not b
demonstrated, there is no fundamental physical reason ag
construction of such a trap. One can envision two types of tr
those that couple the electric charge of the ions, such as the
rent ion traps; or those that couple to the electric dipole mom
of the ions, similar to the optical traps used in cold atom exp
ments[20]. If an ion trap, such as a Penning trap[21,22]is used
ions in the plasma will be trapped, while the electrons will
antitrapped and lost from the plasma. Such an ion trap has
used to look at crystallization and structural phase transition
two-dimensional one component plasma at low densities[23].
In principle, such an ion trap can be used to trap the ions i
ultracold plasma, forming a one component, strongly coup
plasma at high densities. Another, and perhaps more inte
ing trap, would be an optical trap that couples to the exc
states of ions, such a trap will not be directly affected by
free charges of electrons and ions as it would operate at m
higher frequencies compared to the plasma frequencies i
cloud. Such a trap could be used to trap the ions while elect
will be trapped by the charge of the ion cloud as in the cur
experiments[5–12].

Expecting advances in trapping technology, we assume
a quadratic trap for the ions have been set up and the clou
been stabilized. As ion traps and neutral atom traps have
proved drastically over the last decade, we believe such a
can be realized in the near future. We calculate the size o
cloud in two situations, first we assume that there is a cons
density of electrons in the cloud giving rise to Thomas–Fe
screening[24] of the ion-ion interactions. Using a Gaussi
variational wavefunction, we find the dependence of the cl
size on electron density. In the second case, we assume th
the electrons escape from the trap and leave a charged Bos
and once again calculate the size of the cloud. A detailed ca
lation of the electron and ion densities, along with densities
vortex situations will be reported in a subsequent paper.

2. Ultracold plasma

We describe the ion cloud as a Bose condensed sy
within the mean-field approximation. The ground state ene
at zero temperature is given by the Gross–Pitaevskii en
functional

E =
∫

dr1

{
h̄2

2m

∣∣∇ψ(r1)
∣∣2 + 1

2
mω2r2

1

∣∣ψ(r1)
∣∣2

(1)+
∫

dr2
∣∣ψ(r1)

∣∣2∣∣ψ(r2)
∣∣2U(r1 − r2)

}
,
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whereU(r) = (Z2e2)e−µr/r is the Yukawa potential betwee
the ions which are assumed to be in an isotropic harmonic
cillator potentialmω2r2/2.U(r) models the screened Coulom
interaction between the ions through the screening para
ter µ. ψ(r) is the ion condensate wavefunction. We introdu
dimensionless units by making the following transformati
(i) r → lr, wherel = √

h̄/mω is oscillator length, and (ii) the
energy is measured in units ofh̄ω. Using the dimensionles
quantities, we can rewrite the energy functional as

E

h̄ω
= 1

2

∫
dr1

{∣∣∇ψ(r1)
∣∣2 + r2

1

∣∣ψ(r1)
∣∣2}

(2)+ γ

∫ ∫
dr1 dr2

|ψ(r1)|2|ψ(r2)|2e−µ|r1−r2|

|r1 − r2| ,

where

(3)γ = (Z2e2)

h̄

√
m

h̄ω

is a dimensionless coupling strength for the interaction betw
the ions. It measures the ratio of the interaction energy betw
the ions to their trapping energy. Note that this paramete
different from the usual Coulomb coupling parameter whic
used in plasma physics.

We use the variational principle to obtain the condens
wavefunction that minimizes the Gross–Pitaevskii functio
For simplicity, we choose a Gaussian trial wave function,

(4)ψ(r) =
[
N

(
2α

π

)3/2]1/2

e−αr2
,

with a variational parameterα. Note thatψ is normalized. The
kinetic and external potential energy terms in the energy fu
tional are easily calculated to be 3Nα/2 and 3N/8α, respec-
tively. To calculate the interaction term we go to the center
mass coordinate system,

(5)R = r1 + r2

2
and r = r1 − r2,

(6)r1 = R + 1

2
r and r2 = R − 1

2
r.

The interaction energy term becomes

EI = γN2
(

2α

π

)3 ∫ ∫
dRdr

e−4αR2
e−(αr2+µr)

r

(7)= 2γN2

√
π

α1/2 − γN2µe
µ2

4α erfc

(
µ

2
√

α

)
.

Finally, the total energy reads

(8)
E

Nh̄ω
= 3

2
α + 3

8α
+ 2Nγ√

π
α1/2 − γNµe

µ2

4α erfc

(
µ

2
√

α

)
.

Minimizing the total energy with respect toα, we get

3

2
− 3

8
α−2 + Nγ√

π
α−1/2 − Nγµ2

2
√

π
α−3/2

(9)+ Nγµ3

4
e

µ2

4α erfc

(
µ

2
√

α

)
α−2 = 0.
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Fig. 1. Total energy per particle in units ofh̄ω as a function of the variationa
parameterα for N = 104 atoms and different screening parameters for
Yukawa potential. Solid, dashed, and dotted lines are forµ = 1, 2, and 3, re-
spectively. The Coulomb coupling parameter isγ = 1.

Although the Coulomb coupling parameterγ is considered to
be of the order of unity in the literature[25] for the charged
Bose gas, realistic calculations ofγ with experimental parame
ters[26] give a value of the order of 108. As an illustration we
first give the variational parameterα dependence of the total e
ergy per particle in units of̄hω for γ = 1 andN = 104 atoms in
Fig. 1. One can observe the minimum of the energy for vari
screening parameters in the figure. We shall address the
realistic case of large values ofγ shortly.

The screening parameterµ in the screened Coulomb po
tential can be defined in terms of the densityn0 within the
Thomas–Fermi (TF) approximation. The TF approximat
consists in assuming that a local internal chemical pote
can be defined as a function of the electron concentratio
that point. In the TF theory, the electron density is represe
locally as a free particle system and the chemical potential i
dependent of position. Then, Thomas–Fermi screening le
1/µ is defined as

(10)µ2 = 4

(
3

π

)1/3n
1/3
0

aB

,

whereaB is the Bohr radius. The density at the center can
defined by means of the variational parameterα

(11)n0 = N

4π
3 α−3/2

.

Then, one can write the screening parameter as a functio
the variational parameterα

(12)µ = βN1/6α1/4,

where we have introduced a dimensionless quantityβ =
(12/π)1/3(l/aB)1/2. Using the TF value ofµ in Eq. (8), the
total energy per particle becomes

E

Nh̄ω
= 3

2
α + 3

8α
+ 2Nγ√

π
α1/2

(13)− γN7/6βe
β2N1/3

4α1/2 erfc

(
βN1/6

2α1/4

)
α1/4.
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Fig. 2. Total energy per particle in units ofh̄ω as a function of the variationa
parameterα for N = 104 atoms for Yukawa potential. The Coulomb coupli
parameter isγ = 108.

Fig. 3. Cloud size 1/
√

α as a function of the screening parameterµ for N = 104

atoms. Coulomb coupling parameter is 108. Two limits of theµ dependence is
shown. For small values of the screening parameterµ, the cloud size decrease
since the screening reduces the range of Coulomb potential. In the op
limit, as µ goes to zero the value of the cloud size corresponds to that o
bare Coulomb potential, i.e., charged Bose gas.

Minimizing the energy with respect toα, we get

3

2
− 3

8
α−2 + Nγ√

π
α−1/2 − N4/3γβ2

4
√

πα

− N7/6γβ

4α3/4
e

β2N1/3

4α1/2 erfc

(
βN1/6

2α1/4

)

(14)+ N3/2γβ3

8α5/4
e

β2N1/3

4α1/2 erfc

(
βN1/6

2α1/4

)
= 0.

Fig. 2 shows the dependence of the total energy per p
cle in units of h̄ω on α, which is the inverse square of th
cloud size, forN = 104 and the Coulomb coupling param
ter γ = 108. It can be seen that there is still a minimum
energy for the realistic parameters. We solve Eq.(14) numer-
ically to find the variational parameterα for various values o
the parametersN , µ andγ . Our estimate of the cloud size r
lies on the experimental parameters of Chen et al.[26] who
hadN = 104 atoms. Thus, for 104 atoms we obtain the clou
size for the screened Coulomb interaction to be∼15 µm for
which the trap frequency is approximately 104 Hz. In Fig. 3
the dependence of the size of a Bose condensed ionic clou
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the electron density which is obtained using the Thomas–F
screening picture is shown. Two limiting behaviors are evid
For the large values of the screening parameterµ, the cloud
size, 1/

√
α, decreases as expected, since the screening re

the range of the Coulomb potential. As the screening param
µ goes to zero the value of the cloud size corresponds to th
bare Coulomb potential case, i.e., charged Bose gas.

3. Charged bosons confined in a harmonic trap

We now consider the situation of a system composed oN

identical bosons interacting via the repulsive Coulomb in
actionZ2e2/r that are confined in an isotropic harmonic tra
As in the case of ultracold plasma of ions interacting via
Yukawa potential, we use the Gross–Pitaevskii functiona
describe the ground state properties. In dimensionless uni
troduced previously, the Gross–Pitaevskii energy function
given by

E

h̄ω
= 1

2

∫
dr1

{∣∣∇ψ(r1)
∣∣2 + r2

1

∣∣ψ(r1)
∣∣2}

(15)+ γ

∫ ∫
dr1 dr2

|ψ(r1)|2|ψ(r2)|2
|r1 − r2| .

Adapting the Gaussian trial function ansatz as before, the
netic and external potential energy terms in the energy fu
tional are easily calculated to yield 3Nα/2 and 3N/8α, respec-
tively. The interaction energy term is calculated by going o
to the center-of-mass coordinate system, yielding finally

(16)EI = γN2
(

α

π

)3/2

4π

∞∫
0

r dr e−αr2 = 2N2γ√
π

α1/2.

The total variational energy is

(17)
E

Nh̄ω
= 3

2
α + 3

8α
+ 2Nγ√

π
α1/2.

Minimizing the energy with respect toα, we get

(18)
3

2
− 3

8
α−2 + Nγ√

π
α−1/2 = 0.

Fig. 4 shows theα dependence of the total energy per parti
in units of h̄ω for N = 104 atoms andγ = 1. Fig. 5also shows
the same dependence but for the experimental paramete
Chen et al.[26] where the coupling parameter isγ = 108. One
can easily see the energy minimum in both curves despite
huge difference in the coupling strength values. Similarly to
Yukawa potential case, we obtain the cloud size for the b
Coulomb potential case as∼ 2 mm where the trap frequency
approximately 104 Hz.

4. Conclusion

We have calculated the dependence of the size of a B
condensed ionic cloud on the electron density, using Thom
Fermi screening picture. This result may be used as a sta
point for more accurate calculations of the plasma density,
i
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Fig. 4. Total energy per particle in units ofh̄ω as a function of variational pa
rameterα for N = 104 atoms for the bare Coulomb potential. The Coulo
coupling parameter isγ = 1.

Fig. 5. Total energy per particle in units ofh̄ω as a function of variational pa
rameterα for N = 104 atoms for the bare Coulomb potential. The Coulo
coupling parameter isγ = 108.

is directly relevant for the design of traps that can hold dege
ate ultracold plasma. Our calculations show that to obtain st
ultracold plasma of similar sizes to current experiments, t
ping frequencies must of the order of tens of kHz.
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