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Abstract—This paper proposes a computationally efficient
nondata-aided maximum a posteriori (MAP) channel-estimation
algorithm focusing on the space-frequency (SF) transmit diversity
orthogonal frequency division multiplexing (OFDM) transmission
through frequency-selective channels. The proposed algorithm
properly averages out the data sequence and requires a convenient
representation of the discrete multipath fading channel based on
the Karhunen–Loeve (KL) orthogonal expansion and estimates
the complex channel parameters of each subcarrier iteratively,
using the expectation maximization (EM) method. To further
reduce the computational complexity of the proposed MAP al-
gorithm, the optimal truncation property of the KL expansion
is exploited. The performance of the MAP channel estimator is
studied based on the evaluation of the modified Cramer–Rao
bound (CRB). Simulation results confirm the proposed theoretical
analysis and illustrate that the proposed algorithm is capable of
tracking fast fading and improving overall performance.

Index Terms—Expectation maximization (EM) algorithm, max-
imum a posteriori (MAP) channel estimation, orthogonal fre-
quency division multiplexing (OFDM) systems, space-frequency
coding.

I. INTRODUCTION

T RADITIONAL wireless technologies are not very well
suited to meet the demanding requirements of providing

very high data rates with ubiquity and mobility. Given the
scarcity and exorbitant cost of the radio spectrum, such data
rates dictate the need for extremely high spectral efficient
coding and modulation schemes [1]. The combined application
of transmit-antenna diversity and orthogonal frequency division
multiplexing (OFDM) modulation appears to be capable of
enabling the types of capacities and data rates needed for
broadband wireless services [1], [2].

Transmit-antenna diversity has been exploited recently to
develop high-performance space-time/frequency codes and

Manuscript received August 8, 2003; revised June 17, 2004 and August 2,
2005. This work was conducted within the NEWCOM Network of Excellence
in Wireless COMmunications funded through the EC Sixth Framework Pro-
gramme and was supported in part by the Research Fund of Istanbul University
under Projects 220/29042004, UDP-599/28042005, and UDP-599/28072005,
and The Scientific and Technological Research Council of Turkey (TUBITAK)
under Grant 104E166. The review of this paper was coordinated by Dr. E.
Larsson.
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simple maximum likelihood (ML) decoders for transmission
over flat fading channels [3]–[5]. Unfortunately, their practical
application can present a real challenge to channel-estimation
algorithms, especially when the signal suffers from frequency-
selective multipath channels. One of the solutions for alleviat-
ing frequency selectivity is through the use of OFDM together
with transmit diversity which combats the long channel impulse
response by transmitting parallel symbols over many orthogo-
nal subcarriers, yielding unique reduced complexity physical
layer capabilities [1].

Channel estimation for transmit-diversity OFDM systems
has attracted much attention with the pioneering studies of
Li [6], [7]. Among many other techniques, an iterative proce-
dure based on the expectation maximization (EM) algorithm
was also applied to the channel estimation problem in the
context of space-time block coding (STBC) [8], [9] as well as
transmit-diversity OFDM systems [10]–[13]. In [10], both the
ML and the maximum a posteriori (MAP) iterative receivers for
STBC-OFDM systems based on the EM algorithm are proposed
to directly detect transmitted symbols under the assumption that
fading processes remain constant across several OFDM words
contained in one STBC code word. Note that even this approach
pretends to bypass the channel-estimation process; it iterates
between the ML data detection and the channel estimation
consecutively until the convergence is reached. Although this
approach is certainly optimal, its convergence rate is slow; the
initial selection of the channel parameters is very critical and its
implementation is quite complex.

An EM approach proposed for the general estimation from
superimposed signals [15] is applied to the channel estimation
for OFDM systems with transmitter- diversity systems and is
compared with the space-alternating generalized EM (SAGE)
version in [12]. Moreover, in [13], a modified version of [12]
is proposed for STBC-OFDM and space-frequency (SF) block-
coding (SFBC)-OFDM systems.

Unlike the EM approaches treated in [10]–[13], we adopt
a two-step detection procedure: 1) Use the EM algorithm to
estimate the channel, and 2) use the estimated channel to per-
form coherent detection. The major contribution of this paper
is to obtain a new efficient nondata-aided MAP EM channel-
estimation algorithm for OFDM systems with transmitter di-
versity using SFBC. A different approach is adapted here to
explicitly model the channel parameters by a Karhunen–Loeve
(KL) series representation, since a KL expansion allows one to
tackle the estimation of correlated parameters as a parameter
estimation problem of the uncorrelated coefficients. Note that

0018-9545/$20.00 © 2006 IEEE



450 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 2, MARCH 2006

Fig. 1. SF block-coded OFDM scheme.

the KL expansion is well known for its optimal truncation
property [19]. That is, the KL expansion requires the mini-
mum number of terms among all possible series expansions
in representing a random channel for a given mse. Thus, the
optimal truncation property of the KL expansion results in
a smaller computational load on the channel-estimation algo-
rithm. Moreover, except for a few pilot symbols for initial-
ization, the technique does not need any training sequence to
acquire the channel and more information carrying signals can
be transmitted.

Due to the orthogonality of the SFBC system based on
the Alamouti orthogonal design, as well as the KL expansion
of the multipath channel that yields simple exact iterative
expressions for the unknown channel parameters in frequency
domain which do not require any matrix inversion [18], [19].
Moreover, the optimal truncation property of the KL expansion
can further reduce the computational load on the channel-
estimation algorithm.

II. SFBC-OFDM SYSTEMS

Resorting to coding across tones, the set of generally cor-
related OFDM subchannels is first divided into groups of
subchannels. This subchannel grouping with appropriate sys-
tem parameters preserves the diversity gain while simplifying
not only the code construction, but the decoding algorithm
as well [14]. A block diagram of a two-branch SF OFDM
transmitter-diversity system is shown in Fig. 1. To cast
the received signal model, we first define Nc × 1 the data
vector A(n) as A(n) = [A(nNc), A(nNc + 1), . . . , A(nNc +
Nc − 1)]T . Following the notation of [14], let Ak(n) denote
the kth forward polyphase component of the serial data sym-
bols, i.e, Ak(n) = A(nNc + k) for k = 0, . . . , Nc − 1. The
polyphase component Ak(n) can also be viewed as the data
symbol to be transmitted on the kth tone during the block
instant n. The data symbol vector A(n) can therefore be
expressed as A(n) = [A0(n), A1(n), . . . , ANc−1]T . Resorting
the subchannel grouping, A(n) is coded into two vectors Ae(n)
and Ao(n) by the SF encoder as

Ae(n) = [A0(n), A2(n), . . . , ANc−4(n), ANc−2(n)]
T

Ao(n) = [A1(n), A3(n), . . . , ANc−3(n), ANc−1(n)]
T (1)

where Ae(n) and Ao(n) actually corresponds to the even and
odd polyphase component vectors of A(n). Then, the SF block
code transmission matrix may be represented by

frequency →
space ↓

[
Ae(n) −A∗

o(n)
Ao(n) A∗

e(n)

]
(2)

where ∗ stands for the complex conjugation.
If the received signal sequence is also parsed in even and odd

blocks of Nc tones, Re(n) = [R0(n), R2(n), . . . , RNc−2(n)]T

and Ro(n) = [R1(n), R3(n), . . . , RNc−1(n)]T , the received
signal can be expressed in vector form as

Re(n) =Ae(n)H1,e(n) + Ao(n)H2,e(n) + We(n)

Ro(n) = − A†
o(n)H1,o(n) + A†

e(n)H2,o(n) + Wo(n) (3)

where Ae(n) and Ao(n) are Nc/2 ×Nc/2 diagonal matrices
whose elements are Ae(n) and Ao(n), respectively, and †

denotes the conjugate transpose. Hµ,e(n) = [Hµ,0(n),
Hµ,2(n), . . . , Hµ,Nc−2(n)]T and Hµ,o(n) = [Hµ,1(n),
Hµ,3(n), . . . , Hµ,Nc−1(n)]T are Nc/2 length vectors denoting
the even and odd component vectors of the channel attenuations
between the µth transmitter and the receiver. Finally, We(n)
and Wo(n) are Nc/2 × 1 zero mean and independent
identically distributed (i.i.d.) Gaussian vectors that model
additive noise in the Nc tones, with a variance of σ2/2 per
dimension.

Equation (3) shows that the information symbols Ae(n)
and Ao(n) are transmitted twice in two consecutive adjacent
subchannel groups through two different channels. In order
to estimate the channels and decode A with the embedded
diversity gain through the repeated transmission, for each n,
we can write the following equation from (3) as[

Re(n)
Ro(n)

]
=
[ Ae(n) Ao(n)
−A†

o(n) A†
e(n)

] [
H1,e(n)
H2,e(n)

]
+
[
We(n)
Wo(n)

]
(4)

where the complex channel gains between the adjacent subcar-
riers are assumed to be approximately constant, i.e., H1,e(n) ≈
H1,o(n) and H2,e(n) ≈ H2,o(n). The effect of this assumption
allows us to omit the dependence of H1,e(n) and H2,e(n) on
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the even channel components. Using (4) and dropping subscript
“e,” we have[

Re(n)
Ro(n)

]
=
[ Ae(n) Ao(n)
−A†

o(n) A†
e(n)

] [
H1(n)
H2(n)

]
+
[
We(n)
Wo(n)

]
(5)

or in a more succinct form

R(n) = A(n)H(n) + W(n). (6)

Based on (6), our main objective in this paper is to develop
a channel-estimation algorithm in accordance with the MAP
criterion. The channel variations are considered as random
processes and the KL orthogonal series expansion is applied.
Prompted by the general applicability of the KL expansion, in
this paper, we consider the components of Hµ(n) to be ex-
pressed by a linear combination of orthonormal base vectors as
Hµ(n) = ΨGµ(n), where Ψ = [ψ0, ψ1, . . . , ψNc−1], ψi’s are
the orthonormal basis vectors corresponding to the eigenvec-
tors of the channel autocorrelation matrix CHµ

= E[HµH†
µ].

Gµ(n) is an Nc × 1 zero-mean i.i.d. Gaussian vector whose
components Gµ(n)[k] = Gµ(n, k), k = 0, 1, . . . , Nc − 1 cor-
respond to the weights of the KL expansion. Note that the
covariance matrix of Gµ(n) is Λ = diag(λ0, λ1, . . . , λNc−1),
where λ′ks are the eigenvalues of CHµ

. Therefore, CHµ
can be

expressed as

CHµ
= ΨΛΨ†. (7)

Thus, the channel estimation problem in this application is
equivalent to estimating the i.i.d. Gaussian vector Gµ of the
KL expansion coefficients.

III. NONDATA-AIDED EM-BASED MAP
CHANNEL ESTIMATION

In the nondata-aided MAP estimation approach, we choose
Ĝ to maximize the posterior probability density function
(PDF), Ĝ = arg maxG p(G|R) where G = [GT

1 ,G
T
2 ]T . To

find the MAP estimator, we must equivalently maximize
p(R|G)p(G). The prior PDF of the KL expansion coeffi-
cient r.v.’s of the fading channel can be expressed as p(G) ∼
exp(−G†Λ̃

−1
G), where Λ̃ = diag(Λ Λ).

Hence, the MAP estimator equivalently takes the form

ĜMAP = arg max
G

[ln p(R|G) + ln p(G)] (8)

where p(R|G) = EA[p(R|A,G).
Given the transmitted signals A, coded according to the SF

transmit-diversity scheme and the discrete channel orthonormal
series expansion representation coefficients G and taking into
account the independence of the noise components, the condi-
tional PDF of the received signal R can be expressed as

p(R|A,G) ∼ exp
[
−(R −AΨ̃G)†Σ̃

−1
(R −AΨ̃G)

]
(9)

where Σ̃ is anNc ×Nc diagonal matrix with Σ̃[k, k] = σ2, for
k = 0, 1, . . . , Nc − 1 and Ψ̃ = diag(Ψ Ψ).

Obtaining the MAP estimate of G from (9) is a complicated
optimization problem and does not yield a closed-form solu-
tion. The solution of such problems usually requires numerical
methods, such as methods of scoring, Newton–Raphson, or
some other gradient search algorithm. However, for the problem
at hand, these numerical methods tend to be computationally
complex. Fortunately, the solution can be easily obtained by
means of the iterative EM algorithm. Since the EM algorithm
has been studied and applied to a number of problems in
communications over the years, the details of the algorithm
will not be presented in this paper. See [20]–[22] for a general
exposition to the EM algorithm and [18] its applications to the
estimation problem related to this study. Basically, this algo-
rithm inductively reestimates G so that a monotonic increase
in the a posteriori conditional pdf in (9) is guaranteed. The
monotonic increase is realized via the maximization of the
auxiliary function

Q
(
G|G(i)

)
=
∑
A
p
(
R,A,G(i)

)
log p(R,A,G) (10)

where G(i) is the estimation of G at the ith iteration.
Note that p(R,A,G) ∼ p(R|A,G)p(G), since the data

symbols A = {Ak(n)} are assumed to be independent of each
other and are identically distributed and because of the fact
that they are independent of G. Therefore, (10) can be easily
evaluated compared to a direct computation of (9).

Given the received signal R, the EM algorithm starts with
an initial value G0 of the unknown channel parameter G. The
(i+ 1)th estimate of G is obtained by the maximization step
described by G(i+1) = arg maxGQ(G|G(i)). As described
in Appendix I, the expression of the reestimated value of
G(i+1)

µ (µ = 1, 2) can be obtained as follows:

G(i+1)
1 =(I + ΣΛ−1)−1Ψ†

[
Γ(i)†

1 Re(n) − Γ(i)
2 Ro(n)

]
G(i+1)

2 =(I + ΣΛ−1)−1Ψ†
[
Γ(i)†

2 Re(n) + Γ(i)
1 Ro(n)

]
(11)

where it can be easily seen that

(I + ΣΛ−1)−1 = diag

([(
1 + σ2

λ0

)−1

, . . . ,

(
1 + σ2

λNc−1

)−1
])

(12)

and Γ(i)
µ in (11) is an Nc/2 ×Nc/2 dimensional diagonal

matrix representing the a posteriori probabilities of the data
symbols at the ith iteration step whose kth component is
defined as

Γ(i)
µ (k) =

∑
a1

∑
a2∈Sk

aµP
(
A2k(n) = a1

A2k+1(n) = a2|R,G(i)
)
, µ = 1, 2 (13)

where Sk denotes the alphabet set taken by the kth OFDM
symbol.
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A truncated expansion Gµ,r can be formed by selecting
r orthonormal basis vectors among all the basis vectors that
satisfy CHµ

Ψ = ΨΛ. The optimal one that yields the smallest
average mean-squared truncation error 1/(Nc/2)E[ε†rεr] is the
one expanded with the orthonormal basis vectors associated
with the first largest r eigenvalues given by

1
Nc

2 − rE
[
ε†rεr

]
=

1
Nc

2 − r

Nc
2 −1∑
i=r

λi (14)

where εr = Gµ − Gµ,r. For the problem at hand, the trun-
cation property of the KL expansion results in a low-rank
approximation. Thus, a rank-r approximation of Λr is defined
as Λr = diag{λ0, λ1, . . . , λr−1, 0, . . . , 0}. Since the trailing
Nc/2 − r variances {λl}Nc/2−1

l=r are small compared to the
leading r variances {λl}r−1

l=0 , then the trailing Nc/2 − r vari-
ances are set to zero to produce the approximation. However,
the pattern of eigenvalues for Λ typically splits the eigenvectors
into dominant and subdominant sets. Then, the choice of r
is more or less obvious. The optimal truncated KL (rank-r)
estimator of (11) can easily be obtained by replacing Λr with
Λ in (11).

A. Initialization

In order to choose good initial values for the unknown chan-
nel parameters, theNPS data symbols {Ak(n)} for k ∈ SPS in
each OFDM frame are inserted as pilot symbols known by the
receiver. Corresponding to the pilot symbols, we focus on an
under-sampled signal model and employ the least squares (LS)
estimate to obtain under-sampled channel parameters. Then,
the complete initial channel gains can easily be determined
using an interpolation technique, i.e., a lowpass interpolation
algorithm [16]. Finally, the initial values of G(0)

µ are used in the
iterative EM algorithm to avoid divergence. The details of the
initialization process is presented in [17] and [18].

B. Computation of Γ(i)
µ (k) for QPSK

As the details are given in Appendix II, Γ(i)
µ = [Γ(i)

µ (0),

. . . ,Γ(i)
µ ((Nc/2) − 1)]T can be computed for QPSK signaling

as follows:

Γ(i)
µ =

1
2

tanh
[

1
σ2

Re
(
Z(i)

µ

)]
+
j

2
tanh

[
1
σ2

Im
(
Z(i)

µ

)]
(15)

where

Z(i)
1 =ReΨ∗G∗(i)

1 + R∗
oΨG(i)

2

Z(i)
2 =ReΨ∗G∗(i)

2 −R∗
oΨG(i)

1

and Re and Ro are Nc/2 ×Nc/2 diagonal matrices whose
elements are Re and Ro, respectively.

IV. MODIFIED CRAMER–RAO BOUND

In this section, we turn our attention to the analytical perfor-
mance results and study the performance of the MAP channel
estimator based on the evaluation of the modified CRB.

The mean-squared estimation error for the unbiased estima-
tion of a nonrandom parameter has a lower bound, the CRB,
which defines the ultimate accuracy of the unbiased estimation
procedure. Suppose Ĝ is an unbiased estimator of a vector of
unknown parameters G (i.e.,E{Ĝ} = G), then the mse matrix
is lower bounded by the inverse of the Fisher information
matrix (FIM) E{(G − Ĝ)(G − Ĝ)†} ≥ J−1(G).

Since the estimation of unknown random parameters G′ via
the MAP approach is considered in this paper, the modified FIM
needs to be taken into account in the derivation of the stochastic
CRB [24]. Fortunately, the modified FIM can be obtained by a
straightforward modification of the FIM as

JM (G) ∆= J(G) + JP (G) (16)

where JP (G) represents the a priori information.
Under the assumption that G and W(n) are independent of

each other and W(n) is a zero-mean, the Ak’s are adopting
finite complex values, from [24] and (9), the conditional PDF is
given by

p(R|G) = EA {p(R|A,G)}

∼ 1
σ2
EA
{

(R −AΨ̃G)†(R −AΨ̃G)
}
. (17)

Since ln p(R|G) is required for the computation of J(G), it is
unfortunately computationally intensive. However, an approx-
imate of ln p(R|G) can still be obtained from ln p(R|A,G).
Since the logarithmic function is a concave, by Jensen’s in-
equality, we have

ln p(R|G) ≤ EA ln {p(R|A,G)} . (18)

Therefore, we get a valid J(G) from EA{ln p(R|A,G)}
which may not be tight, but is much easier to compute. From
(17), the derivatives follow as

∂ ln p(R|G)
∂GT

=
1
σ2

(R −AΨ̃G)†AΨ̃ (19)

∂2 ln p(R̃|G)
∂G∗∂GT

= − 1
σ2

Ψ̃
†A†AΨ̃. (20)

Since the Alamouti’s scheme imposes an orthogonal struc-

ture on the transmitted symbols A†A = I and using Ψ̃
†
Ψ̃ = I

and taking the expected values yields the simple form

J(G) = −E
[
∂2 ln p(R̃|G)
∂G∗∂GT

]
=

1
σ2

I. (21)
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Fig. 2. Channel-estimation mse as a function of the average Eb/N0.

The second term in (16) is easily obtained as follows. Con-

sider the prior PDF p(G) ∼ exp[(−G†Λ̃
−1

G)]. The respective
derivatives are found as

∂ ln p(G)
∂GT

= −G†Λ−1,
∂2 ln p(G)
∂G∗∂GT

= −Λ−1. (22)

Upon taking the negative expectations, the second term in (16)
becomes JP (G) = Λ−1. Substituting J(G) and JP (G) in (16)
produces the modified FIM as follows:

JM (G) =J(G) + JP (G)

=
1
σ2

I + Λ−1. (23)

Inverting the matrix JM (G) yields CRB(Ĝ) = J−1
M (G).

CRB(Ĝ) is a diagonal matrix with the elements on the main
diagonal equaling the reciprocal of that of the J(G) ma-
trix. Because of the zero-valued off-diagonal entries in the
FIM, the errors between the corresponding estimates are not
independent.

V. SIMULATIONS

In this section, we present some simulation results in order
to verify the performance of the channel estimation via the
EM algorithm for SFBC-OFDM systems. The diversity scheme
with two transmit and one receive antenna is considered. The
channels between the transmitter and receiver are generated
according to the doubly-selective fading channel model. In
this model, Hµ(k)’s are with an exponentially decaying power
delay profile θ(τµ) = C exp(−τµ/τrms) and delays τµ that are
uniformly and independently distributed over the length of the
cyclic prefix.C is a normalizing constant. Note that the normal-

ized discrete channel correlations for different subcarriers and
blocks of this channel model were presented in [17] as follows:

r1(k, k′) =
1 − exp

[
−L

[
1

τrms
+ 2πj(k−k′)

Nc

)]
τrms

(
1 − exp

(
−L
τrms

))(
1

τrms
+ j2π(k−k′)

Nc

) .

The scenario for the SFBC-OFDM simulation study con-
sists of a wireless QPSK-OFDM system. The system has a
2.28-MHz bandwith (for the pulse roll-off factor α = 0.2) and
is divided intoNc = 512 tones with a total period Ts of 136 µs,
of which 1.052 µs constitutes the cyclic prefix (L = 4). The
uncoded data rate is 7.6 Mb/s. We assume that the rms width is
τrms = 1 sample (0.263 µs) for the power-delay profile.

The proposed EM-based iterative channel estimator of (11)
is implemented and compared with the previously reported
SFBC-OFDM channel estimator [13] in terms of average mse
for a wide range of signal-to-noise ratio (Eb/N0) levels. The
average mse is defined as the norm of the difference between the
vectors G = [GT

1 ,G
T
2 ] and Ĝmap, representing the true and

the estimated values of the channel parameters, respectively.
Namely, mse = 1/2Nc‖G − Ĝmap‖2. In order to obtain good
initial values for the unknown channel parameters, NPS = 64
equally spaced pilot tones are inserted into the data symbols.
Corresponding to the pilot symbols, we employed the LS
estimate to obtain under-sampled channel parameters. Then, the
complete initial channel gains are determined using a lowpass
interpolation technique [16]. Finally, the initial values of G(0)

µ

are used in the iterative EM algorithm to avoid divergence.
Fig. 2 compares the performance of the proposed EM-MAP

channel-estimation approach with an EM-ML [13] which is the
modified version of [12] and both used LS for initialization. The
proposed EM-based approach is also compared to other widely
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Fig. 3. BER performance of the EM algorithms as a function of the average Eb/N0.

Fig. 4. Convergence of the mse with respect to the number of iterations.

used linear mmse (Lmmse) and LSE pilot symbol assisted
modulation (PSAM) channel-estimation techniques [23]. It can
be seen that the proposed EM-MAP significantly outperforms
the EM ML as well as the PSAM techniques.

Assuming the channel parameters are estimated accurately,
the SF block constructs the decision estimate vector in [14].
Therefore, we used channel estimates for symbol decoding and
compared the bit error rate (BER) performance of the proposed
iterative EM-MAP estimator with the EM-ML and the Lmmse
ones. Fig. 3 shows the average results of 1000 Monte Carlo
runs. We observe from the BER performance simulation results
that the EM-MAP BER performance still outperforms the EM-
ML and the Lmmse approaches, especially for high SNRs.

In Fig. 4, the average mse performance of the EM-MAP
algorithm is presented as a function of the number of iterations.
It is concluded from these curves that the mse performance
of the EM-based algorithm converges within 2–4 iterations,
depending on the average SNR.

Apart from the simulated BER performance, the truncated
estimator performance is also studied as a function of the
number of KL coefficients. Fig. 5 presents the mse result of
the truncated EM-MAP estimator. If only a few expansion
coefficients are employed to reduce the complexity of the
proposed estimator, then the mse between channel parameters
becomes large. However, if the number of parameters in the
expansion is increased to include the dominant eigenvalues, we
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Fig. 5. Truncated EM algorithm mse performance.

are able to obtain a good approximation with a relatively small
number of KL coefficients. For instance, by replacing 256 ×
256 diagonal Λ in (11) with a 8 × 8 diagonal, Λr decreases the
computational complexity enormously.

VI. CONCLUSION

In this paper, we proposed an efficient nondata-aided EM-
based channel-estimation algorithm for SFBC-OFDM systems,
which is crucial for the decoding of SF codes. This algorithm
performs an iterative estimation of the channel according to the
MAP criterion, using the EM algorithm employing the M-PSK
modulation scheme with additive Gaussian noise. The likeli-
hood ratio is properly averaged out over the data sequence so
that the resulting algorithm does not need a training sequence
to acquire the channel; thus, the throughput of the system
improves substantially compared to the existing channel-
estimation algorithms based on the data-aided schemes in lit-
erature. The performance of our channel-estimation algorithm
is confirmed by corroborating simulations and is compared with
existing EM-ML alternatives. It has been shown that the EM-
MAP estimator performs well over the EM-ML. Moreover, the
truncation property of the KL expansion significantly reduces
the complexity of the EM-based algorithms.

APPENDIX I
DERIVATION OF (11)

In (10), the term log p(R,A,G) can be expressed as

log p(R,A,G) ∼ log p(A,G) + log p(R|A,G) + log p(G).
(24)

The first term in (24) is constant, since the data sequences A
have an equal a priori probability and A and G are independent
of each other. Also, since the noise samples are independent,

from (3) and (9), the second and third terms in (24) can be
written as

log p(R|A,G) ∼ − [Re(n) − Ae(n)H1 − Ao(n)H2]
†

× Σ−1 [Re(n) − Ae(n)H1 − Ao(n)H2]

− [Ro(n) + A†
o(n)H1 − A†

e(n)H2

]†
× Σ−1

[
Ro(n) + A†

o(n)H1 − A†
e(n)H2

]
log p(G) ∼ − G†

1Λ
−1G1 − G†

2Λ
−1G2. (25)

Taking the derivatives in (10) with respect to G1 and G2,
along with the fact that ‖Ae(n)‖2 = |Ao(n)|2 = (1/2)I, and
equating the resulting equations to zero, we have

∂Q

∂G1
=
∑
A
p
(
R,A,G(i)

)
× [Σ−1Ψ† (A†

e(n)Re(n)

−Ao(n)Ro(n) − H1) − Λ−1G1

]
= 0

∂Q

∂G1
=
∑
A
p
(
R,A,G(i)

)
× [Σ−1Ψ† (A†

o(n)Re(n)

+ Ae(n)Ro(n) − H2) − Λ−1G2

]
= 0. (26)

Since p(R,A,G(i)) may be replaced by p(A|R,G(i)) with-
out violating the equalities in (26), defining the conditional
probabilities as

Γ(i)
µ (k) =

∑
a1

∑
a2∈Sk

aµP

×
(
A2k(n) = a1, A2k+1(n) = a2|R,G(i)

)
(27)
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Γ(i)
µ (k) =

∑
a1,a2∈Sk

aµp
(
R|A2k(n) = a1, A2k+1(n) = a2,G(i)

)
P (A2k(n) = a1, A2k+1 = a2)∑

a1,a2∈Sk
p
(
R|A2k(n) = a1, A2k+1(n) = a2,G(i)

)
P (A2k(n) = a1, A2k+1 = a2)

(30)

and the Nc/2 ×Nc/2 diagonal matrix

Γ(i)
µ = diag

(
Γ(i)

µ (0), . . . ,Γ(i)
µ

(
Nc

2
− 1
))

(28)

the equations in (26) can be expressed as

Σ−1Ψ†
(
Γ(i)†

1 Re(n) − Γ(i)
2 Ro(n) − H1

)
=Λ−1G1

Σ−1Ψ†
(
Γ(i)†

2 Re(n) + Γ(i)
1 Ro(n) − H2

)
=Λ−1G2 (29)

from which, the final expression for G(i+1)
µ , µ = 1, 2, given by

(11) easily follows.

APPENDIX II
EXACT COMPUTATION OF Γ(i)

µ (k) FOR QPSK SIGNALING

Let a = (±1 ± j)/2 represent the unit power and the inde-
pendent and identically distributed data sequence modulating
the QPSK carrier, Γ(i)

µ (k) in (13) can be expressed (30), shown
at the top of the page. From (9), it follows that

Γ(i)
µ (k) =

∑
a1,a2∈Sk

aµ exp
(

1
σ2 Re

[
a∗µZ

(i)
µ (k)

])
∑

a1,a2∈Sk
exp

(
1

σ2 Re
[
a∗Z(i)

µ (k)
]) (31)

where

Z
(i)
1 (k) =Re,k

∑
m

G
(i)∗
1 (m)ψ∗

m(k)

+R∗
o,k

∑
m

G
(i)
2 (m)ψm(k)

Z
(i)
2 (k) =Re,k

∑
m

G
(i)∗
2 (m)ψ∗

m(k)

−R∗
o,k

∑
m

G
(i)
1 (m)ψm(k)

Then, taking summations in the numerator and the denomi-
nator of (31) over the values of the QPSK symbols a, we have
the final result as follows:

Γ(i)
µ (k) =

1
2

tanh
[

1
σ2

Re
(
Z(i)

µ (k)
)]

+
j

2
tanh

[
1
σ2

Im
(
Z(i)

µ (k)
)]
. (32)
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Hakan Doğan (S’02) was born in Istanbul, Turkey,
on 1979. He received the B.S. and M.S. degrees
in electronics engineering from Istanbul University,
Istanbul, Turkey, in 2001 and 2003, respectively, and
is currently working toward the Ph.D. degree from
the same university.

Since 2001, he has been a Research Assistant at
the Department of Electrical and Electronics En-
gineering, Istanbul University. His general research
interests cover communication theory, estimation
theory, statistical signal processing, and information

theory. His current research activities are focused on wireless communication
concepts with specific attention to equalization and channel estimation for
spread-spectrum and multicarrier (orthogonal frequency-division multiplexing)
systems.


