

Available online at www.sciencedirect.com

PHYSICS LETTERS A

Physics Letters A 351 (2006) 37-40

www.elsevier.com/locate/pla

On a transformation between hierarchies of integrable equations

Metin Gürses^a, Kostyantyn Zheltukhin^{b,*}

^a Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey

^b Department of Mathematics, Faculty of Sciences, Middle East Technical University, 06531 Ankara, Turkey

Received 24 May 2005; received in revised form 17 October 2005; accepted 18 October 2005

Available online 24 October 2005

Communicated by A.P. Fordy

Abstract

A transformation between a hierarchy of integrable equations arising from the standard *R*-matrix construction on the algebra of differential operators and a hierarchy of integrable equations arising from a deformation of the standard *R*-matrix is given. © 2005 Elsevier B.V. All rights reserved.

PACS: 02.30.Ik

Keywords: Integrable systems; Symmetries; Transformation

In a recent paper [1] a new hierarchy of integrable equations has been constructed through the deformation of a standard R-matrix on the algebra of pseudo-differential operators. We give a transformation between the hierarchy constructed in [1] and a hierarchy obtained through a standard R-matrix. The transformation is between corresponding vector fields (i.e. symmetries).

Let g be the Lie algebra of pseudo-differential operators

$$\mathfrak{g} = \left\{ \sum_{i \in \mathbf{Z}} u_i(x) D^i \right\}$$
(1)

with the commutator $[L_1, L_2] = L_1L_2 - L_2L_1$. The algebra \mathfrak{g} can be decomposed into Lie subalgebras $\mathfrak{g}_{\geq k} = \{\sum_{i \geq k} u_i(x)D^i\}$ and, $\mathfrak{g}_{i < k} = \{\sum_{i < k} u_i(x)D^i\}$ where k = 0, 1, 2 (only for such k one has Lie subalgebras). The standard R-matrix is given by $R_k = \frac{1}{2}(P_{\geq k} - P_{< k})$, where $P_{\geq k}$ and $P_{< k}$ are projection operators on $\mathfrak{g}_{\geq k}$ and $\mathfrak{g}_{< k}$, respectively. The Lax hierarchy is

$$L_{t_n} = \left[R\left(L^n\right), L \right] = \left[\left(L^n\right)_{\geqslant k}, L \right], \quad L \in \mathfrak{g}, \ n = 1, 2, \dots$$

$$\tag{2}$$

The above equations involves infinitely many fields. To have a consistent closed equations with a finite number of fields we restrict the Lax operators as follows

$$k = 0 \quad L_0 = D^N + u_{N-2}D^{N-2} + \dots + u_1D + u_0, \tag{3}$$

$$k = 1 \quad L_1 = D^N + u_{N-1}D^{N-1} + \dots + u_0 + D^{-1}u_{-1}, \tag{4}$$

$$k = 2 \quad L_2 = u_N D^N + u_{N-1} D^{N-1} + \dots + D^{-1} u_{-1} + D^{-2} u_{-2}.$$
(5)

See [2] for more details on the *R*-matrix formalism.

Recently in [1] the deformations of the above *R*-matrices were introduced. Most of the introduced deformed *R*-matrices do not lead to the new hierarchies. A new hierarchy is obtained through a deformation of *R*-matrix $R_1 = \frac{1}{2}(P_{\ge 1} - P_{<1})$. Let

^c Corresponding author.

E-mail addresses: gurses@fen.bilkent.edu.tr (M. Gürses), zheltukh@metu.edu.tr (K. Zheltukhin).

 $^{0375\}text{-}9601/\$$ – see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physleta.2005.10.051

 $P_{=i}(L) = (L)_{=i}$ denotes coefficient of D^i in the expansion of $L \in \mathfrak{g}$. Then the deformed *R*-matrix is

$$\tilde{R} = \frac{1}{2}(P_{\ge 1} - P_{<1}) + \varepsilon P_{=0}(\cdot)D,$$
(6)

where ε is a deformation parameter. The hierarchy is

$$L_{t_n} = \left[\tilde{R}(L^n), L \right], \quad L \in \mathfrak{g}, \ n = 1, 2, \dots$$
(7)

The above equations involves infinitely many fields, to have a consistent closed equation with finite number of fields we restrict the Lax operator as $\tilde{L} = u_N D^N + u_{N-1} D^{N-1} + \dots + u_0 + D^{-1} u_{-1}$. Then the new hierarchy is

$$\tilde{L}_{t_n} = \left[\left(\tilde{L}^n \right)_{\geq 1} + \epsilon \left(\tilde{L}^n \right)_{=0} D, \tilde{L} \right], \quad n = 1, 2, \dots,$$
(8)

note that $\tilde{L} = L_2|_{u_{-2}=0}$. See [1] for more details.

In this work we shall show that the new hierarchy (8) is related to the hierarchy corresponding to *R*-matrix R_2 with reduced Lax operator $\tilde{L} = L_2|_{u_2=0}$. So we relate hierarchy (8) to the hierarchy

$$\tilde{L}_{t_n} = \left[\left(\tilde{L}^n \right)_{\geq 2}, \tilde{L} \right], \quad n = 1, 2, \dots$$
(9)

We note that both hierarchies have the same Lax operator.

The construction of the transformation is based on expressing $(\tilde{L}^n)_{=1}$ and $(\tilde{L}^n)_{=0}$ in terms of coefficients of $[(\tilde{L}^n)_{\geq 2}, \tilde{L}]$, for $n \in \mathbb{N}$.

Proposition 1. Let $\tilde{L} = L_2|_{u_{-2}=0}$, then

$$\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 2},\tilde{L}\right]\right)_{=N}=-\left(\left[\left(\tilde{L}^{n}\right)_{=1}D,\tilde{L}\right]\right)_{=N},\tag{10}$$

$$\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 1}, \tilde{L}\right]\right)_{=N-1} = -\left(\left[\left(\tilde{L}^{n}\right)_{=0}, \tilde{L}\right]\right)_{=N-1}$$
(11)

for all N (N is order of operator \tilde{L}).

Proof. Comparing powers of D on the right- and left-hand side of the equality

$$\left[\left(\tilde{L}^{n}\right)_{\geq 1}, \tilde{L}\right] = -\left[\left(\tilde{L}^{n}\right)_{<1}, \tilde{L}\right],\tag{12}$$

we have

$$\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 1},\tilde{L}\right]\right)_{=N}=0.$$
(13)

Then

$$\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right]\right)_{=N} = -\left(\left[\left(\tilde{L}^{n}\right)_{=1}D, \tilde{L}\right]\right)_{=N}.$$
(14)

In the same way, comparing powers of D on the right- and left-hand side of the equality

$$\left[\left(\tilde{L}^{n}\right)_{\geq 0}, \tilde{L}\right] = -\left[\left(\tilde{L}^{n}\right)_{<0}, \tilde{L}\right]$$

$$\tag{15}$$

we have

$$\left(\left[\left(\tilde{L}^{n}\right)_{\geqslant 0}, \tilde{L}\right]\right)_{=N-1} = 0.$$
(16)

So,

$$\left(\left[\left(\tilde{L}^{n}\right)_{\geq 1}, \tilde{L}\right]\right)_{=N-1} = -\left(\left[\left(\tilde{L}^{n}\right)_{=0}, \tilde{L}\right]\right)_{=N-1}.$$
(17)

The above equalities (10) and (11) allows us to express $(\tilde{L}^n)_{=1}$ and $(\tilde{L}^n)_{=0}$ in terms of coefficients of $[(\tilde{L}^n)_{\geq 2}, \tilde{L}]$ for all N. \Box

Let us give an example for N = 1.

Proposition 2. Consider the Lax operator $\tilde{L} = uD + v + D^{-1}w$. Let

$$\left[\left(\tilde{L}^n\right)_{\geqslant 2}, \tilde{L}\right] = f_n D + g_n + D^{-1} h_n,\tag{18}$$

which gives the hierarchy (9) with the standard R-matrix and

$$\left[\left(\tilde{L}^{n} \right)_{\geq 1} + \left(\tilde{L}^{n} \right)_{=0} D, \tilde{L} \right] = p_{n} D + q_{n} + D^{-1} r_{n}, \tag{19}$$

38

which gives the hierarchy (8) with the deformed R-matrix, n = 1, 2, ... The coefficients f_n , g_n , h_n , p_n , q_n , r_n are functions of u, v, w and their derivatives. Then

$$(p_n, q_n, r_n)^T = \mathcal{T}(f_n, g_n, h_n)^T$$

where

$$\mathcal{T} = \begin{pmatrix} \varepsilon u_x D^{-1} v_x D^{-1} u^{-2} - \varepsilon u v_x D^{-1} u^{-2} & \varepsilon u_x D^{-1} u^{-1} - \varepsilon & 0\\ u v_x D^{-1} u^{-2} + \varepsilon v_x D^{-1} v_x D^{-1} u^{-2} & 1 + \varepsilon v_x D^{-1} u^{-1} & 0\\ ((uw)_x + \varepsilon w v_x) D^{-1} u^{-2} + \varepsilon w_x D^{-1} v_x D^{-1} u^{-2} + w u^{-1} & \varepsilon w u^{-1} + \varepsilon w_x D^{-1} u^{-1} & 1 \end{pmatrix}.$$
(20)

Proof. Let $(\tilde{L}^n)_{=1} = A_n$ and $(\tilde{L}^n)_{=0} = B_n$. The equality (10) implies that

$$f_n = -([A_n D, \tilde{L}])_{=1},$$
(21)

hence, we can find

$$A_n = u D^{-1} u^{-2} f_n. (22)$$

Using the equality (11) we have

$$g_n + ([A_n D, \tilde{L}])_{=0} = -([B_n, \tilde{L}])_{=0},$$
(23)

hence, we can find

$$B_n = D^{-1} \left(u^{-1} g_n + v_x D^{-1} u^{-2} f_n \right).$$
(24)

From the equality

$$\left[\left(\tilde{L}^{n}\right)_{\geqslant 1} + \varepsilon\left(\tilde{L}^{n}\right)_{=0}D, \tilde{L}\right] = \left[\left(\tilde{L}^{n}\right)_{\geqslant 2}, \tilde{L}\right] + \left[\left(A_{n} + \varepsilon B_{n}\right)D, \tilde{L}\right]$$

$$\tag{25}$$

we can find the transformation between the vector fields

.

$$p_n = u_x \varepsilon B_n - u \varepsilon B_{n,x},$$

$$q_n = g_n + v_x (A_n + \varepsilon B_n),$$

$$r_n = h_n + (w(A_n + \varepsilon B_n))_x,$$
(26)

where A_n and B_n are given by (22) and (24), respectively. Thus we obtain the transformation operator \mathcal{T} in (20).

If we apply operator \mathcal{T} to the simple symmetry $(u_x, v_x, w_x)^T$ we obtain $(0, 0, 0)^T$. Applying the operator \mathcal{T} to $(0, 0, 0)^T$ we get

$$\begin{pmatrix} p_1 \\ q_1 \\ r_1 \end{pmatrix} = \begin{pmatrix} \varepsilon(vu_x - uv_x + u_x) \\ uv_x + \varepsilon(vv_x + v_x) \\ (uw)_x + \varepsilon(vw)_x + \varepsilon w_x \end{pmatrix}.$$
(27)

This is the deformed system (8) for n = 1 (with the inclusion of the symmetry $(u_x, v_x, w_x)^T$), [1]. If we take symmetry of the hierarchy (9) corresponding to n = 2 (this is the reduced system [2,3])

$$\begin{pmatrix} f_2 \\ g_2 \\ h_2 \end{pmatrix} = \begin{pmatrix} u^2 u_{xx} + 2u^2 v_x \\ u^2 v_{xx} + 2u(uw)_x \\ -(u^2 w)_{xx} \end{pmatrix}$$
(28)

and apply the operator \mathcal{T} to this symmetry we obtain a second symmetry of the hierarchy (8)

$$\begin{pmatrix} p_2 \\ q_2 \\ r_2 \end{pmatrix} = \begin{pmatrix} \varepsilon u_x v^2 - 2\varepsilon u v v_x - 2\varepsilon u^2 w_x - \varepsilon u^2 v_{xx} \\ 2u u_x w + 2u v v_x + 2u^2 w_x + u u_x v_x + u^2 v_{xx} + \varepsilon v^2 v_x + 2\varepsilon u v_x w + \varepsilon u v_x^2 \\ 2u_x v w + 2u v_x w + 2u v w_x - u_x^2 w - 3u u_x w_x - u u_{xx} w - u^2 w_{xx} \\ + 2\varepsilon u_x w^2 + 2\varepsilon v v_x w + \varepsilon u_x v_x w + \varepsilon v^2 w_x + 4\varepsilon u w w_x + \varepsilon u v_x w_x + \varepsilon u v_{xx} w \end{pmatrix}.$$

$$(29)$$

Remark. In the example above we have constructed the transformation \mathcal{T} for hierarchies with Lax operator of order one. In the same way we can construct the transformation between hierarchies with Lax operator of any order N. The operator \mathcal{T} is not a recursion operator. It maps the symmetries of one system of evolution equations to symmetries of another system of evolution equations.

Acknowledgements

This work is partially supported by the Turkish Academy of Sciences and by the Scientific and Technical Research Council of Turkey.

References

- [1] B.M. Szablikowski, M. Blaszak, J. Math. Phys. 46 (2005) 042702.
- [2] M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998.
- [3] M. Blaszak, Rep. Math. Phys. 48 (2001) 27.