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Tumor cells have the capacity to proliferate indefinitely that is
qualified as replicative immortality. This ability contrasts with the
intrinsic control of the number of cell divisions in human somatic
tissues by a mechanism called replicative senescence. Replicative
immortality is acquired by inactivation of p53 and p16INK4a genes
and reactivation of hTERT gene expression. It is unknown whether
the cancer cell replicative immortality is reversible. Here, we show
the spontaneous induction of replicative senescence in p53-and
p16INK4a-deficient hepatocellular carcinoma cells. This phenome-
non is characterized with hTERT repression, telomere shortening,
senescence arrest, and tumor suppression. SIP1 gene (ZFHX1B) is
partly responsible for replicative senescence, because short hairpin
RNA-mediated SIP1 inactivation released hTERT repression and
rescued clonal hepatocellular carcinoma cells from senescence
arrest.
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Tumor cells are clonal (1), and tumorigenesis usually requires
three to six independent mutations in the progeny of pre-

cancerous cells (2). For this to occur, preneoplastic somatic cells
would need to breach the replicative senescence barriers. Rep-
licative senescence is a telomere-dependent process that sets a
limit to the successive rounds of cell division in human somatic
cells (3). Progressive telomere shortening is observed in almost
all dividing normal cells. This phenomenon is linked to the lack
of efficient hTERT expression that is observed in most human
somatic cells (3). Replicative senescence (permanent growth
arrest also called M1 stage) is believed to be initiated by a DNA
damage-type signal generated by critically shortened telomeres,
or by the loss of telomere integrity, leading to the activation of
cell cycle checkpoint pathways involving p53, p16INK4a, and�or
retinoblastoma (pRb) proteins (4, 5). In the absence of func-
tional p53 and p16INK4a�pRb pathway responses, telomeres
continue to shorten resulting in crisis (also called M2 stage).
Cells that bypass the M2 stage by reactivating hTERT expression
gain the ability for indefinite cell proliferation, also called
immortality (3, 4, 6). There is accumulating evidence that cancer
cells undergo a similar process during carcinogenesis to acquire
immortality. Telomerase activity associated with hTERT reex-
pression is observed in �80% of human tumors (7), and senes-
cence controlling p53 and p16INK4A genes are commonly inacti-
vated in the majority of human cancers (8). Moreover,
experimental transformation of normal human cells to tumor
cells requires hTERT-mediated immortalization, as well as
inactivation of p53 and pRb genes (9).

Aberrant expression of hTERT, together with the loss of p53
and p16INK4a�pRb control mechanisms, suggests that the repli-
cative immortality is a permanent and irreversible characteristic
of cancer cells. Although some cancer cells may react to extrinsic
factors by a senescence-like stress response, this response is
immediate, telomere-independent, and cannot be qualified as
replicative senescence (10). Experimental inactivation of telom-
erase activity in cancer cells mostly results in cell death (11),
whereas ectopic expression of p53, p16INK4a, or pRb provokes an

immediate senescence-like growth arrest or cell death (10).
Thus, to date there is no experimental evidence for spontaneous
reprogramming of replicative senescence in immortalized cancer
cells. Using hepatocellular carcinoma (HCC)-derived Huh7 cells
as a model system, here we show that cancer cells with replicative
immortality are able to spontaneously generate progeny with
replicative senescence. Thus, we provide preliminary evidence
for the reversibility of cancer cell immortality. The replicative
senescence of cancer cells shares many features with normal cell
replicative senescence such as repression of hTERT expression,
telomere shortening, and permanent growth arrest with mor-
phological hallmarks of senescence. However, the p53 gene is
mutated, whereas p16INK4a promoter is hypermethylated in these
cells. Thus, we show that fully malignant and tumorigenic HCC
cells that display aberrant hTERT expression and lack functional
p53 and p16INK4a genes are able to revert from replicative
immortality to replicative senescence by an intrinsic mechanism.
Furthermore, we demonstrate that the SIP1 gene, encoding a
zinc-finger homeodomain transcription factor protein involved
in TGF-� signaling (12, 13) and hTERT regulation (14), serves
as a molecular switch between replicative immortality and
replicative senescence fates in HCC cells.

Results
When analyzing clones from established cancer cell lines, we
observed that some clones change morphology and cease pro-
liferation at late passages with features reminiscent of cellular
senescence (data not shown). We reasoned that this could be an
indication for generation of progeny programmed for replicative
senescence. We surveyed a panel of HCC and breast carcinoma
cell lines and hTERT-immortalized human mammary epithelial
cells (hTERT-HME). Plated at low clonogenic density, cells
were maintained in culture until they performed 6–10 popula-
tion doublings (PD), and tested for senescence-associated �-
galactosidase (SABG) activity (15). Different cancer cell lines
generated progeny with greatly contrasting SABG staining
patterns. The first group, represented here by HCC-derived
Huh7 and breast cancer-derived T-47D and BT-474 cell lines,
generated heterogeneously staining colonies. Cells of some
colonies were mostly positive for SABG, but others displayed
significantly diminished or complete lack of staining (Fig. 1A).
The second group, represented by HCC-derived Hep3B and
Mahlavu, and hTERT-HME generated only SABG-negative
colonies (Fig. 1B). Manual counting of randomly selected col-
onies demonstrated that mean SABG-labeling indexes for Huh7,
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T-47D and BT-474 progenies were 45 � 23%, 40 � 29%, and
33 � 7%, respectively (Fig. 1C, lanes 1–3). In contrast, Hep3B,
Mahlavu, and hTERT-HME progenies displayed �3 � 3%
mean SABG-labeling indexes (Fig. 1C, lanes 4–6). Clones from
representative cell lines were expanded and subjected to the
same analysis. SABG-staining patterns of all clones tested were
closely similar to the patterns of their respective parental cell
lines. For example, mean SABG staining indexes of Huh7-
derived clones were 14 � 15%, 47 � 27%, and 17 � 11% (Fig.
1C, lanes 7–9), whereas Hep3B-derived clones generated �2 �
3% SABG-positive progenies (Fig. 1C, lanes 10–12). We spec-
ulated that the first group of cell lines comprised progenies in
different stages of replicative senescence process at the time of
analysis, whereas the second group of cell lines were composed
mostly of immortal cells. The results obtained with the first
group were unexpected. These cell lines have been established
�20 years ago (16–18) and expanded in culture over many years,
with PD well beyond the known senescence barriers for normal
human cells (3), but they were still capable of generating
presumably senescent progeny.

The study of a potentially active replicative senescence pro-
gram in the progeny of immortal cancer cell lines requires the
long-term follow up of single cell-derived clones. To this end, we

chose to focus our investigations on Huh7 cell line. We expanded
different Huh7-derived clones in long-term culture and exam-
ined their potential to undergo replicative senescence. Some
clones performed �100 PD in culture with stable proliferation
rates and heterogeneous SABG staining, whereas others sus-
tained a limited number of PD, then entered a growth arrest
phase with full SABG staining patterns. For example, C3 clone
performed only 80 PD, whereas C1 clone replicated �150 PD.
Permanently arrested C3 cells (PD 80) displayed enlarged size,
f lattened shape, and fully positive SABG staining, whereas early
passage C3 (PD 57) and C1 (PD 179) cells displayed normal
morphology with heterogeneous SABG staining (Fig. 2A Upper).
Normal human cells at replicative senescence (M1) are refrac-
tory to mitotic stimulation and display �5% BrdUrd index (19).
Growth-arrested C3 cells displayed very low BrdUrd staining
(2 � 2%), in contrast to early passage C3 and late passage C1
cells, which exhibited 89 � 6%, and 96 � 3% BrdUrd indexes,
respectively (Fig. 2 A Lower). Senescent C3 cells remained
growth arrested, but alive when maintained in culture for at least
3 months, with no emergence of immortal clones (data not
shown).

Biological mechanisms of replicative senescence observed
here are of particular interest, because senescence-regulatory
p53 is inactivated (20–22) and p16INK4a promoter is hypermethy-
lated (23) in Huh7 cells. Accordingly, there was no change in p53
levels, whereas the low level p16INK4a expression did not in-
crease, but decreased in senescent C3 (PD 80) cells, when
compared to presenescent C3 (PD 57) or immortal C1 (PD 179)
cells. Retinoblastoma protein (pRb) displayed partial hypophos-

Fig. 1. Established human cancer cell lines generate senescence-associated
�-galactosidase (SABG)-expressing progeny. (A) Representative pictures of
HCC (Huh7) and breast cancer (T-47D and BT-474) cell lines that generate both
SABG-positive (Upper) and SABG-negative (Lower) colonies. (B) Representa-
tive pictures of HCC (Hep3B and Mahlavu) and telomerase-immortalized
mammary epithelial (hTERT-HME) cell lines that generate only SABG-negative
colonies. Cells were plated at clonogenic density to generate colonies with
6–10 population doublings, and stained for SABG activity (blue), followed by
eosin counterstaining (red). (C) Quantification of SABG-positive cells in colo-
nies. Randomly selected colonies (n � 10) obtained from parental (lanes 1–6)
cell lines and expanded clones (lanes 7–12) were counted to calculate the
average % SABG positive cells per colony (% SABG index). Lanes 1–6 designate
Huh7, T-47D, BT-474, Hep3B, Mahlavu, and hTERT-HME, respectively. Lanes
7–9 are Huh7-derived C1, C3, and C11 clones, and lanes 10–12 are Hep3B-
derived 3B-C6, 3B-C11, and 3B-C13 clones. Error bars indicate SD.

Fig. 2. p53-and p16INK4a-deficient Huh7 cells generate progeny that un-
dergo in vitro and in vivo replicative senescence resulting in loss of tumori-
genicity. (A) Huh7-derived clones C3 and C1 were tested for replicative senes-
cence arrest by SABG and BrdUrd staining at different passages. Presenescent
C3 and immortal C1 cells display low SABG staining (Upper) and high BrdUrd
incorporation (Lower), whereas senescent C3 cells are fully positive for SABG
(Upper) and fail to incorporate BrdUrd into DNA after mitogenic stimuli
(Lower). (B) p53 and p16INK4a protein levels show no increase in senescent C3
cells, compared to presenescent C3 and immortal C1 cells, but senescent C3
cells display partial hypophosphorylation of pRb. Calnexin was used as a
loading control. Proteins were tested by Western blotting. PS, presenescent
(PD 57); S, senescent (PD 80); I, immortal (PD 179). (C) C1 cells (black line) were
fully tumorigenic, but C3 cells (red line) were not in nude mice. (D) C1 tumors
displayed low SABG staining (Upper Right), whereas implanted C3 cells re-
maining at the injection site are fully positive for SABG in situ (Upper Left), as
well as after short-term in vitro selection (Lower). Animals were injected with
presenescent C3 (PD 59) and immortal C1 (PD 119) cells, and tumors and
nontumorigenic cell samples were collected at day 35 and analyzed.
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phorylation in senescent C3 cells, apparently in a p53- and
p16INK4a-independent manner (Fig. 2B). Cyclin E and A levels
were also decreased, but p21cip1 levels were elevated in both
presenescent and senescent C3 cells (Fig. 5A, which is published
as supporting information on the PNAS web site). Cyclin D1,
CDK4, and CDK2 protein levels (Fig. 5A) and p14ARF transcript
levels (Fig. 5B) did not change.

Cancer cell senescence that we characterized here shared
many features with normal cell replicative senescence (3), except
that it was not accompanied with wild-type p53 or p16INK4a

induction. However, in vivo relevance of the replicative senes-
cence observed in cell culture is debated (6). Therefore, we
compared in vivo replicative potentials of C3 (PD 59) and C1
(PD 119) cells in CD-1 nude mice. C3 cells did not form visible
tumors, whereas C1 cells were fully tumorigenic in the same set
of animals (Fig. 2C), like parental Huh7 cells (data not shown;
ref. 24). C1 tumors collected at day 35 displayed scattered but
low-rate SABG-positive staining, but remnant C3 cell masses
collected from their injection sites were fully SABG-positive
(Fig. 2D Upper). For confirmation, these remnants were re-
moved from two different animals, passaged twice in cell culture
for selection, and examined. Nearly all cells displayed senescence
features including enlarged size, f lattened shape, and highly
positive SABG staining (Fig. 2D Lower). We concluded that loss
of C3 tumorigenicity was due to replicative senescence in vivo.

Replicative senescence, also called telomere-dependent se-
nescence is associated with progressive telomere shortening due
to inefficient telomerase activity (3). When compared to paren-
tal Huh7 cells, presenescent C3 cells at PD 57 had telomeres that
have already been shortened to �7 kbp from �12 kbp. These
cells eroded their telomeres to �5 kbp at the onset of senescence.
In contrast, immortal C1 clone (PD 179) telomeres did not
shorten (Fig. 3A). These observations showed a perfect corre-
lation with telomerase activity and hTERT expression. Immortal
C1 cells displayed robust telomerase activity, whereas both
presenescent and senescent C3 cells had no detectable telom-
erase activity (Fig. 3B). Accordingly, the expression of hTERT
gene was high in C1, but barely detectable in C3 cells (Fig. 3C).
Thus, senescence observed with C3 cells was characterized with
the loss of hTERT expression and telomerase activity, associated
with telomere shortening.

Mechanisms of hTERT expression are presently unclear, but
several genes including SIP1, hSIR2, c-myc, Mad1, Menin, Rak,
and Brit1 have been implicated (14, 25). Therefore, we analyzed
their expression in C1 and C3 clones. All tested genes, except
SIP1, were expressed at similar levels in both C1 and C3 clones,
independent of hTERT expression (Fig. 6, which is published as
supporting information on the PNAS web site). SIP1 transcripts
were undetectable in C1 cells, but elevated in C3 cells, moder-
ately in presenescent, but strongly in senescent stages (Fig. 3C).
We verified these findings with another Huh7-derived clone
(G12) that displayed replicative senescence resulting in perma-
nent cell proliferation arrest. Like C3, presenescent G12 cells
that displayed low SABG staining with high BrdUrd index (98 �
1%), became fully positive for SABG, and nearly negative for
BrdUrd (3 � 2%) at the onset of senescence (Fig. 7, which is
published as supporting information on the PNAS web site).
Presenescent G12 cells displayed only a weak hTERT repression
associated with a slight increase in SIP1 expression, whereas
SIP1 was strongly elevated in hTERT-negative senescent cells
(Fig. 3D). Thus, there was a close correlation between SIP1
expression and hTERT repression in all Huh7 clones tested. The
analysis of SIP1 and hTERT expression in primary HCCs and
their corresponding nontumor liver tissues confirmed this rela-
tionship. SIP1 transcript levels were high, but hTERT expression
was low in nontumor liver tissues, whereas respective HCC
tumors displayed diminished SIP1 expression associated with
up-regulated hTERT expression (Fig. 3E).

The SIP1 gene (Zinc finger homeobox 1B; ZFHX1B) en-
codes a transcriptional repressor protein that interacts with
SMAD proteins of the TGF-� signaling pathway and CtBP
corepressor (12, 13). This gene has recently been implicated in
TGF-�-dependent regulation of hTERT expression in breast
cancer cells (14). Our observations implicated SIP1 gene as a
candidate regulator of replicative senescence in HCC cells. To
investigate whether SIP1 expression constitutes a protective
barrier against hTERT expression and senescence bypass, we
constructed SIP1 short hairpin RNA (shRNA)-expressing
plasmids, based on a reported effective SIP1 siRNA sequence
(14). SIP1 shRNA was expressed by using either G-418-
resistance plasmid pSuper.retro.neo�GFP or puromycin-
resistance plasmid pSUPER.puro (see shRNA in Methods).
Presenescent C3 cells at PD 75 were used for transfections, 3–4
weeks before expected senescence arrest stage.
pSuper.retro.neo�GFP-based SIP1 shRNA suppressed the
accumulation in SIP1 when expressed transiently (Fig. 4A, day
5). This resulted in a weak increase in hTERT expression.
Transfected cells were maintained in culture in the presence of
500 �g�ml G-418 and observed for 30 days. At this period, C3
cells transfected with a control plasmid reached senescence-
arrested stage with further up-regulation of SIP1 expression
(Fig. 4A, day 30) and resistance to BrdUrd incorporation after
mitogenic stimuli (BrdUrd index � 3 � 1%; Fig. 4B Upper
Left). In sharp contrast, SIP1 shRNA-transfected cells lost

Fig. 3. C3 clonal cells undergo telomere-dependent replicative senescence
associated with SIP1 expression and hTERT repression. SIP1 expression is lost,
whereas hTERT is induced in primary HCC tumors. (A) Genomic DNAs from
parental Huh7 and immortal C1 cells display long telomeres, whereas C3
telomeres are progressively shortened in presenescent and senescent stages,
respectively. Equal amounts of genomic DNAs were blotted with a telomere
repeat probe. C. Low, short telomere control DNA. (B) Presenescent and
senescent C3 cells have lost telomerase activity, as measured by TRAP assay.
Telomerase activity was shown as % value of test samples (� SD) compared to
‘‘high positive’’ control sample. (C) hTERT expression as tested by RT-PCR was
high in immortal C1, but decreased to weakly detectable levels in C3 cells.
Inversely, SIP1 expression tested by RT-PCR was undetectable in C1 cells, but
showed a progressive increase in presenescent and senescent C3 cells. (D)
Inverse relationship between SIP1 and hTERT expression was confirmed with
another senescence-programmed Huh7 clone named G12 (for SABG and
BrdUrd assays, see Fig. 7). hTERT expression in G12 showed a slight decrease in
presenescent stage, followed by a loss at the onset of senescence. Inversely,
the expression of SIP1 gene was weakly positive in presenescent G12, but
highly positive in senescent G12 cells. C1 was used as control. PS, presenescent;
S, senescent; I, immortal. (E) Negative correlation between hTERT and SIP1
expression in primary tumors (T) and nontumor liver tissues (NT).
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SIP1 expression and up-regulated hTERT transcripts (Fig. 4A,
day 30). Furthermore, SIP1-inactivated cells escaped senes-
cence, as evidenced with 70 � 9% BrdUrd index (Fig. 4B Upper
Right). Morphologically, SIP1 shRNA-transfected cells formed
proliferating clusters, whereas cells transfected with control
plasmid displayed hallmarks of senescence such as scattering,
enlargement, and multiple nuclei (Fig. 4B Lower). Twelve
independent clones were selected from SIP1 shRNA-
transfected C3 cells. All but one of these clones have per-
formed so far �15 PD beyond the expected senescence barrier
(data not shown). As an additional confirmatory assay, C3 cells
were transfected with the puromycin-selectable pSUPER.puro-
based SIP1 shRNA vector and subjected to puromycin selec-
tion. SIP1 shRNA-transfected cells survived and formed large
number of colonies after 30 days of puromycin selection. In
contrast, no surviving colony was obtained from cells trans-
fected with the control plasmid, as expected (Fig. 4C).

Discussion
Our observations provide experimental evidence for the gen-
eration of senescence-arrested clones from immortal HCC and
breast cancer cell lines. Detailed analysis of clones from
HCC-derived Huh7 cell line further indicates that what we
observe is a replicative senescence, but not a stress-induced
premature senescence-like arrest. Clonal C3 cells displayed
telomerase repression, progressive telomere shortening, and
permanent growth arrest after �80 PD with senescence-
associated morphological changes and positive SABG stain-
ing. Similar changes have also been observed with G12,
another independently derived clone. Thus, we demonstrate
that immortal cancer cells have the intrinsic ability to repro-
gram the replicative senescence. As expected, this shift in cell
fate results in a complete loss of tumorigenicity. The replica-
tive senescence arrest that we identified with clonal C3 cells
was not accompanied with the induction of the p53, p16INK4a,
p14ARF, or p21Cip1 gene. The nonparticipation of p53 and
p16INK4a to the senescence arrest described here was expected,
in the light of published observations showing that Huh7 cells
express a mutant p53 protein (20–22) and they are deficient in
p16INK4a expression (23). Although the levels of p21Cip1 protein
displayed a slight increase in C3 cells, this was not related to
senescence arrest, as early passage proliferating C3 cells also
displayed this slight increase (Fig. 5). The early loss of hTERT
expression in this clone could contribute to early p21Cip1

up-regulation, because hTERT is known to down-regulate
p21Cip1 promoter activity (26). p53, p16INK4a, p14ARF, and
p21Cip1 form a group of replicative senescence-related cell
cycle checkpoint genes. The lack of induction of these genes in
senescence-arrested C3 cells clearly indicates that there are
additional genes involved in senescence arrest in these tumor-
derived cells.

The loss of hTERT expression in senescence programmed
clones prompted us to analyze the expression of genes that have
been implicated in hTERT regulation. Among seven candidate
genes studied, only one, the SIP1 gene, displayed a differential
expression between immortal and senescence-programmed
clones. This gene has been identified as a mediator of TGF-�-
regulated repression of hTERT expression in a breast cancer cell
line, although it was not effective in an osteosarcoma cell line
(14). In our studies, SIP1 was not expressed in immortal hTERT-
expressing C1 clone, but expressed in senescence-programmed
hTERT-repressed C3 and G12 clones (Fig. 3 B and C). Further-
more, experimental depletion of SIP1 transcripts resulted in
hTERT up-regulation in C3 clonal cells (Fig. 4A). This effect has
been confirmed by using SKHep1, another HCC cell line (data
not shown). Thus, we demonstrate that the SIP1 gene acts as an
hTERT repressor in HCC cells. More importantly, we also
showed the bypass of senescence arrest after functional inacti-
vation of SIP expression by shRNA in senescence-programmed
C3 clonal cells. In contrast to C3 cells transfected with a control
plasmid, SIP1 shRNA-treated cells displayed continued prolif-
eration beyond PD �80 as evidenced by 70% BrdUrd incorpo-
ration index, and formation of large number of colonies. Se-
lected shRNA-transfected clones from these experiments have
already performed �15 PD beyond the senescence barrier. Thus,
our findings indicate that the functional inactivation of SIP1 in
senescence-programmed cancer cells is sufficient to bypass
senescent arrest.

SIP1 is a zinc finger and homeodomain containing tran-
scription factor that exerts a repressive activity by binding to
CACCT sequences in regulatory elements of target genes (12,
27). The SIP1 gene is expressed at high levels in almost all
human somatic tissues tested, including liver (28). Therefore,
we also performed comparative analysis of hTERT and SIP1
expression in nontumor liver and primary HCC tissues. SIP1

Fig. 4. ShRNA-mediated down-regulation of endogeneous SIP1 transcripts
releases hTERT repression and rescues C3 cells from senescence arrest. (A) At
day 5 after transfection, SIP1 shRNA-transfected cells (Sh-SIP1) show decreased
expression of SIP1 and weak up-regulation of hTERT expression. At day 30, the
expression of SIP1 is lost completely, and hTERT expression is stronger. (B) Cells
transfected with empty vector (Control) are senescence-arrested as evidenced
by resistance to BrdUrd incorporation (Upper Left) and morphological
changes (Lower Left), but cells transfected with SIP1 shRNA vector (Sh-SIP1)
escaped senescence arrest as indicated by high BrdUrd index (Upper Right)
and proliferating cell clusters (Lower Right). (C) Colony-forming assay shows
that C3 cells formed large number of colonies following puromycin selection
after transfection with a puromycin-resistant SIP1-shRNA-expressing plasmid
(Right), whereas cells transfected with empty vector did not survive (Left).
SIP1 shRNA was expressed by using either G-418-resistance plasmid
pSuper.retro.neo�GFP (A and B) or puromycin-resistance plasmid pSUPER.
puro (C). Presenescent C3 cells at PD 75 were transfected with either SIP1
shRNA-expressing or empty plasmid vectors, maintained in culture in the
presence of appropriate selection media and tested at days 5 (A) and 30 (A–C).
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was strongly positive in nontumor liver samples, but its ex-
pression was significantly decreased in corresponding HCC
samples. Inversely, hTERT expression was negative or low in
nontumor liver samples, but highly positive in HCC tumors
(Fig. 3E). We also detected complete loss of SIP1 expression
in 5 of 14 (36%) of HCC cell lines (data not shown). Taken
together with in vitro studies, these observations strongly
suggest that SIP1 acts as a tumor suppressor gene in HCC.
Although SIP1, as a repressor of E-cadherin promoter, has
been suggested to be a promoter of invasion in malignant
epithelial tumors (29), a tumor suppressive activity by the
repression of hTERT and inhibition of senescence arrest is not
precluded.

Hepatocellular carcinoma is one of the most common
cancers worldwide. Liver cirrhosis is the major etiology of this
tumor with limited therapeutic options (30, 31). Telomere
shortening and senescence play a major role in liver cirrhosis,
from which the neoplastic HCC cells emerge with high rates of
telomerase reactivation (32). Furthermore, p53 and p16INK4a

are the most frequently inactivated genes in these tumors. This
fact enhances the importance of our findings for potential
therapeutic applications of replicative senescence program-
ming in HCC.

Methods
Tissues, Cells, and Clones. Snap-frozen HCC and nontumor liver
tissues were used. HCC and breast cancer cell lines T-47D
(ATCC) and BT-474 (ATCC) were cultivated as described (33).
hTERT-HME cells (Clontech) were cultivated in DMEM�
Ham’s F-12 (Biochrom) containing insulin (3.5 �g�ml), EGF
(0.1 ng�ml), hydrocortison (0.5 �g�ml), and 10% FBS (Bio-
chrom). Huh7- and Hep3B-derived isogenic clones were ob-
tained by either G-418 selection after transfection with neomy-
cin-resistance pcDNA3.1 (Invitrogen) or pEGFP-N2 (Clontech)
plasmids, or by low-density cloning. Huh7-derived isogenic
clones C1 and C3 were obtained with pCDNA3.1, and G12 with
pEGFP-N2. Huh7-derived C11, and Hep3B-derived 3B-C6,
3B-C11 and 3B-C13 were obtained by low-density cloning. Cells
transfected with calcium phosphate�DNA-precipitation method
were cultivated in the presence of geneticin G-418 sulfate (500
�g�ml; GIBCO), and isolated single cell-derived colonies were
picked up by using cloning cylinders and expanded in the
presence of 200 �g�ml geneticin G-418 sulfate. For low-density
cloning, cells were plated at 30 cells per cm2 and single-cell
derived colonies were expanded. Initial cell stocks were pre-
pared when total number of cells became 1–3 � 107, and the
number of accumulated population doubling (PD) at this stage
was estimated to be 24, assuming that the progeny of the initial
colony-forming cells performed at least 24 successive cell divi-
sions until that step. Subsequent passages were performed every
4–7 days, and the number of additional PD was determined by
using a described protocol (34).

Low-Density Clonogenic Assay. Cells (30–50 per cm2) were plated
in six-well plates and grown 1–3 weeks to obtain isolated colonies
formed with 100–1,000 cells. The medium was changed every 4
days, and colonies were subjected to SABG staining (see below).

In Vivo Studies. Cells were injected s.c. into CD-1 nude mice
(Charles River Breeding Laboratory). Tumors and nontumori-
genic cells at the injection sites were collected at day 35 and
analyzed directly or after in vitro culture by SABG assay (see
below). These experiments have been approved by the Bilkent
University Animal Ethics Committee.

SABG Assay. SABG activity was detected by using a described
protocol (15). After DAPI or eosin counterstaining, SABG-
positive and negative cells were identified and counted.

BrdUrd Incorporation Assay. Subconfluent cells were labeled with
BrdUrd for 24 h in freshly added culture medium and tested as
described (33), using anti-BrdUrd antibody (Dako) followed by
tetramethylrhodamine B isothiocyanate-labeled secondary an-
tibody (Sigma). DAPI (Sigma) was used for counterstaining.

Immunoblotting. Antibodies against cyclin D1, CDK4, CDK2,
p21Cip1, pRb (all from Santa Cruz Biotechnology), cyclin E
(Transduction), cyclin A (Abcam), p16INK4a (Abcam), p53 (clone
6B10; ref. 35), and calnexin (Sigma) were used for immunoblot-
ting as described (33).

RT-PCR. RT-PCR expression analysis was performed as described
(33), using primers listed in Table 1, which is published as
supporting information on the PNAS web site.

TRAP and Telomere Length Assays. Telomerase activity and telo-
mere length assays were performed by using TeloTAGGG
Telomerase PCR ELISAPLUS and TeloTAGGG Telomere
Length Assay (Roche Diagnostics), following kit instructions.

shRNA. SIP1-directed shRNA was designed according to a pre-
viously described effective siRNA sequence (14) using the
pSUPER RNAi system instructions (Oligoengine) and cloned
into pSuper.retro.neo�GFP and pSUPER.puro (Oligoengine),
respectively. SIP1 shRNA-encoding sequence was inserted
by using 5�-GATCCCCCTGCCATCTGATCCGCTCTT-
TCAAGAGAAGAGCGGATCAGATGGCAGTTTTTA-3�
(sense) and 5�-AGCTTAAAAACTGCCATCTGATCCGC-
TCTTCTCTTGAAAG AGCGGATCAG ATGGCAGGGG-3�
(antisense) oligonucleotides.

The integrity of the inserted shRNA-coding sequence has been
confirmed by nucleic acid sequencing of recombinant plasmids.
Clone C3 cells were transfected with calcium phosphate precipita-
tion method, using either pSuper.retro.neo�GFP-based or pSU-
PER.puro-based SIP1 shRNA expression plasmid, and cells were
maintained in the presence of 500 �g�ml geneticin G-418 sulfate
and 2 �g�ml puromycin (Sigma), respectively. Empty vectors were
used as control. Media changed every 3 days, and cells were tested
at days 5 and 30.
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