On a transformation between hierarchies of integrable equations

Metin Gürses ${ }^{\text {a }}$, Kostyantyn Zheltukhin ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Sciences, Middle East Technical University, 06531 Ankara, Turkey

Received 24 May 2005; received in revised form 17 October 2005; accepted 18 October 2005
Available online 24 October 2005
Communicated by A.P. Fordy

Abstract

A transformation between a hierarchy of integrable equations arising from the standard R-matrix construction on the algebra of differential operators and a hierarchy of integrable equations arising from a deformation of the standard R-matrix is given. © 2005 Elsevier B.V. All rights reserved.

PACS: 02.30.Ik
Keywords: Integrable systems; Symmetries; Transformation

In a recent paper [1] a new hierarchy of integrable equations has been constructed through the deformation of a standard R-matrix on the algebra of pseudo-differential operators. We give a transformation between the hierarchy constructed in [1] and a hierarchy obtained through a standard R-matrix. The transformation is between corresponding vector fields (i.e. symmetries).

Let \mathfrak{g} be the Lie algebra of pseudo-differential operators

$$
\begin{equation*}
\mathfrak{g}=\left\{\sum_{i \in \mathbf{Z}} u_{i}(x) D^{i}\right\} \tag{1}
\end{equation*}
$$

with the commutator $\left[L_{1}, L_{2}\right]=L_{1} L_{2}-L_{2} L_{1}$. The algebra \mathfrak{g} can be decomposed into Lie subalgebras $\mathfrak{g}_{\geqslant k}=\left\{\sum_{i \geqslant k} u_{i}(x) D^{i}\right\}$ and, $\mathfrak{g}_{i<k}=\left\{\sum_{i<k} u_{i}(x) D^{i}\right\}$ where $k=0,1,2$ (only for such k one has Lie subalgebras). The standard R-matrix is given by $R_{k}=\frac{1}{2}\left(P_{\geqslant k}-P_{<k}\right)$, where $P_{\geqslant k}$ and $P_{<k}$ are projection operators on $\mathfrak{g}_{\geqslant k}$ and $\mathfrak{g}_{<k}$, respectively. The Lax hierarchy is

$$
\begin{equation*}
L_{t_{n}}=\left[R\left(L^{n}\right), L\right]=\left[\left(L^{n}\right)_{\geqslant k}, L\right], \quad L \in \mathfrak{g}, n=1,2, \ldots \tag{2}
\end{equation*}
$$

The above equations involves infinitely many fields. To have a consistent closed equations with a finite number of fields we restrict the Lax operators as follows

$$
\begin{array}{ll}
k=0 & L_{0}=D^{N}+u_{N-2} D^{N-2}+\cdots+u_{1} D+u_{0} \\
k=1 & L_{1}=D^{N}+u_{N-1} D^{N-1}+\cdots+u_{0}+D^{-1} u_{-1} \\
k=2 & L_{2}=u_{N} D^{N}+u_{N-1} D^{N-1}+\cdots+D^{-1} u_{-1}+D^{-2} u_{-2} \tag{5}
\end{array}
$$

See [2] for more details on the R-matrix formalism.
Recently in [1] the deformations of the above R-matrices were introduced. Most of the introduced deformed R-matrices do not lead to the new hierarchies. A new hierarchy is obtained through a deformation of R-matrix $R_{1}=\frac{1}{2}\left(P_{\geqslant 1}-P_{<1}\right)$. Let

[^0]$P_{=i}(L)=(L)_{=i}$ denotes coefficient of D^{i} in the expansion of $L \in \mathfrak{g}$. Then the deformed R-matrix is
\[

$$
\begin{equation*}
\tilde{R}=\frac{1}{2}\left(P_{\geqslant 1}-P_{<1}\right)+\varepsilon P_{=0}(\cdot) D \tag{6}
\end{equation*}
$$

\]

where ε is a deformation parameter. The hierarchy is

$$
\begin{equation*}
L_{t_{n}}=\left[\tilde{R}\left(L^{n}\right), L\right], \quad L \in \mathfrak{g}, n=1,2, \ldots \tag{7}
\end{equation*}
$$

The above equations involves infinitely many fields, to have a consistent closed equation with finite number of fields we restrict the Lax operator as $\tilde{L}=u_{N} D^{N}+u_{N-1} D^{N-1}+\cdots+u_{0}+D^{-1} u_{-1}$. Then the new hierarchy is

$$
\begin{equation*}
\tilde{L}_{t_{n}}=\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}+\epsilon\left(\tilde{L}^{n}\right)_{=0} D, \tilde{L}\right], \quad n=1,2, \ldots, \tag{8}
\end{equation*}
$$

note that $\tilde{L}=\left.L_{2}\right|_{u_{-2}=0}$. See [1] for more details.
In this work we shall show that the new hierarchy (8) is related to the hierarchy corresponding to R-matrix R_{2} with reduced Lax operator $\tilde{L}=\left.L_{2}\right|_{u_{-2}=0}$. So we relate hierarchy (8) to the hierarchy

$$
\begin{equation*}
\tilde{L}_{t_{n}}=\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right], \quad n=1,2, \ldots \tag{9}
\end{equation*}
$$

We note that both hierarchies have the same Lax operator.
The construction of the transformation is based on expressing $\left(\tilde{L}^{n}\right)_{=1}$ and $\left(\tilde{L}^{n}\right)_{=0}$ in terms of coefficients of $\left[\left(\tilde{L}^{n}\right) \geqslant 2, \tilde{L}\right]$, for $n \in \mathbf{N}$.

Proposition 1. Let $\tilde{L}=\left.L_{2}\right|_{u_{-2}=0}$, then

$$
\begin{align*}
& \left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right]\right)_{=N}=-\left(\left[\left(\tilde{L}^{n}\right)_{=1} D, \tilde{L}\right]\right)_{=N} \tag{10}\\
& \left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}, \tilde{L}\right]\right)_{=N-1}=-\left(\left[\left(\tilde{L}^{n}\right)_{=0}, \tilde{L}\right]\right)_{=N-1} \tag{11}
\end{align*}
$$

for all $N(N$ is order of operator $\tilde{L})$.
Proof. Comparing powers of D on the right- and left-hand side of the equality

$$
\begin{equation*}
\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}, \tilde{L}\right]=-\left[\left(\tilde{L}^{n}\right)_{<1}, \tilde{L}\right] \tag{12}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}, \tilde{L}\right]\right)_{=N}=0 \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right]\right)_{=N}=-\left(\left[\left(\tilde{L}^{n}\right)_{=1} D, \tilde{L}\right]\right)_{=N} \tag{14}
\end{equation*}
$$

In the same way, comparing powers of D on the right- and left-hand side of the equality

$$
\begin{equation*}
\left[\left(\tilde{L}^{n}\right)_{\geqslant 0}, \tilde{L}\right]=-\left[\left(\tilde{L}^{n}\right)_{<0}, \tilde{L}\right] \tag{15}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 0}, \tilde{L}\right]\right)_{=N-1}=0 \tag{16}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}, \tilde{L}\right]\right)_{=N-1}=-\left(\left[\left(\tilde{L}^{n}\right)_{=0}, \tilde{L}\right]\right)_{=N-1} \tag{17}
\end{equation*}
$$

The above equalities (10) and (11) allows us to express $\left(\tilde{L}^{n}\right)_{=1}$ and $\left(\tilde{L}^{n}\right)_{=0}$ in terms of coefficients of $\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right]$ for all N.
Let us give an example for $N=1$.
Proposition 2. Consider the Lax operator $\tilde{L}=u D+v+D^{-1} w$. Let

$$
\begin{equation*}
\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right]=f_{n} D+g_{n}+D^{-1} h_{n} \tag{18}
\end{equation*}
$$

which gives the hierarchy (9) with the standard R-matrix and

$$
\begin{equation*}
\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}+\left(\tilde{L}^{n}\right)_{=0} D, \tilde{L}\right]=p_{n} D+q_{n}+D^{-1} r_{n} \tag{19}
\end{equation*}
$$

which gives the hierarchy (8) with the deformed R-matrix, $n=1,2, \ldots$ The coefficients $f_{n}, g_{n}, h_{n}, p_{n}, q_{n}, r_{n}$ are functions of u, v, w and their derivatives. Then

$$
\left(p_{n}, q_{n}, r_{n}\right)^{T}=\mathcal{T}\left(f_{n}, g_{n}, h_{n}\right)^{T}
$$

where

$$
\mathcal{T}=\left(\begin{array}{ccc}
\varepsilon u_{x} D^{-1} v_{x} D^{-1} u^{-2}-\varepsilon u v_{x} D^{-1} u^{-2} & \varepsilon u_{x} D^{-1} u^{-1}-\varepsilon & 0 \tag{20}\\
u v_{x} D^{-1} u^{-2}+\varepsilon v_{x} D^{-1} v_{x} D^{-1} u^{-2} & 1+\varepsilon v_{x} D^{-1} u^{-1} & 0 \\
\left((u w)_{x}+\varepsilon w v_{x}\right) D^{-1} u^{-2}+\varepsilon w_{x} D^{-1} v_{x} D^{-1} u^{-2}+w u^{-1} & \varepsilon w u^{-1}+\varepsilon w_{x} D^{-1} u^{-1} & 1
\end{array}\right) .
$$

Proof. Let $\left(\tilde{L}^{n}\right)_{=1}=A_{n}$ and $\left(\tilde{L}^{n}\right)_{=0}=B_{n}$. The equality (10) implies that

$$
\begin{equation*}
f_{n}=-\left(\left[A_{n} D, \tilde{L}\right]\right)_{=1} \tag{21}
\end{equation*}
$$

hence, we can find

$$
\begin{equation*}
A_{n}=u D^{-1} u^{-2} f_{n} \tag{22}
\end{equation*}
$$

Using the equality (11) we have

$$
\begin{equation*}
g_{n}+\left(\left[A_{n} D, \tilde{L}\right]\right)_{=0}=-\left(\left[B_{n}, \tilde{L}\right]\right)_{=0} \tag{23}
\end{equation*}
$$

hence, we can find

$$
\begin{equation*}
B_{n}=D^{-1}\left(u^{-1} g_{n}+v_{x} D^{-1} u^{-2} f_{n}\right) \tag{24}
\end{equation*}
$$

From the equality

$$
\begin{equation*}
\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}+\varepsilon\left(\tilde{L}^{n}\right)_{=0} D, \tilde{L}\right]=\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right]+\left[\left(A_{n}+\varepsilon B_{n}\right) D, \tilde{L}\right] \tag{25}
\end{equation*}
$$

we can find the transformation between the vector fields

$$
\begin{align*}
& p_{n}=u_{x} \varepsilon B_{n}-u \varepsilon B_{n, x} \\
& q_{n}=g_{n}+v_{x}\left(A_{n}+\varepsilon B_{n}\right) \\
& r_{n}=h_{n}+\left(w\left(A_{n}+\varepsilon B_{n}\right)\right)_{x} \tag{26}
\end{align*}
$$

where A_{n} and B_{n} are given by (22) and (24), respectively. Thus we obtain the transformation operator \mathcal{T} in (20).
If we apply operator \mathcal{T} to the simple symmetry $\left(u_{x}, v_{x}, w_{x}\right)^{T}$ we obtain $(0,0,0)^{T}$. Applying the operator \mathcal{T} to $(0,0,0)^{T}$ we get

$$
\left(\begin{array}{c}
p_{1} \tag{27}\\
q_{1} \\
r_{1}
\end{array}\right)=\left(\begin{array}{c}
\varepsilon\left(v u_{x}-u v_{x}+u_{x}\right) \\
u v_{x}+\varepsilon\left(v v_{x}+v_{x}\right) \\
(u w)_{x}+\varepsilon(v w)_{x}+\varepsilon w_{x}
\end{array}\right) .
$$

This is the deformed system (8) for $n=1$ (with the inclusion of the symmetry $\left(u_{x}, v_{x}, w_{x}\right)^{T}$), [1]. If we take symmetry of the hierarchy (9) corresponding to $n=2$ (this is the reduced system $[2,3]$)

$$
\left(\begin{array}{c}
f_{2} \tag{28}\\
g_{2} \\
h_{2}
\end{array}\right)=\left(\begin{array}{c}
u^{2} u_{x x}+2 u^{2} v_{x} \\
u^{2} v_{x x}+2 u(u w)_{x} \\
-\left(u^{2} w\right)_{x x}
\end{array}\right)
$$

and apply the operator \mathcal{T} to this symmetry we obtain a second symmetry of the hierarchy (8)

$$
\left(\begin{array}{c}
p_{2} \tag{29}\\
q_{2} \\
r_{2}
\end{array}\right)=\left(\begin{array}{c}
\varepsilon u_{x} v^{2}-2 \varepsilon u v v_{x}-2 \varepsilon u^{2} w_{x}-\varepsilon u^{2} v_{x x} \\
2 u u_{x} w+2 u v v_{x}+2 u^{2} w_{x}+u u_{x} v_{x}+u^{2} v_{x x}+\varepsilon v^{2} v_{x}+2 \varepsilon u v_{x} w+\varepsilon u v_{x}^{2} \\
2 u_{x} v w+2 u v_{x} w+2 u v w_{x}-u_{x}^{2} w-3 u u_{x} w_{x}-u u_{x x} w-u^{2} w_{x x} \\
+2 \varepsilon u_{x} w^{2}+2 \varepsilon v v_{x} w+\varepsilon u_{x} v_{x} w+\varepsilon v^{2} w_{x}+4 \varepsilon u w w_{x}+\varepsilon u v_{x} w_{x}+\varepsilon u v_{x x} w
\end{array}\right)
$$

Remark. In the example above we have constructed the transformation \mathcal{T} for hierarchies with Lax operator of order one. In the same way we can construct the transformation between hierarchies with Lax operator of any order N. The operator \mathcal{T} is not a recursion operator. It maps the symmetries of one system of evolution equations to symmetries of another system of evolution equations.

Acknowledgements

This work is partially supported by the Turkish Academy of Sciences and by the Scientific and Technical Research Council of Turkey.

References

[1] B.M. Szablikowski, M. Blaszak, J. Math. Phys. 46 (2005) 042702.
[2] M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998.
[3] M. Blaszak, Rep. Math. Phys. 48 (2001) 27.

[^0]: * Corresponding author.

 E-mail addresses: gurses@fen.bilkent.edu.tr (M. Gürses), zheltukh@metu.edu.tr (K. Zheltukhin).

