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In this study, we relax one of the general assumptions in the hub location literature by

allowing routed flows between nonhub nodes. In hub networks, different flows are consoli-

dated and routed via collection, interhub, and distribution arcs. Due to consolidation, some

flows travel long paths despite closeness of their origin and destination. In this study, we

allow direct flows by penalizing by a scalar factor of original cost of transshipment between

these arcs. We present mathematical models for median, center, and set covering versions

of the problem for single- and multi-allocation cases. We test the models with the CAB and

TR data sets. We discuss the properties of established direct connections for different

models by using another mathematical model where the number of direct flows is bounded

and interpret the effect of changes in problem parameters.

Introduction

Hub facilities are consolidation and dissemination points in many-to-many flow network systems.

Instead of serving each origin–destination (O–D) pair directly, transshipments are made via hubs.

As a result of this consolidation, economies of scale arise in interhub transitions. Transportation

cost (or time) is discounted by a factor α (0 ≤ α ≤ 1) between two hub nodes.

Hubs are widely used in different areas of industry, such as cargo delivery, passenger

transportation, and telecommunication networks. The hub location problem is to find optimal

locations of hub facilities and allocations of nonhub nodes to hub nodes over a network. O’Kelly

(1986a, b) motivated different versions of the hub location problem and the problem is one of the

most attractive areas of study in the transportation and logistics literature. O’Kelly (1987)

proposed first mathematical model to minimize the total cost of transportation over a network

where the number of hubs to be opened is p (later referred to as the p-hub median problem).

Different studies have been conducted for the p-hub median problem, such as O’Kelly (1992),

Campbell (1996), Ernst and Krishnamoorty (1996, 1998, 1999), Skorin-Kapov, Skorin-Kapov,

and O’Kelly (1996), Ebery (2001), Boland et al. (2004), and Marin, Canovas, and Landete
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(2006). Recent surveys (Campbell, Ernst, and Krishnamoorty 2002; Alumur and Kara 2008; Kara

and Taner 2011) give a detailed history and synthesis of recent trends in the hub location

literature.

Campbell (1994) proposed center and cover version of the problem. The p-hub center

problem is to minimize the maximum travel distance between two nodes by locating p hub

facilities on a network. Kara and Tansel (2000) and Meyer, Ernst, and Krishnamoorthy (2009)

presented different integer models for the p-hub center problem. The hub covering problem is to

minimize the required number of hubs to ensure that travel time between each node pair on the

network is less than a prespecified covering radius. Kara and Tansel (2003), Ernst, Jiang, and

Krishnamoorty (2005), and Wagner (2008) introduced different models for the hub covering

problem.

Hub location problems can be divided into two mainstream allocation structures: single- and

multi- allocation. In single-allocation models, each nonhub node is allocated to only a single hub.

In the multi-allocation case, the flow originating from or destinated to a node can be transferred

via different pairs of hubs.

Many studies in the hub location literature include three common assumptions due to

Alumur and Kara (2008). The first assumes that the hub network is fully connected, that is, an

arc exists between every pair of hubs. The second assumes that interhub transition is dis-

counted by a factor α as a result of economies of scale. The third assumes that no direct flow

is allowed between nonhub nodes. Studies exist in the literature where the first assumption is

relaxed. O’Kelly and Miller (1994) introduced various hub network designs, including a sub-

graph induced by hubs, which is incomplete. Nickel, Schobel, and Sonneborn (2001) dealt

with a multi-allocation version of the problem, considering the costs of building hubs and hub

arcs separately. Campbell, Ernst, and Krishnamoorty (2005a, b) proposed construction of a

fixed number of hub links with reduced unit costs. Alumur, Kara, and Karasan (2009)

defined incomplete versions of single-allocation p-hub median, hub location with fixed costs,

hub covering, and p-hub center network design problems. The effect of the discount factor is

also considered in different studies in the literature. Although most of the hub location studies

focus on a constant discount factor for interhub transition, O’Kelly and Bryan (1998) consid-

ered an increasing cost at a decreasing rate as flow increases. Horner and O’Kelly (2001)

presented another cost function that requires a sufficient flow to discount interhub transition.

Racunicam and Wynter (2005) presented a nonlinear concave cost function and economies of

scale is generated for interhub and hub-to-node transitions. Aykin (1994, 1995) and Sasaki,

Furuta, and Suzuki (2008) studied different types of flows between each origin–destination

pairs. The different allocation strategies of nodes to hubs are investigated in Aykin (1994,

1995). In these studies, one-hub-stop, two-hub-stop, and direct services were considered and

these service types were determined by the allocations of nodes. Mathematical models and

algorithms were presented for these different service types in Aykin (1995) and capacity con-

straints were relaxed in Aykin (1994). Sasaki, Furuta, and Suzuki (2008) proposed a location

problem where customers may attend to facilities directly or via one transfer point. In this

article, we propose flow-based models for p-hub median problems and mathematical models

for center and cover versions of the hub problems that have not been studied in the existing

literature.

Various different hub location problems were considered, including competitive aspects

(Marianov, Serra, and ReVelle 1999; Eiselt and Marianov 2009), queueing systems (Marianov

and Serra 2003), and uncertainty of problem parameters (Contreras, Cordeau, and Laporte 2011;
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Alumur, Nickel & Saldanha da Gama 2012). The extensions such as capacitated network,

thresholds, and flow-dependent cost functions were investigated by Bryan (1998).

Hub networks with direct flows can alleviate some drawbacks of consolidation in practice.

Since flows are consolidated at hub nodes and transferred via hub links, some flows travel

longer paths when compared to distance between their origin and destination. For some flows,

routing without visiting any hub between nodes may be considered as a practical solution to

decrease the cost due to this long travel of flow (for an example, see the Results for median

models section). Moreover, center and cover versions of hub location problems are related to

the traveling times of flows, for example, in cargo delivery applications, some thresholds

should be satisfied as a target service levels (e.g., overnight delivery). By sending some flows

directly from their origins to destinations, the maximum traveling times can be reduced or the

number of hubs can be decreased to ensure feasibility. Also, in air transportation industry for

some cargo requiring VIP service, leased aircrafts could be used as sending the flow directly

for this pair of nodes.

In this study, we relax one of the basic assumptions by allowing direct flow between two

nonhub nodes. Fig. 1 explains the discount and penalty structure over the network for interhub

and direct connections if nodes i and j are allocated to hubs k and m, respectively. cij is the unit

travel time or cost between nodes i and j. Consider the flow from node i to node j. The flow can

be routed via hubs with cost of cik + αckm + cmj per unit flow where the first term is collection, the

second term is interhub transportation, and the third one is distribution cost. If routing between

nonhub nodes is allowed, sending the flow over the link arc (i, j) becomes an alternative way to

route the flow. However, establishing this direct flow will require some effort due to absence of

consolidation and should be penalized to allow this direct flow in only extreme cases. Hence, we

may assume that the cost of direct flow is βcij per unit flow where β ≥ 1. The cost of sending flow

over arc (i, j) should be proportional to physical cost (which means that β ≥ 1) and the penalty

of sending the flow directly bypassing the hub network.

The article is organized as follows: in the second, third, and fourth sections, we propose

integer programming models for single- and multi-allocation cases of median, center, and hub

covering models, respectively. In the fifth section, we present results of computational analysis of

these models with CAB and TR data sets. The article ends with concluding remarks in the last

section.

In the rest of the article, the fivefold taxonomy proposed by Kara and Taner (2011) is used

to represent the problems. This taxonomy is in the form of ε/ϕ/κ/λ/ω, where these parameters

represent objective criterion, allocation structure, capacity, interhub connectivity, and other

restrictions, respectively. The parameter ε can be pH-median, pH-center and H-cover with

respect to the minimum, minimax, and covering versions of the objective. ϕ is the allocation

Figure 1. Discount and penalty structure for interhub and direct flows.
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structure of nonhub nodes. Either the single- or multi-allocation structure can be used for nonhub

nodes. In the classical uncapacitated models, κ is U, λ is full, and ω entity is left blank.

p-hub median with allowed direct flow

Let G = (N, A) be a complete network, where N is the set of nodes {1, 2, . . . , n} and A is the set

of arcs (i, j) such that i, j ∈ N. The following parameters will be used in the models in the rest of

the article:

p = number of hubs to be located,

cij = length of arc (i, j) ∈ A,

wij = total flow originating from node i and destined to node j.

The classic p-hub median problem is to locate p hubs over the network and allocate nonhub nodes

to hub nodes to minimize total cost of the traffic flow. In our model, there can be direct flows (not

via hubs) between nodes. The maximum number of allowed direct transitions is q. Then, we

define pH-median/single/U/full/direct and pH-median/multi/U/full/direct problems and present

mathematical models for these problems in the following two subsections. Both models

utilize multicommodity network flow variables similar to the ones presented in Ernst and

Krishnamoorty (1998).

pH-median/single/U/full/direct problem

Let Oi be the total flow originating from node i, that is, O wi j ij= ∑ . The decision variables used

in the model are as follows:

x
if node i is allocated to hub j

otherwise
ij = ⎧

⎨
⎩

1

0

,

,

y
if direct connection is constructed between nodes i and j

ot
ij =

1

0

,

, hherwise

⎧
⎨
⎩

f the amount of flow from hub k to hub m originating from node ikm
i =

g the amount of flow from hub m to node j originating from node imj
i =

h the amount of flow from node i to hub kik =

Then, the mixed integer programming (MIP) model for pH-median/single/U/full/direct is as

follows:

min c h c f c g w c yik ik

ki

km km
i

mki

mj mj
i

jmi

ij ij ij

ji

∑∑ ∑∑∑ ∑∑∑ ∑∑+ + +α β (1)

s t x iik

k

. . ∑ = ∀1 (2)

x x i kik kk≤ ∀ , (3)
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x pkk

k

∑ = (4)

h y w iik

k

ij ij

j k

∑ ∑= − ∀
≠

( )1 (5)

h O x i kik i ik≤ ∀ , (6)

g y w i jmj
i

m

ij ij∑ = − ∀( ) ,1 (7)

g w x i j mmj
i

ij jm≤ ∀ , , (8)

f f h g i kkm
i

m

mk
i

m

ik kj
i

j

∑ ∑ ∑− = − ∀ , (9)

f O x i kkm
i

m

i ik∑ ≤ ∀ , (10)

f g hkm
i

kj
i

ik, , ≥ 0 (11)

x yij ij, ,∈{ }0 1 (12)

The first three terms in the objective value represent the collection, interhub transportation, and

distribution costs, respectively. The last term stands for the cost of direct flow. Constraints (2) and

(3) ensure that each node is allocated to a single hub facility. Constraint (4) guarantees that the

number of hubs is p. Constraints (5) and (6) ensure the collection of nondirect (through hubs)

flow from each node to its assigned hub. Similarly, constraints (7) and (8) are for the distribution.

Constraint (9) is the flow balance equation. Constraint (10) allows consolidated flow between hub

nodes only. Constraints (11) and (12) stand for non-negative and binary variables, respectively.

pH-median/multi/U/full/direct problem

For the problem with multi-allocation, we additionally define xk, which takes the value of 1 if k

is a hub node and 0 otherwise in this model. Because in the multi-allocation model a node can be

allocated to more than one hub, a single-index variable xk is defined to identify whether node k

was selected to be a hub or not. Definitions of parameters and other decision variables are the

same as the single-allocation version of the model. The MIP for pH-median/multi/U/full/direct

(multi-allocation p-hub median with allowed direct flows) is as follows:

min

s t x pk

k

( )

. .

1

∑ = (13)

h O x i kik i k≤ ∀ , (14)

g w x i j mmj
i

ij m≤ ∀ , , (15)
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f O x i kkm
i

m

i k∑ ≤ ∀ , (16)

x yk ij, { , }∈ 0 1 (17)

(5), (7), (9), and (11)

Constraints (13), (14), (15), and (16) are similar versions of constraints (4), (6), (8), and (10),

respectively. Constraint (4) is modified as constraint (13), which ensures the number of hubs to

be open is p. Constraints (5), (7), and (9) adjust the flow balance based on whether a node is a hub

or not.

p-hub center with allowed direct flow

The p-hub center problem is to minimize the maximum distance between pairs of nodes by

locating p hubs and allocating nonhub nodes to hubs. In the following two subsections, we define

single- and multi- allocation versions of the p-center problem with direct flows and present MIP

models for these problems.

pH-center/single/U/full/direct problem

We define the decision variables xij and yij in similar manner as in the pH-median/single/U/full/

direct problem section. Let M = (2 + α)maxi,jcij be a the maximum possible distance a flow can

travel by using hubs. Value of M is obviously greater than travel disance of any flow and this fact

is use to linearize the necesssary constraints. We also define Z as a free variable to keep the

objective value of the model. Then, we can define MIP model for pH-center/single/U/full/direct

as follows:

min Z (18)

s t Z c c x c x y M i j mik km ik

k

jm jm ij. . ( ) ,≥ + + − ∀ <∑ α (19)

Z c y M i jij ij≥ − − ∀ <β ( )1 (20)

(2), (3), (4), and (12).

The objective function (18) minimizes the maximum travel time between nodes whether via

hubs or not. Constraints (19) and (20) define the distance between nodes i and j depending on the

value of yij. If yij = 0, no flow from nonhub node i to nonhub node j is directly and the distance

between these nodes is calculated based on the transition through hubs. Therefore, constraint (20)

becomes redundant and constraint (19) stands for the distance between these two nodes. On the

contrary, if yij = 1, constraint (19) becomes redundant since the LHS of the constraint gets

negative value and the travel time of the direct flow is kept by constraint (20). Other constraints

are used as in the previous models.

pH-center/multi/U/full/direct problem

In addition to the direct connection variable yij, we again must define the variables xk for hub

nodes and Xijkm equals to 1 if flow from node i to node j is routed via hubs k and m in this order

and 0 otherwise. As in the median case of multi-allocation,
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min

s t Z X c c c y M i jijkm ik km mj ij

mk

( )

. . ( )

18

≥ + + − ∀ <∑∑ α (21)

X y i jijkm ij

mk

+ = ∀ <∑∑ 1 (22)

X X N x kijkm

mji

ijmk

mji

k∑∑∑ ∑∑∑+ ≤ ∀2
3

(23)

Xijkm ∈{ , }0 1 (24)

(13), (17), and (20).

Constraints (20) and (21) correctly determine the distance between each pair of nodes.

Regarding the value of yij, one of the constraints (20) and (21) become redundant. Constraint (22)

ensures that each transition is made either via hubs or flow is sent directly and constraint (23)

does not allow allocating a node to a nonhub node, where 2|N|3xk is the greatest value that the LHS

of the constraint can take.

Hub set covering with allowed direct flow

The hub set-covering problem is to minimize the number of hubs to ensure that the length of the

path between each pair of nodes is less than or equal to a predefined cover radius B. In the

following two subsections, we define the H-cover/single/U/full/direct and H-cover/multi/U/full/

direct problems and present MIP models for these problems. As in the classic location literature,

the models are similar to their center counterparts.

H-cover/single/U/full/direct problem

The MIP model is as follows:

min xkk

k

∑ (25)

s t c c c x x M y M B i j k mik km mj ik jm ij. . ( ) , ,+ + + + − − ≤ ∀ <α 2 (26)

βc y M B i jij ij− − ≤ ∀ <( )1 (27)

(2), (3), and (12).

The model minimizes the number of hubs (25). Constraints (26) and (27) together cor-

rectly ensure that each pair of nodes is covered within the cover radius. If a direct connection

is established between a pair of nodes, constraint (26) becomes redundant. On the contrary, if

flow is sent directly, then constraint (27) gets redundant for corresponding node pair. Also,

constraint (26) is valid for hubs to which nodes are allocated and redundant for other nonhub

nodes and other hub facilities. Due to constraints (2) and (3), each node is allocated to exactly

one hub.
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H-cover/multi/U/full/direct problem

The MIP model for the H-cover/multi/U/full/direct problem can be presented as follows:

min xk

k

∑ (28)

s t X c c c y M B i jijkm ik km mj ij

mk

. . ( )+ + − ≤ ∀ <∑∑ α (29)

(17), (22), (23), (24), and (27).

Objective (28) minimizes the number of hubs to open. One of constraints (27) and (29)

become redundant and the other one ensures that each pair of nodes is covered within the cover

radius. Constraints (17), (22), and (23) are used in a similar manner as the model presented in the

pH-center/multi/U/full/direct problem section.

Computational analysis

In this section, we present some computational results for the proposed models. We used the CAB

data set presented by O’Kelly (1987) and TR data set presented by Tan and Kara (2007). All

computational experiments are conducted on a 4× AMD Opteron Interlagos 16C 6282SE 2.6G

16M 6400MT PC running under LINUX. CPLEX version 12.4.0.0 was used to solve the models.

Since the existence or absence of flow values in the objective has an impact on the results,

the results will be discussed separately for median models (where flow values do appear in the

objective function), and center and cover models (where flow values do not appear in the

objective function).

Results for median models

Computational experiments for pH-median/single/U/full/direct and pH-median/multi/U/full/

direct problem on CAB data set, the instances are generated by varying the number of hubs p ∈
{2, 3, 4, 5} and interhub discount factor α ∈ {0.2, 0.4, 0.6, 0.8}.

Tables 1–4 summarize the computational experimental results for pH-median/single/U/full/

direct and pH-median/multi/U/full/direct on CAB data set. For each parameter setting, that is,

number of hubs to be opened (p), interhub discount factor (α), and direct flow penalty coefficient

(β) following results are presented: hub locations, number of direct flows for the given parameter

setting (no. of direct), decrease in the optimal objective value when compared to the optimal

solution of classical problem where no direct flow is allowed (impr %), and CPU time required

to solve the problem. Direct flow penalty coefficient β is increased from 1 one-by-one up to 10

and in the last row for each p and α setting result for the minimum β value where no direct flow

is sent.

Sending flows directly from their origin to destination is more cost-efficient when discount

factor α increases as a direct consequence of results. Moreover, when the number of hubs

increases, a flow may benefit discounting more since there exists more hubs and discounted hub

links in the network. When single- and multi-allocation strategies are compared, we observe that

the number of direct flows is less than that in multi-allocation setting. This is a direct consequence

of the possibility that a flow may possibly find a less costly path via hubs in multi-allocation

setting.
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Table 1 pH-Median/Single/U/Full/Direct Results on CAB Data Set with P = 2 and 3

β P = 2, α = 0.2 P = 3, α = 0.2

Hub

locations

No. of

direct

impr % CPU (s) Hub

locations

No.

of direct

impr % CPU (s)

1 12,20 418 27.0083 70.29 4,12,17 316 17.7502 54.49

2 12,20 118 10.9462 24.19 4,12,17 86 6.4389 12.09

3 12,20 54 5.2337 16.02 4,12,17 32 3.3728 9.16

4 12,20 26 2.6224 10.73 4,12,17 12 2.2372 9.33

5 12,20 14 1.6389 8.24 4,12,17 12 1.648 8.03

6 12,20 10 1.1394 7.04 4,12,17 8 1.1067 8.51

7 12,20 8 0.749 7.9 4,12,17 8 0.734 7.64

8 12,20 6 0.4731 6.87 4,12,17 4 0.4207 8.88

9 12,20 6 0.1997 7.1 4,12,17 4 0.2956 9.35

10 12,20 2 0.0005 6.04 4,12,17 4 0.1705 8.51

12 12,20 0 0 5.54 4,12,17 0 0 8.72

P = 2, α = 0.4 P = 3, α = 0.4

1 4,12 436 27.3578 106.84 4,12,17 354 17.7734 139.35

2 12,20 122 10.6231 41.25 4,12,17 92 5.8824 33.12

3 12,20 58 5.0499 38.74 4,12,17 36 2.9807 24.84

4 12,20 30 2.4616 26.08 4,12,17 14 1.817 23.81

5 12,20 14 1.489 17.84 4,12,17 12 1.2995 24.66

6 12,20 10 1.0352 15.01 4,12,17 8 0.8388 29.32

7 12,20 8 0.6805 12.29 4,12,17 8 0.5216 19.11

8 12,20 6 0.4298 11.2 4,12,17 6 0.2481 33.27

9 12,20 6 0.1814 11.71 4,12,17 4 0.1297 26.12

10 12,20 2 0.0005 11.09 4,12,17 4 0.0233 28.48

12 12,20 0 0 10.45 4,12,17 0 0 36.37

P = 2, α = 0.6 P = 3, α = 0.6

1 5,12 468 28.4447 160.72 2,12,21 394 19.2089 259.22

2 12,20 132 10.729 93.52 2,4,12 90 6.3665 101.4

3 5,12 42 5.2907 69.63 4,12,18 38 2.7848 69.09

4 5,12 28 2.8267 64.67 4,12,18 18 1.6257 55.03

5 12,20 14 1.3656 46.88 2,4,12 10 1.066 63.82

6 12,20 10 0.9494 35.11 2,4,12 6 0.6724 53.61

7 12,20 8 0.6241 36.04 2,4,12 6 0.3859 53.25

8 12,20 6 0.3942 34.17 4,12,18 4 0.1464 52.97

9 12,20 6 0.1664 43.42 4,12,18 4 0.042 42.1

10 12,20 2 0.0004 31.05 2,4,12 0 0 53.73

12 12,20 0 0 24.38 2,4,12 0 0 53.73

P = 2, α = 0.8 P = 3, α = 0.8

1 4,8 454 29.9485 169.39 11,12,22 462 22.7556 183.96

2 4,20 114 13.0687 91.53 4,12,20 110 7.3476 190.11

3 4,20 50 7.0919 94.23 4,12,20 40 2.6734 153.92

4 2,4 28 4.2744 92.39 2,4,12 22 1.5675 108.86

5 2,4 16 2.4019 83.12 2,4,12 10 0.9766 97.76

6 2,4 10 1.2074 78.3 2,4,12 6 0.6255 87.19

7 12,20 8 0.5793 56.81 2,4,12 6 0.37 76.42

8 12,20 6 0.3659 70.64 2,4,12 4 0.1483 63.02

9 12,20 6 0.1544 75.78 2,4,12 4 0.0461 70.37

10 12,20 2 0.0004 55.5 2,4,12 2 0.0206 65.67

12 12,20 0 0 60.02 2,4,12 0 0 66.14
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Table 2 pH-Median/Single/U/Full/Direct Results on CAB Data Set with P = 4 and 5

β P = 4, α = 0.2 P = 5, α = 0.2

Hub

locations

No. of

direct

impr % CPU (s) Hub

locations

No. of

direct

impr % CPU (s)

1 4,12,14,17 254 13.6724 17.22 4,7,12,14,17 178 8.7775 9.68

2 4,12,17,24 64 4.4687 8.17 4,7,12,14,17 52 1.6451 3.7

3 4,12,17,24 22 2.1455 6.66 4,7,12,14,17 12 0.3731 3.29

4 4,12,17,24 10 1.3404 7.16 4,7,12,14,17 6 0.1638 3.24

5 4,12,17,24 8 0.949 6.19 4,7,12,14,17 6 0.0973 3.22

6 4,12,17,24 6 0.6165 5.21 4,7,12,14,17 4 0.0385 3.28

7 4,12,17,24 6 0.314 6.72 4,7,12,14,17 4 0.0147 3.87

8 4,12,17,24 4 0.0214 5.65 4,7,12,14,17 2 0.0025 3.71

9 4,12,17,24 2 0.0014 5.67 4,7,12,14,17 2 0.0016 3.86

10 4,12,17,24 2 0.0006 6.72 4,7,12,14,17 2 0.0007 3.24

11 4,12,17,24 0 0 6.8 4,7,12,14,17 0 0 4.1

P = 4, α = 0.4 P = 5, α = 0.4

1 4,12,14,17 302 13.11 113.6 4,7,12,14,18 240 9.0961 102.47

2 4,12,14,17 78 3.715 62.34 4,7,12,14,17 58 1.818 44.88

3 1,4,12,17 22 1.4612 50.27 4,7,12,14,17 18 0.4059 26.11

4 1,4,12,17 12 0.8088 43.49 4,7,12,14,17 8 0.1691 16.74

5 1,4,12,17 10 0.398 25.04 4,7,12,14,17 6 0.098 16.25

6 1,4,12,17 6 0.1251 21.97 4,7,12,14,17 4 0.0533 14.2

7 1,4,12,17 4 0.0316 22.6 4,7,12,14,17 4 0.0352 11.2

8 1,4,12,17 4 0.0154 34.26 4,7,12,14,17 4 0.0171 13.08

9 1,4,12,17 2 0.0011 19.85 4,7,12,14,17 2 0.0012 10.69

10 1,4,12,17 2 0.0005 20.67 4,7,12,14,17 2 0.0006 13.09

11 1,4,12,17 0 0 17.16 4,7,12,14,17 0 0 12.72

P = 4, α = 0.6 P = 5, α = 0.6

1 4,12,14,18 350 13.9904 213.3 4,7,12,14,18 298 11.1672 228.38

2 1,4,12,17 82 3.9102 106.72 4,7,12,14,17 78 2.2964 122.64

3 1,4,12,17 26 1.5418 66.53 4,7,12,14,17 20 0.5724 97.35

4 1,4,12,17 12 0.7343 78.1 4,7,12,14,17 8 0.1968 78.28

5 1,4,12,17 10 0.3518 56.87 4,7,12,14,17 6 0.099 73.91

6 1,4,12,17 6 0.1229 53.46 4,7,12,14,17 4 0.0624 59.67

7 1,4,12,17 4 0.0446 48.41 4,7,12,14,17 4 0.0478 53.88

8 1,4,12,17 4 0.031 53.29 4,7,12,14,17 4 0.0332 55.97

9 1,4,12,17 4 0.0173 59.57 4,7,12,14,17 4 0.0186 58.67

10 1,4,12,17 4 0.0037 52.63 4,7,12,14,17 4 0.0039 58.23

11 1,4,12,17 0 0 54.81 4,7,12,14,17 0 0 64.7

P = 4, α = 0.8 P = 5, α = 0.8

1 8,11,12,22 420 18.362 206.07 7,8,11,12,22 378 14.8369 225.06

2 1,2,4,12 76 4.6329 174.3 1,4,6,12,17 68 3.1843 220.19

3 1,4,12,18 32 1.6251 130.83 1,4,7,12,18 26 0.7562 127.37

4 1,4,12,18 18 0.7908 137.36 1,4,7,12,18 14 0.2919 116.24

5 1,4,12,18 12 0.3973 102.31 1,4,7,12,18 10 0.1064 126.72

6 1,4,12,18 6 0.1868 96.35 1,4,7,12,18 4 0.0568 100.92

7 1,4,12,18 2 0.0425 99.29 1,4,7,12,18 2 0.0448 99.53

8 1,4,12,18 2 0.0312 93.64 1,4,7,12,18 2 0.0328 85.48

9 1,4,12,18 2 0.0199 88.78 1,4,7,12,18 2 0.0209 101.42

10 1,4,12,18 2 0.0085 85.33 1,4,7,12,18 2 0.009 81.85

11 1,4,12,18 0 0 85.45 1,4,7,12,18 0 0 114.8
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Table 3 pH-Median/Multi/U/Full/Direct Results on CAB Data Set with P = 2 and 3

β P = 2, α = 0.2 P = 3, α = 0.2

Hub

locations

No. of

direct

impr % CPU (s) Hub

locations

No. of

direct

impr % CPU (s)

1 12,20 418 26.7527 122.84 4,12,17 314 16.9882 99.01

2 12,20 116 10.9042 28.9 4,12,17 78 6.1156 17.41

3 12,20 54 5.1983 12.43 4,12,17 30 3.2034 7.49

4 12,20 26 2.6353 7.76 4,12,17 12 2.1217 6.74

5 12,20 14 1.6469 5.64 4,12,17 12 1.5212 7.53

6 12,20 10 1.145 9.58 4,12,17 8 0.9695 7.54

7 12,20 8 0.7527 7.13 4,12,17 6 0.5923 7.88

8 12,20 6 0.4754 9.29 4,12,17 4 0.2811 7

9 12,20 6 0.2007 8.91 4,12,17 4 0.1536 8.06

10 12,20 2 0.0005 7.07 4,12,17 4 0.0261 7.64

12 12,20 0 0 7.84 12,17,21 0 0 6.41

P = 2, α = 0.4 P = 3, α = 0.4

1 4,12 438 25.671 117.54 4,12,17 352 15.6835 96.19

2 12,20 116 10.1505 31.65 4,12,17 78 5.406 17.19

3 12,20 54 4.8359 19.47 4,12,17 30 2.8554 7

4 12,20 26 2.4474 8.62 4,12,17 12 1.908 6.62

5 12,20 14 1.5295 6.94 4,12,17 12 1.3821 7.38

6 12,20 10 1.0633 10.62 4,12,17 8 0.8988 7.34

7 12,20 8 0.699 8.86 4,12,17 6 0.5685 8.5

8 12,20 6 0.4415 10.35 4,12,17 4 0.296 9.4

9 12,20 6 0.1864 8.56 4,12,17 4 0.1843 10.7

10 12,20 2 0.0005 8.76 4,12,17 4 0.0726 8.68

12 12,20 0 0 8.29 4,12,17 0 0 9.57

P = 2, α = 0.6 P = 3, α = 0.6

1 4,12 472 25.1133 103.53 4,12,17 406 14.7017 88.84

2 12,20 116 9.5739 26.61 4,12,17 78 4.8958 20.79

3 12,20 54 4.5612 21.83 4,12,17 30 2.5859 14.24

4 12,20 26 2.3084 14.03 4,12,17 12 1.7279 8.02

5 12,20 14 1.4426 14.92 4,12,17 12 1.2516 7.17

6 12,20 10 1.0029 12.65 4,12,17 8 0.814 10.25

7 12,20 8 0.6593 10.62 4,12,17 6 0.5149 8.82

8 12,20 6 0.4164 13.61 4,12,17 4 0.268 10.34

9 12,20 6 0.1758 12.7 4,12,17 4 0.1669 9.74

10 12,20 2 0.0005 9.62 4,12,17 4 0.0658 10.25

12 12,20 0 0 12.75 4,12,17 0 0 13.41

P = 2, α = 0.8 P = 3, α = 0.8

1 4,12 488 24.1167 80.84 4,12,17 432 13.9087 95.01

2 8,20 106 9.9367 19.21 4,12,17 78 4.5559 9.31

3 18,21 34 4.797 18.72 4,12,17 30 2.4064 5.59

4 18,21 20 2.5413 10.81 4,12,17 12 1.608 6.12

5 12,20 14 1.3901 7.69 4,12,17 12 1.1647 6.45

6 12,20 10 0.9664 10.75 4,12,17 8 0.7575 7.93

7 12,20 8 0.6353 9.51 4,12,17 6 0.4791 9.5

8 12,20 6 0.4013 9.07 4,12,17 4 0.2494 10.49

9 12,20 6 0.1694 8.49 4,12,17 4 0.1553 9.53

10 12,20 2 0.0005 9.86 4,12,17 4 0.0612 10.37

12 12,20 0 0 10.16 4,12,17 0 0 10.25

Ali İrfan Mahmutoğullar and Bahar Yetis Kara Hub Location Problem

11

Geographical Analysis

420



Table 4 pH-Median/Multi/U/Full/Direct Results on CAB Data Set with P = 4 and 5

β P = 4, α = 0.2 P = 5, α = 0.2

Hub

locations

No. of

direct

impr % CPU (s) Hub

locations

No. of

direct

impr % CPU (s)

1 4,12,14,17 254 13.1452 22.32 4,7,12,14,17 178 8.1848 29.99

2 4,12,17,24 60 4.0774 6.28 4,7,12,14,17 44 1.2775 3.82

3 4,12,17,24 20 1.977 5.6 4,7,12,14,17 10 0.2777 2.61

4 4,12,17,24 10 1.2488 5.72 4,7,12,14,17 6 0.1511 3.33

5 4,12,17,24 8 0.8503 5.3 4,7,12,14,17 6 0.0835 2.84

6 4,12,17,24 6 0.5119 4.41 4,7,12,14,17 4 0.0238 2.78

7 4,12,17,24 4 0.2073 4.75 4,7,12,14,17 2 0.0035 2.77

8 4,12,17,24 2 0.0022 5.22 4,7,12,14,17 2 0.0026 2.8

9 4,12,17,24 2 0.0014 4.91 4,7,12,14,17 2 0.0017 2.93

10 4,12,17,24 2 0.0006 4.96 4,7,12,14,17 2 0.0007 2.88

11 4,12,17,24 0 0 4.5 4,7,12,14,17 0 0 2.74

P = 4, α = 0.4 P = 5, α = 0.4

1 4,12,14,17 298 11.9908 47.93 4,7,12,14,17 234 7.2376 50.24

2 4,12,14,17 62 3.5648 17.19 4,7,12,14,17 44 1.0011 6.52

3 4,12,14,17 20 1.699 8.71 4,7,12,14,17 10 0.2176 10.01

4 4,12,17,24 10 1.0237 8.9 4,7,12,14,17 6 0.1184 4.8

5 4,12,17,24 8 0.6971 9.34 4,7,12,14,17 6 0.0654 5

6 4,12,17,24 6 0.4197 8.75 4,7,12,14,17 4 0.0187 4.87

7 4,12,17,24 4 0.1699 8.97 4,7,12,14,17 2 0.0027 4.24

8 4,12,17,24 2 0.0018 9.76 4,7,12,14,17 2 0.002 4.74

9 4,12,17,24 2 0.0012 10.06 4,7,12,14,17 2 0.0013 4.92

10 4,12,17,24 2 0.0005 9.84 4,7,12,14,17 2 0.0006 4.38

11 4,12,17,24 0 0 9.67 4,7,12,14,17 0 0 4.84

P = 4, α = 0.6 P = 5, α = 0.6

1 4,12,14,17 358 10.7333 65.39 4,7,12,14,17 296 6.8074 82.84

2 4,12,14,17 62 2.6162 37.93 4,7,12,14,17 44 0.8414 38.09

3 1,4,12,17 14 1.1698 15.78 4,7,12,14,17 10 0.1829 17.65

4 1,4,12,17 10 0.6894 13.11 4,7,12,14,17 6 0.0995 15.11

5 1,4,12,17 10 0.3328 18.89 4,7,12,14,17 6 0.055 14.08

6 1,4,12,17 6 0.0847 18.5 4,7,12,14,17 4 0.0157 11.84

7 1,4,12,17 2 0.0021 17.1 4,7,12,14,17 2 0.0023 11.4

8 1,4,12,17 2 0.0016 18.89 4,7,12,14,17 2 0.0017 13.42

9 1,4,12,17 2 0.001 16.31 4,7,12,14,17 2 0.0011 13.59

10 1,4,12,17 2 0.0005 16.05 4,7,12,14,17 2 0.0005 12.8

11 1,4,12,17 0 0 17.56 4,7,12,14,17 0 0 11.24

P = 4, α = 0.8 P = 5, α = 0.8

1 4,12,14,17 386 9.3393 83.14 4,12,14,17,22 366 6.7955 76.61

2 1,4,12,17 56 2.2653 9.49 1,4,8,12,17 48 0.9712 36

3 1,4,12,17 14 1.065 7.87 1,4,7,12,17 10 0.2123 25.18

4 1,4,12,17 10 0.6276 7.1 4,7,12,17,24 6 0.088 27.31

5 1,4,12,17 10 0.3029 8.91 4,7,12,17,24 6 0.0486 25.64

6 1,4,12,17 6 0.0771 12.56 4,7,12,17,24 4 0.0139 24.8

7 1,4,12,17 2 0.0019 12.81 4,7,12,17,24 2 0.002 25.5

8 1,4,12,17 2 0.0014 12.49 4,7,12,17,24 2 0.0015 24.98

9 1,4,12,17 2 0.0009 9.58 4,7,12,17,24 2 0.001 15.48

10 1,4,12,17 2 0.0004 10.68 4,7,12,17,24 2 0.0004 16.73

11 1,4,12,17 0 0 10.54 4,7,12,17,24 0 0 16.89
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Another observation is the effect of direct links on the location of hubs. In many instances,

allowing direct links changes the location of hubs. For example, in pH-median/single/U/full/

direct instance with p = 2 and α = 0.8, the hub sets when β = 1 and no direct flow is allowed are

completely different.

To observe the characteristics of direct flows, we conducted another analysis where β value

is set to 1 and number of direct flows is bounded by a constant, q. Table 5 summarizes the results

of this analysis for pH-median/single/U/full/direct with p = 2, α = 0.6 and q ∈ {1, . . . , 10}, and

Table 6 presents the top 15 highest flow entity in CAB data set in decreasing order of flow with

distance cij, distance via hubs values, and the ration between them. When both flows from 3

(Boston) to 17 (New York) and 17 to 3 are sent directly, the hub located at node 20 (Pittsburgh)

is moved to the opposite direction and relocated at node 5 (Cincinnati). Fig. 2 depicts this

situation. Sending some flows directly can be regarded as a decrease in the flow that should be

carried via hub links in the corresponding area. Therefore, the locations of hubs are moved to the

opposite direction to be able to get closer to the area where flow concentration is higher. By

getting closer to the areas where flow values are greater, the cost of routing them via hubs

decreases.

Also, for the node pair (3, 17), the optimal path via hubs is 3 → 20 → 17 and the resulting

cost (882.97) is more than four times greater than the distance between these nodes (190.32)

because they are both allocated to the same hub. In this case, then, direct flow between nodes 3

and 17 is preferable. The ratio of costs of sending one unit via hubs and directly is 4 32 822 97
190 32

. .
.

=
for this pair of nodes. As this ratio increases, a flow is more likely to be sent directly rather than

routed via hubs. This result can be verified from Tables 5 and 6 as well. Another observation from

Table 5 is for odd values of q, the model chooses one node pair i and j, and flow from i to j is sent

directly, whereas flow from j to i is routed via hubs.

Also, the flows are more likely to be sent directly since the objective is weighted average of

cost of sending one unit of flow. We can see that this proposition holds true for flow from node

3 to node 17. The same situation does not apply to node pair 4 (Chicago) and 17, however, even

though the flow between them is the second highest flow. Since the distance between them and

Table 5 pH-Median/Single/U/Full/Direct Model for P = 2, α = 0.6 and β = 1 if the Number of

Direct Flows is Bounded

q Hub

locations

Direct connections* impr % CPU (s)

0 12, 20 — 0.00 105.76

1 12, 20 3–17 1.26 115.50

2 5, 12 (3–17) 3.07 100.65

3 5, 12 (3–17),17–25 4.31 92.86

4 5, 12 (3–17),(17–25) 5.55 221.86

5 5, 12 (3–17),(17–25),14–17 6.25 83.28

6 5, 12 (3–17),(17–25),(14–17) 6.96 97.04

7 5, 12 (3–17),(17–25),(14–17),7–10 7.44 106.62

8 5, 12 (3–17),(17–25),(14–17),(7–10) 7.93 176.81

9 5, 12 (3–17),(17–25),(14–17),(7–10),8–12 8.34 247.79

10 5, 12 (3–17),(17–25),(14–17),(7–10),(8–12) 8.74 232.31

*(i, j) indicates that i-to-j and j-to-i direct connections are established.
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the traveling cost via hub is very close, sending the flow directly from 4 to 17 is not very

profitable. Moreover, as q increases, hub set remains the same and marginal improvement in the

objective decreases.

Another observation from Table 5 is for odd values of q, the model chooses one node

pair i and j, and flow from i to j is sent directly, whereas flow from j to i is routed via

hubs. Since the flow and cost values in CAB data set are symmetric, ties can be broken

arbitrarily.

Our experiments also revealed that multi-allocation instances are solved in shorter CPU

times even though the constraints that force single allocation in the pH-median/single/U/full/

direct model and the single-index hub variable are the only difference between the single- and

multi-allocation models.

Since solution times of pH-median/single/U/full/direct are reasonable, we also observed the

performance of the models on a larger data set. TR data set consisting of 81 nodes and 22 possible

hub locations is used for the experiment. Table 7 presents some part of these experiment showing

the required CPU time to solve pH-median/single/U/full/q-direct model on TR data set with

Table 6 Top-15 Highest-Volume Flows in the CAB Data Set

Node

pair (i,j)

cij Distance

via hubs

Distance via

hubs/direct

(3,17) 190.32 822.97 4.32

(4,17) 720.47 732.62 1.01

(14,17) 1,098.28 1,343.92 1.22

(17,25) 215.56 523.38 2.43

(12,17) 2,453.35 1604.06 0.65

(12,22) 361.54 361.54 1.00

(9,17) 489.56 527.66 1.08

(17,22) 2,574.08 1,965.60 0.76

(4,12) 1,741.87 1,679.17 0.96

(17,20) 328.75 825.83 2.51

(6,17) 409.35 433.40 1.05

(3,25) 405.78 688.81 1.69

(4,15) 345.87 1,132.24 3.27

(4,9) 237.07 602.78 2.54

(1,17) 756.19 856.05 1.13

Figure 2. Effect of direct connection to location of a hub.
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p = 4, α = 0.6, and β ∈ {1, . . . , 10}. We were able to solve the problem for a relatively great data

set in a reasonable amount of time with and average of 10,756 s. As in CAB instances, allowing

direct connection changes hub locations. However, node 6 (Ankara) and node 34 (Istanbul) have

always been as hubs due to their geographical importance and density of flow. Since the network

is large, the number of direct locations is much greater than CAB instances.

Results for center and cover models

In Table 8, the results of computational experiments for center models are presented. As in the

previous results for each parameter setting, hub locations decrease in the optimal objective value

when compared to the optimal solution of classical problem where no direct flow is allowed (impr

%), and CPU time required to solve the problem is presented. The first observation in center

problems is the fact that the improvement in the objective is at most 8.79% and for β value greater

that or equal to 3, the optimal solution coincides with the optimal solution of the classical center

models (impr % is 0%).

An important observation in these experiments is having alternative optimal solutions due

to the fact that the objective is determined by one of the hub pairs and sending direct flow only

for a small number of hub pairs can change the optimal solution. Then, the number of direct

connections in Table 8 is misleading. Therefore, we conducted another analysis by fixing the

β value to 1 and setting an upper bound on the number of direct flows where q is defined as

number of allowed direct flow again. Table 9 presents the results for single- and multi-

allocation center problems where β value is set to 1 and the number of direct connections is

bounded by q.

In the center models, increasing the number of allowed direct flows does not always yield an

improvement in the objective function value. We propose another mathematical model which is

used to observe the points where the objective strictly improves as q increases. Assume that for

a given value of q′, the problem is solved and the objective value of this problem turns out to be

Z(q′). The following model can be used to find the next q value that the objective can improve in

pH-center/single/U/full/direct problem:

Table 7 Solution Times of pH-Median/Single/U/Full/Direct on TR Data Set with P = 4 and α =
0.6

β CPU

time (s)

Hub

locations

No. of

direct

impr

%

1 17,461.49 6,34,35,44 4,532 16.28

2 8,833.63 1,3,6,34 1,298 4.85

3 8,916.35 1,3,6,34 700 2.21

4 9,637.08 1,3,6,34 436 1.14

5 10,633.98 1,3,6,34 278 0.61

6 9,500.05 1,3,6,34 194 0.35

7 10,142.17 3,6,34,35 88 0.23

8 8,998.44 3,6,34,35 60 0.18

9 12,027.7 3,6,34,35 52 0.15

10 11,408.97 3,6,34,35 38 0.12
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Table 8 pH-Center/Single/U/Full/Direct and pH-Center/Multi/U/Full/Direct Results on CAB

Data Set

P α β Single-allocation Multi-allocation

Hub

locations

No. of

direct

impr

%

CPU Hub

locations

No. of

direct

impr

%

CPU

2 0.2 1 5,22 208 2.83 17.12 5,22 257 0.00 461.21

2 5,22 138 2.83 18.73 5,22 169 0.00 483.17

3 21,22 70 0.00 31.82 5,22 98 0.00 847.83

0.4 1 8,21 237 0.00 15.95 8,21 282 0.00 386.95

2 8,21 158 0.00 20.69 8,21 198 0.00 697.58

3 8,21 68 0.00 23.05 8,21 117 0.00 737.07

0.6 1 8,21 267 0.00 17.86 8,21 295 0.00 159.78

2 8,21 143 0.00 14.6 8,21 202 0.00 161.49

3 8,21 110 0.00 25 8,21 123 0.00 296.71

0.8 1 8,11 283 0.47 13.36 8,11 298 0.47 146.65

2 8,21 192 0.00 7.54 15,24 213 0.01 177.01

3 8,21 118 0.00 16.54 8,21 137 0.00 2,664.24

3 0.2 1 16,22,25 230 8.79 25.18 16,22,25 221 0.63 950.61

2 8,9,24 97 1.25 21.45 9,16,22 129 0.00 1,006.99

3 5,19,23 43 0.00 24.12 9,16,22 74 0.00 1,305.61

0.4 1 12,21,23 247 1.48 25.5 12,21,23 260 0.22 851.87

2 5,12,23 147 1.27 26.5 5,12,23 158 0.00 754.21

3 8,14,20 68 0.00 26.67 5,12,23 96 0.00 745.02

0.6 1 8,18,24 264 4.12 10.75 8,18,24 266 0.00 442.9

2 8,18,24 156 2.33 17.21 8,18,24 182 0.00 268.61

3 8,16,20 93 0.00 25.87 8,18,24 108 0.00 493.57

0.8 1 8,9,24 292 1.97 12.07 8,17,24 290 0.47 83.94

2 6,8,16 194 0.00 13.39 8,17,24 194 0.00 177.15

3 6,8,16 115 0.00 17.76 8,17,24 121 0.00 364.68

4 0.2 1 13,22,24,25 211 2.02 44.94 13,14,22,25 224 2.02 896.41

2 9,16,19,23 103 0.00 25.34 9,16,19,23 120 0.00 1,107.43

3 9,16,19,23 42 0.00 23.95 9,16,19,23 64 0.00 1,085.53

0.4 1 1,12,17,23 245 7.69 22.23 1,3,12,23 235 1.95 652.59

2 12,13,18,23 110 0.00 21.49 9,12,16,23 129 0.00 946.29

3 12,13,18,23 59 0.00 38.13 9,12,16,23 76 0.00 817.5

0.6 1 1,12,17,23 264 3.04 14.77 1,12,17,23 261 0.52 375.14

2 19,21,22,23 150 0.00 18.01 1,12,17,23 162 0.00 728.1

3 19,21,22,23 91 0.00 29.97 1,12,17,23 103 0.00 580.79

0.8 1 2,3,8,24 280 0.68 13.96 3,8,20,24 275 0.00 269.57

2 19,21,22,23 196 0.00 12.08 3,8,20,24 126 0.00 510.55

3 19,21,22,23 121 0.00 42.52 3,8,20,24 108 0.00 442.81

5 0.2 1 2,11,12,23,24 162 0.00 30.07 11,12,17,23,24 202 0.00 1,213.94

2 2,11,12,23,24 50 0.00 27.37 11,12,17,23,24 87 0.00 1,670.11

3 2,11,12,23,24 20 0.00 24.09 11,12,17,23,24 48 0.00 1,352.8

0.4 1 11,12,18,23,24 211 0.00 14.07 11,12,14,18,23 229 0.00 516.38

2 11,12,18,23,24 94 0.00 23.25 11,12,14,18,23 114 0.00 1,216.47

3 11,12,18,23,24 39 0.00 27.73 11,12,14,18,23 67 0.00 1,093.66

0.6 1 1,18,19,22,23 254 4.37 13.96 1,18,19,22,23 255 0.00 382.98

2 13,19,22,23 153 0.00 24.57 1,18,19,22,23 148 0.00 530.92

3 13,19,22,23 75 0.00 28.87 1,18,19,22,23 87 0.00 519.21

0.8 1 17,19,22,23,24 280 3.48 8.04 17,19,22,23,24 257 0.00 307.01

2 6,8,16,22,23 193 0.00 19.85 17,19,22,23,24 167 0.00 557.93

3 6,8,16,22,23 112 0.00 19.04 17,19,22,23,24 83 0.00 409.81
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min q (30)

s t Z q Z. . ( )′ − ≥ ε (31)

y qij

i j<
∑ ≤ (32)

(2), (3), (4), (12), (19), and (20).

The optimal value of objective (30) represents the next q value with q > q′ that improves the

objective of the problem. Constraint (31) ensures that the decrease in the objective allows for

small enough values of ε > 0. Constraint (31) limits the number of direct flows. Constraints (2),

(3), (4), (12), (19) and (20) were used as defined in the previous sections. We use a similar model

to determine the improvement step points for the multi-allocation version of the problem.

Despite the median version of the model in the center problems, direct flow is between

distant origin–destination pairs. Our computational studies reveal that in center models, the hubs

are located farther apart when the allowed number of direct connections increases. The reason

behind this result is because more discount can be achieved by distant hubs. Direct flows are

routed to compensate for the increase in the objective that arises from of hubs farther apart.

Another important point is in multi-allocation center problem; we cannot achieve so much

improvement since multi-allocation already gives us the opportunity to route the flows over

different hub links.

Table 9 pH-Center/Single/U/Full/Direct and pH-Center/Multi/U/Full/Direct Models for α = 0.6

if the Number of Direct Flows is Bounded

α P Single-allocation Multi-allocation

q Objective Value

Improvement

Hubs q Objective Value

Improvement

Hubs

0.6 2 [0,∞] - 8,21 [0,∞] - 8,21

3 [0,1] - 8,9,16 [0,∞] - 8,18,24

2 1.10% 6,8,24

[3,5] 1.73% 8,20,24

[6,11] 1.92% 2,8,24

12 2.33% 8,18,24

4 0 - 19,21,22,23 0 - 1,12,17,23

[1,3] 0.56% 9,10,12,13 1 0.15% 1,12,17,23

4 0.87% 6,10,12,23 2 0.47% 1,12,17,23

[5,18] 1.46% 10,12,20,23 [3,∞] 0.52% 1,12,17,23

[19,30] 2.36% 12,16,20,23

5 [0,3] - 13,17,19,22,23 [0,∞] - 1,17,19,22,23

4 0.67% 13,19,22,23,25

[5,6] 1.09% 13,19,20,22,23

7 1.29% 6,16,19,22,23

[8,18] 1.53% 6,16,19,22,23
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In Table 10, hub locations, optimal objective value (number of hubs to be opened), and

required CPU times results of our computational experiments for the H-cover/single/U/full/direct

and H-cover/multi/U/full/direct problems are presented. The experiments are conducted for α =
0.6 and 0.8 since for these values, cover radii are available in Kara and Tansel (2003). As

previously observed in center models, direct flows are sent between distant O–D pairs in cover

models. Also, due to the structure of cover type objective, the problem can be solved within

seconds for all instances.

Table 11 presents the outputs in the bounded number of direct flows for α = 0.8 since in cover

problem, there exist alternative optima and the number of direct flows is larger unless it is

bounded. The instance with and β = 2,307 is noteworthy since we require 22 direct flows in order

to decrease the objective by one. On the contrary, allowing routing between nonhub pairs does not

yield significant improvements in the multi-allocation case, wherein only one of the instances the

objective improves as q increases (α = 0.8 and β = 2,713). In other instances, no improvement is

observed.

Center and cover models are also tested with TR data set. However, the models that require

four-index variables or constraints with four dimension cannot be solvable due to memory

Table 10 H-Cover/Single/U/Full/Direct and H-Cover/Multi/U/Full/Direct Results on CAB Data

Set

α B β Single-allocation Multi-allocation

Hub locations Objective CPU Hub locations Objective CPU

0.6 2557 1 22,23,25 3 0.24 22,23,25 3 0.18

2 8,13,25 3 1.04 8,21,23 3 0.86

3 7,8,25 3 1.3 1,5,8 3 0.86

2336 1 2,8,24 3 0.29 2,8,24 3 0.25

2 8,14,18 3 0.82 8,18,24 3 0.74

3 8,9,18,24 4 1.2 5,8,18,24 4 1.15

2184 1 12,18,23,24 4 0.32 1,2,12,23 4 0.24

2 19,21,22,23 4 0.8 19,21,22,23 4 0.87

3 19,21,22,23 4 1.21 19,21,22,23 4 0.88

2002 1 6,14,19,22,23 5 0.34 19,20,22,23,24 5 0.31

2 1,19,21,22,23,25 6 0.72 1,19,21,22,23,25 6 0.58

3 6,11,13,19,22,23 6 1.21 8,9,12,16,22,23 6 0.84

0.8 2713 1 15,23 2 0.24 15,23 2 0.15

2 8,11,23 3 0.75 8,11,23 3 0.61

3 5,8,11 3 0.99 8,21,23 3 0.7

2552 1 8,14,25 3 0.38 6,8,14 3 0.16

2 4,8,13,23 4 0.83 2,3,11,14 4 0.61

3 19,21,22,23 4 0.99 8,13,17,23 4 0.73

2457 1 8,14,17,23 4 0.32 3,8,24,25 4 0.41

2 12,21,22,23 4 0.75 12,21,22,23 4 0.59

3 19,21,22,23 4 0.98 19,21,22,23 4 0.74

2307 1 6,12,22,23,24 5 0.28 6,12,22,23,24 5 0.2

2 11,18,19,22,23,24 6 0.58 11,18,19,22,23,24 6 0.6

3 7,19,20,22,23,24 6 0.98 11,17,19,22,23,24 6 0.75
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requirement. Thus, only pH-center/single/U/full/direct problem can be solved for TR data set.

Table 12 presents the results for TR instances with p = 4 and α = 0.6 for this problem.

All computational experiments showed that when the model constraints becomes stronger

such as when the number of hubs to be located is small and each node is allocated to only one

hub, better improvements in objective values can be made by allowing direct flow between

nonhub nodes.Transferring via hubs is quite economical when multi-allocation is allowed. When

compared to the direct connection cost, especially for small values of α and great values of β,

hubbing is a cheaper way to connect O–D pairs.

To deal with larger data sets, some heuristic approaches may be developed. Many heuristic

approaches can be adopted for the case where routing between nonhub nodes is allowed. As

pointed in Aykin (1995), if hub locations are given, pH-median/multi/U/full/direct problem

decomposes in subproblems for each pair of nodes. Therefore, a promising selection with a

heuristic approach would give a near-optimal solution. Moreover, as in TA_A and TA_B heuristic

in Chen (2013), some heuristics can be improved that first selects hub nodes, then give allocation

decision and finally determine routes between nonhub nodes.

An interested reader may find maps and detailed information about CAB and TR data sets in

O’Kelly (1987) and Tan and Kara (2007), respectively.

Conclusion

In this study, we relaxed one of the common assumptions in the hub location literature by

allowing traffic flow between nonhub nodes. We present mathematical models and discuss

Table 11 H-Cover/Single/U/Full/Direct and H-Cover/Multi/U/Full/Direct Models for α = 0.8 if

the Number of Direct Flows is Bounded

α B Single-allocation Multi-allocation

q Objective Hub locations q Objective Hub locations

0.8 2713 0 3 11,12,23 0 3 4,8,11

[1,∞] 2 8,11 [1,∞] 2 8,11

2552 [0,1] 4 4,8,13,23 [0,∞] 3 8,14,17

[2,∞] 3 4,8,24

2457 [0,∞] 4 19,21,22,23 [0,∞] 4 8,15,17,24

2307 [0,21] 6 9,11,12,22,23,24 [0,∞] 5 17,19,22,23,24

[22,∞] 5 9,12,22,23,24

Table 12 Solution Times of pH-Center/Single/U/Full/Direct on TR Data Set with P = 4 and α =
0.6

β CPU time (s) Hub locations No. of

direct

impr

%

1 2,081.02 3,25,34,65 2,955 1.71

2 26,195.2 3,5,21,34 1,663 0.92

3 33,082.16 21,25,34,68 393 0.00

4 19,837.34 21,25,34,68 191 0.00

5 49,916.32 21,25,34,68 87 0.00
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median, center, and cover objectives under single- and multi-allocation strategies. Hub networks

benefit from economies of scale generated from consolidation and a decreased number of

established links. However, in some cases, allowing direct flow between nonhub nodes may result

in improved objectives. Allowing a direct flow between with a cost penalty, O–D pairs may

change allocations and even the locations of hubs on the network.

We conducted computational experiments to observe the solutions where direct flow is

penalized and deduce the properties of candidate locations for direct flows where the number of

direct flows is bounded. For median-objective models, the amount of flow and the allocation

decisions affect the direct flow decisions. On the contrary, in center- and cover-objective models,

direct flow decisions are made based on the distances and the allocation structure.

As a future research direction, there can be some extensions of the problem. For example,

instead of sending all flows from one to another, one can consider the case where some portion

of the flow is sent directly. Also, direct flow decisions are highly dependent on the interhub

discount factor. Another interesting research would be the case where interhub cost decreases as

the flow increases, as in O’Kelly and Bryan (1998).
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