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Abstract. We study the maximum stable set problem. For a given graph, we establish several transformations
among feasible solutions of different formulations of Lovász’s theta function. We propose reductions from
feasible solutions corresponding to a graph to those corresponding to its induced subgraphs. We develop
an efficient, polynomial-time algorithm to extract a maximum stable set in a perfect graph using the theta
function. Our algorithm iteratively transforms an approximate solution of the semidefinite formulation of the
theta function into an approximate solution of another formulation, which is then used to identify a vertex
that belongs to a maximum stable set. The subgraph induced by that vertex and its neighbors is removed
and the same procedure is repeated on successively smaller graphs. We establish that solving the theta
problem up to an adaptively chosen, fairly rough accuracy suffices in order for the algorithm to work properly.
Furthermore, our algorithm successfully employs a warm-start strategy to recompute the theta function on
smaller subgraphs. Computational results demonstrate that our algorithm can efficiently extract maximum
stable sets in comparable time it takes to solve the theta problem on the original graph to optimality.
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1. Introduction

Given a simple, undirected graph G = (V, E) with a vertex set V = {1, 2, . . . , n} and
an edge set E, where each edge is identified with an unordered pair of its end vertices, a
stable set S ⊆ V is a set of mutually nonadjacent vertices. A set C ⊆ V is called a clique
if (i, j) ∈ E for every i, j ∈ C. The maximum stable set (MSS) problem is that of finding
a maximum cardinality stable set S ⊆ V. We will use α(G) to denote the size of the
maximum stable set. A clique cover is the partition of the vertices of G into cliques V1,
V2, . . . , Vk such that V = ∪i=1,...,k Vi. The problem of finding the smallest number of
cliques k, denoted by χ̄ (G), to cover the vertices of G is known as the minimum clique
cover (MCC) problem. Since each vertex in a stable set needs to be in a separate clique
in any clique cover, it follows that α(G) ≤ χ̄ (G).
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A related problem, known as the maximum clique (MC) problem, is that of finding
the largest clique in a given graph. The MC problem on a graph G = (V, E) is equivalent
to the MSS problem on the complement of G, denoted by G, which is a graph obtained
from G by removing the existing edges and joining the nonadjacent vertices in G.
Another related problem is the graph coloring (GC) problem, which asks to assign the
minimum number of colors to vertices of a graph in such a way that no two adjacent
vertices receive the same color. The GC problem on a graph G = (V, E) is equivalent to
the the MCC problem on G.

It is well-known that each of the four problems described above is NP-complete in
general. For a detailed survey of the MC problem (equivalently the MSS problem), we
refer the reader to Bomze et al. [6]. Lovász introduced an invariant of a graph G, known
as the Lovász’s theta number (henceforth the theta number) and denoted by ϑ(G), that
satisfies the following inequalities [21]:

α(G) ≤ ϑ(G) ≤ χ̄ (G). (1)

ϑ(G) can be formulated as an optimization problem in several different ways (see Sec-
tion 2 and also [15] and [20]) and can be computed in polynomial-time via semidefinite
programming (SDP).

For a graph G = (V, E) and any S ⊆ V, the induced subgraph GS on S is a graph
given by GS := (S, ES), where ES denotes the subset of E that consists only of edges
with both end vertices in S. A graph is called perfect if α(GS) = χ̄ (GS) for all S ⊆ V.
It follows from (1) that α(G) can be computed in polynomial-time for perfect graphs.
Berge conjectured that a graph G is perfect if and only if none of its induced subgraphs
is given by an odd cycle of length at least five or its complement [5]. This long standing
conjecture, known as the Strong Perfect Graph Conjecture, was recently proved to be
true [10]. More recently, a series of papers [9, 11, 12] established that perfect graphs
can be recognized in polynomial-time.

For a perfect graph G, in addition to computing α(G), the theta number can also be
used to extract a maximum stable set in polynomial time [14]. After computing ϑ(G),
one can delete each node one by one and recompute the theta number in the resulting
smaller graph. At each step, by the property of perfect graphs, the theta number either
remains the same, in which case the smaller graph still contains a maximum stable set of
the same size as the previous graph, or it goes down by one, which implies that the most
recently deleted node is in every maximum stable set. Consequently, after at most n
computations of the theta number, a maximum stable set can be found in perfect graphs.
Currently, this is the only known polynomial-time algorithm for the MSS problem in
perfect graphs. The existence of a polynomial-time algorithm of a purely combinatorial
nature is still an open problem.

We take a similar approach in this paper in order to develop a practical, polynomial-
time algorithm for perfect graphs. The main difference, however, is the exploitation
of the properties of an approximate solution of the theta problem, which enables us
to effectively identify vertices in a maximum stable set. First, we establish that it
suffices to solve the theta problem up to a fairly rough accuracy. Next, we transform the
approximate matrix solution of the SDP formulation to an approximate vector solution
of another formulation of the theta problem, which can then be used to identify a
vertex that belongs to a maximum stable set. Finally, we remove this vertex and all of its
neighbors from the graph and continue in an iterative manner starting with the remaining
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subgraph. Furthermore, using a reduction among feasible solutions of the theta problem
corresponding to a graph and its subgraphs, our algorithm can successfully use a warm-
start strategy to recompute the theta number for the subgraphs. The computational results
indicate that our algorithm is capable of extracting a maximum stable set in a perfect
graph in comparable time it takes to solve the theta problem on the original graph to
optimality. The savings in the running time tend to be more significant especially for
larger graphs.

Our theoretical contributions include a new transformation of any feasible matrix
solution of the SDP formulation of the theta problem into a feasible vector solution
of another equivalent formulation with an objective function value no smaller than the
original one. This transformation provides a solution to a problem raised in Gruber
and Rendl [16]. In addition, we establish that any feasible solution of each of the three
formulations of the theta problem presented in Section 2 can be used to obtain a feasible
solution of the corresponding formulation of the theta problem on any induced subgraph.
This reduction gives rise to an effective warm-start strategy to resolve the theta problem
on smaller subgraphs. Finally, we establish several properties of approximate solutions
of the theta problem, which play a key role in the design and analysis of our algorithm.

Despite the extensive number of research articles related to Lovász’s theta num-
ber, 1 very few papers study stable set extractions using the theta number. Grötschel,
Lovász, and Schrijver describe several alternative formulations of the theta problem
and provide polynomial-time algorithms to compute a (weighted) maximum stable set
and a (weighted) minimum clique cover for perfect graphs ([15] Chap. 9) (see also
[14]). Alizadeh proposes a Las Vegas type randomized algorithm for the (weighted) MC
problem based on perturbing the weight of each vertex [1]. Alon and Kahale present
algorithms with performance guarantees to extract large stable sets for graphs with
large maximum stable sets as well as for graphs with large theta numbers [2]. Benson
and Ye use an alternative SDP formulation to compute the theta number and then ap-
ply a random hyperplane strategy with a post-processing stage to extract large stable
sets [4]. Burer, Monteiro, and Zhang study the SDP formulation of the theta problem
with additional nonconvex low-rank constraints and use continuous optimization tech-
niques to extract large stable sets in fairly large graphs [7]. Gruber and Rendl start
by solving the SDP formulation of the theta problem and strengthen it by adding a
subset of violated odd-circuit and triangle inequalities based on a transformation of
the optimal matrix solution [16]. Consequently, their approach results in a sequence
of SDP problems of increasing sizes. In contrast, our approach is based on solving
a sequence of SDP problems of successively smaller sizes. On the other hand, their
approach can be applied to any imperfect graph G to obtain a sharper bound on α(G)
whereas our approach is guaranteed to return a maximum stable set for only perfect
graphs.

This paper is organized as follows. In the remainder of this section, we define our
notation. Section 2 discusses several formulations of Lovász’s theta function and vari-
ous transformations among feasible solutions of different formulations. We also prove
a reduction lemma that forms the basis of the warm-start strategy employed in our algo-
rithm. In Section 3, we study several properties of an approximate solution of the theta
problem. In particular, we establish a bound on the required accuracy, which depends
on the underlying graph, in order to identify a vertex that belongs to a maximum stable
set from an approximate solution of the theta problem. We present our algorithm and
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its analysis in Section 4. Section 5 is devoted to computational results and Section 6
concludes the paper.

1.1. Notation

We use Sn to denote the space of n × n real symmetric matrices. For two matrices
A ∈ R

n×n and B ∈ R
n×n, the trace inner product is denoted by A • B = trace(ATB)

= trace(BAT ) = ∑
i,j Aij Bij. For A ∈ Sn, we use A � 0 (A � 0) to indicate that A

is positive semidefinite (positive definite). Note that dTAd ≥ 0 (dTAd > 0) for all d
∈ R

n ( d 
= 0) if A � 0 (A � 0). Moreover, any principal submatrix of a positive
(semi)definite matrix is positive (semi)definite. A � 0 if and only if A = YTY for some
Y ∈ R

n×n. The identity matrix is denoted by I, whose dimension will be clear from the
context. The vector of all zeroes and the matrix of all zeroes are both represented by
0. We reserve e to denote the vector of all ones in the appropriate dimension and ej to
represent the unit vector whose jth component is 1. We use Eij (i 
= j) for the matrix
whose (i, j) and (j, i) entries are 1 and remaining entries are 0, i.e., Eij = ei ej

T + ej

ei
T . The matrix of all ones is denoted by J. ‖u‖ represents the Euclidean norm of u ∈

R
n. For U ∈ R

n×n, diag(U) is the vector consisting of the diagonal entries of U. The
ceiling of a real number β is denoted by � β . The convex hull of a set of vectors
{dI , I ∈I} is represented by conv{dI , I ∈I}. For a primal-dual pair of optimization
problems, we say that an approximate primal-dual solution has absolute error ε >

0 if the corresponding duality gap is less than ε. In particular, this implies that the
objective function values evaluated at such approximate solutions are at most ε away
from the optimal value. For S ⊆ {1, . . . , n}, χS ∈ R

n is the incidence vector of S, i.e.,
χ S

i = 1 if i ∈ S and χ S
j = 0 if j /∈ S. Given a graph G = (V, E), we denote by N(i) the set

of neighbors of i ∈ V, i.e., N(i) = {j ∈ V: (i, j) ∈ E}. The degree of a vertex i is defined
as |N(i)|. For any S ⊆ V, the subgraph of G induced by S is denoted by GS = (S, ES).

2. Theta function: Transformations and reductions

In a seminal paper, Lovász proved that a polynomial-time computable invariant of a
graph G = (V, E), denoted by ϑ(G) and known as Lovász’s theta number, satisfies
(1) [21]. The theta number can be computed through several equivalent formulations
[15, 20], three of which are reviewed in this section. The first formulation is an SDP
problem:

(T1(G)) ϑ1(G) := max
X

{J•X : I•X = 1, Xi j = 0, (i, j) ∈ E, X � 0, X ∈ Sn}.

The Lagrangian dual of the SDP problem (T1(G)) is given by

(T2(G)) ϑ2(G) := min
λ,y,Z





λ : −λI +

∑

(i, j)∈E

yi j Ei j + Z = −J, Z � 0, Z ∈ Sn





.

For a graph G = (V, E), an orthonormal system is a set of unit vectors {c, ui, i ∈ V}
such that ui

Tuj = 0 if (i, j) /∈ E. We define



EXTRACTING MAXIMUM STABLE SETS IN PERFECT GRAPHS 233

TH(G) :=
{

x ∈ R
n : x ≥ 0,

∑

i∈V

(cT ui )
2
xi ≤ 1, for all orthonormal systems {c, ui , i ∈ V }

}

.

An equivalent description of TH(G) is given by a projection onto R
n of an appropriate

subset of the positive semidefinite cone in Sn+1 [22]:

TH(G) =
{

x ∈ R
n : ∃W =

[
U x
xT 1

]

∈ Sn+1,

diag(U ) = x, Ui j = 0, (i, j) ∈ E, W � 0

}

.

It follows from this definition that TH(G) is a convex set. In fact, TH(G) is a polytope
if and only if G is a perfect graph [15], in which case,

TH(G) = conv{χ S ∈ R
n : S ⊆ V is a stable set}. (2)

Yet another formulation of ϑ(G) is given by

(T3(G)) ϑ3(G) := max
x

{eT x : x ∈ TH(G)}.

The following result is due to Grötschel et al. [15]:

ϑ1(G) = ϑ2(G) = ϑ3(G). (3)

While the first equality simply follows from strong duality in SDP (both problems have
strictly feasible solutions), the last equality is proved via a transformation of an optimal
solution of the SDP problem (T1(G)) to an optimal solution of (T3(G)). We discuss this
transformation and several others in the next subsection.

2.1. Transformations

Recently, Gruber and Rendl proposed several transformations among feasible solutions
of different formulations of the theta function [16]. We start by reviewing some of their
transformations in this section. We then propose a new transformation, which provides
a solution to a problem left open in Gruber and Rendl [16], and establish its connection
with one of their transformations.

First, we discuss their transformation of a feasible solution x̃ of (T3(G)) with eT x̃ =
γ > 0 to a feasible solution of (T1(G)). Since x̃ ∈ TH(G), it follows from the description
of TH(G) as a projection that there exists a matrix W̃∈ Sn+1 such that

W̃ =
[

Ũ x̃
x̃ T 1

]

∈ Sn+1, diag(Ũ ) = x̃, Ũi j = 0, (i, j) ∈ E, W̃ � 0. (4)

Therefore, the matrix defined by

f (x̃) := (1/γ )Ũ
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is a feasible solution of (T1(G)). Furthermore, by (4), Ũ − x̃ x̃ T � 0, which implies
that

J • f (x̃) = (1/γ )eT Ũe ≥ (1/γ )(eT x̃)2 = γ.

When applied to any feasible solution of (T3(G)), this transformation yields a feasible
solution of (T1(G)) whose objective function value is no smaller. Consequently, if x∗ is
an optimal solution of (T3(G)), then X∗ := f(x∗) is a feasible solution of (T1(G)) such
that J • X∗ ≥ ϑ3(G), which implies that ϑ1(G) ≥ ϑ3(G).

In order to establish the reverse inequality towards proving (3), Gruber and Rendl
proposed the following elegant transformation of an optimal solution X∗ of (T1(G)) to
a feasible solution of (T3(G)) [16]:

g(X∗) := ϑ1(G)diag(X∗). (7)

It follows from (7) that ϑ3(G) ≥ eTg(X∗) = ϑ1(G), which, together with the previous
inequality, establishes (3). Consequently, g(X∗) is in fact an optimal solution of (T3(G)).

Gruber and Rendl note the asymmetry between the transformations (5) and (7). While
the former transformation applied to any feasible solution of (T3(G)) yields a feasible
solution of (T1(G)), the latter transformation can only be applied to an optimal solution
X∗ of (T1(G)) since it relies on the complementarity property of X∗ (see (18) in the proof
of Lemma 2.1) that is not necessarily satisfied by arbitrary feasible solutions of (T1(G)).
They leave the reverse transformation of an arbitrary feasible solution of (T1(G)) to a
feasible solution of (T3(G)) as an open problem. In fact, the straightforward extension
of the transformation (7) to any feasible solution X of (T1(G)) given by

g(X ) := (J • X )diag(X ) (8)

may not yield a feasible solution of (T3(G)), as illustrated by the next example.

Example 1. Let G = (V, E) be a 2-path, i.e., V = {1, 2, 3} and E = {(1, 2), (2, 3)}. It
is straightforward to verify that

X =






1/3 0 1/3

0 1/3 0

1/3 0 1/3






is a feasible solution of (T1(G)). Applying the transformation (8) to X yields x := g(X)
= [5/9, 5/9, 5/9]T . We will show that x /∈ TH(G). Let c be any unit vector. Let u1 =
u2 = c and let u3 be any unit vector orthogonal to c. Then, {c, ui, i = 1, 2, 3} is an
orthonormal system for G. However,

∑3
i=1 (cTui)2 xi = 5/9 + 5/9 = 10/9 � 1.

In the remainder of this section, we establish the missing link by proposing a reverse
transformation, which is a generalization of the transformation used in Grötschel et al.
[15]. We also show that this transformation applied to any optimal solution of (T1(G))
reduces to (7).
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Proposition 2.1. Any feasible solution X of (T1(G)) can be transformed into a feasible
solution x of (T3(G)) with the property that eT x ≥ J • X.

Proof: Let X be an arbitrary feasible solution of (T1(G)). Since X � 0, there exists a
matrix Y ∈ R

n×n such that X = YTY (e.g., one can use the Cholesky factorization of X
to compute Y or set Y = X1/2, the unique symmetric positive semidefinite square root of
X). Let yi denote the ith column of Y. We define

P := {i ∈ V : yi 
= 0}. (9)

Let vi := yi/‖yi‖ for i ∈ P . For j /∈ P , choose an orthonormal basis for the orthogonal
complement of the subspace spanned by {vi , i ∈ P}. Let v j denote the elements of this
orthonormal basis. We define

d := (1/
√

J • X )Y e. (10)

Note that ‖d‖ = 1 since dTd = (1/(J • X)) J • X = 1. It follows that {d, vi, i
∈ V} is an orthonormal system for G since vi

Tvj = 0 if (i, j) ∈ E. For i ∈ P , we
have

dT vi = 1√
J • X‖yi‖

eT Y T yi = 1√
J • X‖yi‖

eT Xei (11)

so that ‖yi‖ (dTvi) = (1/
√

J • X )eT Xei for i ∈ P . Summing over all i ∈ V, we
obtain

∑

i∈V

‖yi‖(dT vi ) = (1/
√

J • X )eT Xe =
√

J • X . (12)

Finally, an application of the Cauchy-Schwarz inequality yields

J • X =
(

∑

i∈V

‖yi‖(dT vi )

)2

≤
(

∑

i∈V

‖yi‖2

) (
∑

i∈V

(dT vi )
2

)

= trace(X )

(
∑

i∈V

(dT vi )
2

)

=
∑

i∈V

(dT vi )
2. (13)

We now define a transformation h(X) = x by

xi := (dT vi )
2, i ∈ V . (14)

We will show that x ∈ TH(G). Let {c, ui, i ∈ V} be any orthonormal system for G. It
follows that

(uivi )
T • (u jv j )

T = (
uT

i u j
)(

vT
i v j

) =
{

1, if i = j,
0, otherwise,

(15)
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which implies that the matrices {ui vi
T , i ∈ V} are mutually orthogonal and have unit

norm with respect to the trace inner product. Hence,

1 = (cdT ) • (cdT ) ≥
∑

i∈V

(
(cdT ) • (

uiv
T
i

))2 =
∑

i∈V

(cT ui )
2xi , (16)

which shows that x ∈ TH(G). It follows from (13) that eT x ≥ J • X. �

We remark that the auxiliary vectors {d, vi, i ∈ V} need not be computed explicitly
for the aforementioned transformation. In fact, one has (cf. (14))

xi = (dT vi )
2 = 1

(J • X )Xii




n∑

j=1

Xi j





2

(17)

if i ∈ P and xi = 0 otherwise. We use this observation in our implementation. This
transformation applied to the feasible solution X of Example 1 yields x := h(X) = [4/5,
1/5, 4/5]T = (4/5) [1, 0 ,1]T + (1/5) [0, 1, 0]T ∈ TH(G) by (2) and eT x = 9/5 ≥ 5/3 = J
• X.

We conclude this section by showing that the transformation (14) applied to any
optimal solution of (T1(G)) reduces to (7).

Lemma 2.1. Let X∗ be an optimal solution of the SDP problem (T1(G)). Let g(X∗) and
h(X∗) denote the two transformations of X∗ given by (7) and (14), respectively. Then,
g(X∗) = h(X∗).

Proof: Let x̃ := g(X∗) and x∗ := h(X∗). Our first step is to establish that x̃ = X∗e =
ϑ1(G)diag(X∗). We follow the argument in Gruber and Rendl [16]. Let (λ∗, y∗, Z∗) be
an optimal solution for the SDP problem (T2(G)). By strong duality, we have X∗ Z∗ =
0 and λ∗ = ϑ1(G). Note that

Z∗
i j =






ϑ1(G) − 1, if i = j,

−1, if (i, j) 
∈ E,

−1 − y∗
i j , if (i, j) ∈ E .

Thus,

(X∗ Z∗)i i = X∗
i i Z∗

i i +
∑

(i, j)∈E

X∗
i j Z∗

i j +
∑

(i, j)
∈E,i 
= j

X∗
i j Z∗

i j ,

= (ϑ1(G) − 1)X∗
i i −

∑

(i, j)
∈E,i 
= j

X∗
i j , (18)

which implies that x̃ i = (X∗e)i = ϑ1(G) X∗
ii, or equivalently that x̃ = X∗e =

ϑ1(G)diag(X∗).
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Let X∗ = YTY, where Y = [y1, . . . , yn]. By definition of {d, vi, i ∈ V} in the proof
of Proposition 2.1, x∗

j = 0 if j /∈ P , which implies that yj = 0, or equivalently, X∗
jj = 0.

Hence, x̃ j = 0. Otherwise, by (11),

x∗
i = (dT vi )

2 = 1

ϑ1(G)X∗
i i

ϑ1(G)2(X∗
i i )

2 = ϑ1(G)X∗
i i ,

where we used X∗e = ϑ1(G)diag(X∗). This completes the proof. �

2.2. Reductions

We now show that any feasible solution of the optimization problems (T1(G))—(T3(G))
can be reduced to a feasible solution of the corresponding problem for the induced
subgraph GS for any S ⊆ V. The next lemma plays a crucial role in developing a warm-
start strategy in our implementation.

Lemma 2.2. Let G = (V, E) be a graph and let S ⊆ V, S 
= Ø. Then any feasible
solution of the optimization problems (T1(G)), (T2(G)), and (T3(G)) can be transformed
into a feasible solution of the optimization problems (T1(GS)), (T2(GS)), and (T3(GS)),
respectively.

Proof: Let X be a feasible solution of (T1(G)). Let M := X(S, S) denote the submatrix
of X whose rows and columns are indexed by the indices in S. Then, Mkl = 0 if (k,
l) ∈ ES and M � 0 since X � 0. If trace(M) = 0, then M = 0. In this case, we
can use the obvious feasible solution M̃ = (1/|S|)I. Otherwise, we only need to scale
M to satisfy the trace constraint, i.e., M̃ = (1/trace(M)) M is a feasible solution of
(T1(GS)).

Let (λ, y, Z) be a feasible solution of (T2(G)). We claim that (λ, yES , Z(S, S)) is a
feasible solution of (T2(GS)), where yES is the restriction of y to indices (k, l) ∈ ES. This
is easily verified by restricting the matrix equality constraint in (T2(G)) to the submatrix
indexed by S. By a similar argument, Z(S, S) � 0.

Finally, let x̃ ∈ TH(G). We claim that x̃ S ∈ TH(GS), where x̃ S is the restriction of x̃
to indices in S. Since x̃ ∈ TH(G), there exists a matrix W̃ that satisfies the conditions in
(4). It is easily argued that the reduced matrix

W̃S :=
(

Ũ (S, S) x̃S

x̃ T
S 1

)

� 0

satisfies the requirements to yield a feasible solution x̃ S of (T3(GS)), which implies that
x̃ S ∈ TH(GS). �
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We remark that the reductions of Lemma 2.2 preserve optimality under certain con-
ditions. If X∗ and (y∗, Z∗) are optimal solutions of (T1(G)) and (T2(G)), respectively,
and if X∗

ii = 0 for i /∈ S, then the reduced solutions remain optimal for (T1(GS)) and
(T2(GS)), respectively. Similarly, if x∗ is an optimal solution of (T3(G)) and x∗

i = 0 for
i /∈ S, then the reduced solution remains optimal for (T3(GS)).

3. Properties of approximate solutions

In this section, we derive several properties of a near-optimal feasible solution of (T3(G))
for a perfect graph G. The results of this section will be used in the algorithm to identify
a vertex that belongs to a maximum stable set from an approximate solution of (T3(G)).

Given a perfect graph G = (V, E), let

S := {S ⊆ V : S is a stable set, |S| = α(G)}, (19)

i.e., S is the collection of all maximum stable sets of G. Similarly, let

T := {T ⊆ V : T is a stable set, |T | < α(G)}, (20)

i.e., T is the collection of all other stable sets of G, including the empty set.
Next, we define the following index sets.

I := {i ∈ V : ∃ S ∈ S such that i ∈ S}, (21)

J := { j ∈ V : j 
∈ S for all S ∈ S}. (22)

The index sets I and J partition the vertex set V based on whether each vertex belongs
to at least one maximum stable set of G.

Our first result provides an upper bound on the components of a near-optimal feasible
solution x ∈ TH(G) corresponding to indices in J.

Proposition 3.1. Let G = (V, E) be a perfect graph and ε ∈ [0, 1]. Suppose that x ∈
TH(G) satisfies eTx ≥ α(G) − ε. Then, xj ≤ ε for all j ∈ J, where J is defined by (22).

Proof: We use the characterization of TH(G) given by (2). We can therefore write x ∈
TH(G) as a convex combination of the incidence vectors of stable sets of G, i.e.,

x =
∑

S∈S
λSχ

S +
∑

T ∈T
λT χT , (23)

where λS ≥ 0 for all S ∈ S, λT ≥ 0 for all T ∈ T , and

∑

S∈S
λS +

∑

T ∈T
λT = 1. (24)
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Multiplying both sides of (23) by eT , we obtain

eT x =
∑

S∈S
λSeT χ S +

∑

T ∈T
λT eT χT ≤ α(G)

∑

S∈S
λS + (α(G) − 1)

∑

T ∈T
λT ,

= α(G)

(
∑

S∈S
λS +

∑

T ∈T
λT

)

−
∑

T ∈T
λT = α(G) −

∑

T ∈T
λT ,

where we used eTχT = | T | ≤ α(G) − 1 for all T ∈ T in the first inequality and (24) in
the last equality.

By the hypothesis, we have eTx ≥ α(G) − ε, which, together with the previous
inequality, implies that

∑

T ∈T
λT ≤ ε. (25)

However, since no vertex j ∈ J belongs to a maximum stable set, we obtain

x j =
∑

T ∈T
λT χT

j ≤
∑

T ∈T
λT , ∀ j ∈ J.

Combining this inequality with (25) completes the proof. �

Proposition 3.1 implies that the components of a near-optimal x ∈ TH(G) corresponding
to indices in J are small. It follows from (2) that the set of optimal solutions of (T3(G))
is simply the convex hull of the incidence vectors χS of S ∈ S. Therefore, Proposition
3.1 serves also as a verification of the obvious result that x∗

j = 0 for all j ∈ J at any
optimal solution x∗ of (T3(G)).

Furthermore, Proposition 3.1 leads to the following immediate result.

Corollary 3.1. Let G = (V, E) be a perfect graph and ε ∈ [0, 1). Suppose that x ∈
TH(G) satisfies eT x ≥ α(G) − ε. Then, the set

K := {i ∈ V : xi > ε} (26)

satisfies K ⊆ I, where I is defined by (21).

We remark that Corollary 3.1 provides only a partial characterization of the index set
I. In particular, there may be vertices i ∈ I such that xi ≤ ε. In the extreme case, K may
be empty if ε is sufficiently large. Therefore, in order to identify at least one vertex in I
via the set K, we need to select ε carefully. The following result gives an upper bound
on ε so as to ensure that K is nonempty.

Proposition 3.2. Let G = (V, E) be a perfect graph. Suppose that x ∈ TH(G) satisfies
eTx ≥ α(G) − ε. If ε < α(G)/ (n+1), then the set K defined by (26) is nonempty.
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Proof: By Proposition 3.1, xj ≤ ε for all j ∈ J. Therefore,
∑

j∈J xj ≤ | J | ε. It follows
that

∑

i∈I

xi = eT x −
∑

j∈J

x j ,

≥ α(G) − ε(|J | + 1).

Since the maximum component of x in I is at least as large as the average of the
corresponding components, we obtain

max
i∈I

xi ≥ α(G) − ε(|J | + 1)

|I | .

A sufficient condition to ensure that K is nonempty is given by

α(G) − ε(|J | + 1)

|I | > ε.

Solving the inequality for ε together with | I | + | J | = n proves the assertion. �

Proposition 3.2 provides a sufficient condition to ensure that a vertex i ∈ I can
be identified from a near-optimal solution x ∈ TH(G). Our algorithm relies on this
result to select the parameter ε in an adaptive manner. We conclude this section by
pointing out that neither of the bounds in Propositions 3.1 and 3.2, in general, can be
improved.

Example 2. Let G = (V, E) denote the graph in Example 1. For ε ∈ [0,1], consider the
following family of feasible solutions of TH(G) parametrized by ε:

x(ε) := ε[0, 1, 0]T + (1 − ε)[1, 0, 1]T .

Note that α(G) = 2 and eTx(ε) = 2 − ε. Since I = {1, 3} and J = {2}, we have x2 = ε ≤ ε.
Furthermore, the set K defined by (26) is nonempty and coincides with I if and only if
ε < 1 − ε, or ε < 1/2 = α(G)/(n + 1).

4. The algorithm

In this section, we present an algorithm to extract a maximum stable set from a perfect
graph using Lovász’s theta function. Our algorithm is driven by the results of Section 2
and Section 3.

We now briefly explain Algorithm 1 outlined in the next page. The input is a perfect
graph G = (V, E). After initializing S (line 1), we preprocess G to put all the isolated and
degree-1 vertices of G into S and remove them as well as their neighbors from G (lines
2–6). Clearly, any isolated vertex belongs to all maximum stable sets of G. A simple
swapping argument shows that a degree-1 vertex can also be included in a maximum
stable set. The preprocessing step may reduce the size of the graph. At step 8, we solve
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the theta problem to an absolute error less than one in order to determine α(G) (line 9)
and store the corresponding primal and dual solutions. Then, the main loop is executed.
The parameters n and ε are set adaptively based on the current graph (line 12). We
resolve the theta problem up to an absolute error ε using the previously stored solution
as a warm-start. The resulting approximate primal solution is then transformed into a
solution of (T3(G)), which is used to identify a vertex to be added to S. Among such
vertices, the algorithm picks one with the largest number of neighbors in an attempt to
minimize the number of vertices in the remaining subgraph. After removing that vertex
and all of its neighbors from G, the preprocessing step is rerun to possibly eliminate
further isolated and degree-1 vertices. The parameters ε and α are updated accord-
ingly and the theta function is recomputed on the smaller subgraph using the reduced
solution as a warm-start. The next theorem provides an analysis of the complexity of
Algorithm 1.
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Theorem 4.1 Let G = (V, E) be a perfect graph. Algorithm 1 terminates in polynomial-
time with a maximum stable set S ⊆ V after at most min {α(G), n/3} approximate theta
number computations on graphs of successively smaller sizes.

Proof: Clearly, after line 9, α(G) is already computed. During the execution of the
main loop, ε is set in such a way that the transformation of an approximate solution of
(T1(G)) via (17) can be used to identify a vertex that belongs to a maximum stable set by
Propositions 2.1 and 3.2. The preprocessing step eliminates the remaining isolated and
degree-1 vertices. Therefore, at each theta number computation, the minimum degree of
any vertex in the underlying graph is at least two, which implies that at least three vertices
are removed from G every time line 15 is executed. Since every induced subgraph of a
perfect graph is also perfect and the theta number can be computed to within arbitrary
absolute error in polynomial-time using interior-point methods, the assertion follows.�

Since the MSS problem is in general NP-complete for imperfect graphs, Algorithm
1 does not necessarily return a maximum stable set upon termination for such graphs.
In particular, the results of Section 3 do not apply to the case of an imperfect graph G
= (V, E) since the relation (2) fails to hold. While the inequality α(G) ≤ ϑ(G) is still
satisfied, ϑ(G) can be a fairly poor upper bound for α(G). In fact, for every ε > 0, Feige
constructed families of imperfect graphs on n vertices such that ϑ(G) > n1−εα(G) [13].
This is not a surprising result since Hastad proved that α(G) cannot be approximated to
within a factor of O(n1−ε) unless any problem in NP admits a probabilistic polynomial-
time algorithm [17]. This observation in conjunction with the inherent limitations of the
existing algorithms for semidefinite programming suggests that an algorithm similar to
Algorithm 1 for general graphs is unlikely to be competitive with the several existing
efficient heuristic approaches. Therefore, we exclusively restrict our analysis to perfect
graphs in this paper.

5. Computational results

In this section, we discuss some details of the implementation of the algorithm outlined
in the previous section and present the results on some well-documented graphs.

Since our algorithm is specifically designed for perfect graphs, a first prerequisite is
to locate instances of such graphs in order to test our implementation. Despite the fact
that perfect graphs can be recognized in polynomial time [9, 12, 13], the running time of
the algorithm is O(n9) and is not practical even for small graphs. Therefore, generating
a random graph and testing for perfectness is not a viable option. Another option is to
generate random graph instances from certain known classes of perfect graphs (e.g.,
line graphs of bipartite graphs, interval graphs). However, given that there are at least
96 known classes of perfect graphs [19], such an experiment would be fairly restrictive
in nature.

Instead of using randomly generated graphs, we decided to test Algorithm 1 on
well-documented instances. However, we were unable to locate an exclusive collection
of instances of perfect graphs. Therefore, we decided to use the clique and coloring
instances from the Second DIMACS Implementation Challenge2 and from the instances
of graph coloring problems collected by Trick.3 We also included a few line graphs
tested in Benson and Ye [4] for the MSS problem. For the DIMACS problems,
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maximum stable sets and theta numbers are known for all but a few very large instances
(see, e.g., the DIMACS web site or Burer et al. [7]). For the remaining graphs, we used
the following criterion. We included an instance in our test set only if it has an integral
theta number. We stress that this is only a necessary condition in order for a graph to be
perfect. In fact, some of the graphs included in our test set such as the Mycielski graphs
[23] are known to be imperfect (and yet have α(G) = ϑ(G)). This is a difficult class
of graphs since the size of a maximum clique is two whereas the chromatic number
increases with their size. Nevertheless, Algorithm 1 successfully computed a stable set
on all instances whose size matches with the corresponding theta number. It follows
from (1) that the computed stable sets are indeed maximal.

We implemented Algorithm 1 in MATLAB 6.5 in exactly the same way as it is pre-
sented in Section 4. Each semidefinite programming (SDP) problem was solved using
SDPT3 version 3.0 [25], a primal-dual path-following interior-point solver for semidef-
inite programming. We used the computationally more efficient formulation (T1(G)) in
our experiments since the SDP formulation of (T3(G)) requires n + 1 additional equality
constraints. SDPT3 includes a subroutine called thetaproblem that sets up the theta prob-
lem and computes the theta number via (T1(G)) using the adjacency matrix of a graph
as input. We used this subroutine to set up the theta problems. We slightly modified the
termination criterion in the solver in order to account for a prespecified absolute error
as opposed to the default relative error. After the theta problem was properly set up, we
called the main solver sqlp, which enables the user to take advantage of warm-starts
by specifying a starting point. All of the computations were performed on a 1.7 GHz
Pentium IV processor with 512 MB of RAM running under Linux.

Table 1 presents the results of the implementation on forty-five instances. The rows
are divided into four major groups based on the origin of the instances. The first group
consists of the complements of the instances for the maximum clique problem from the
Second DIMACS Implementation Challenge. The line graphs used in Benson and Ye
[4] constitute the second group. The third group contains the Mycielski graphs [23].
The coloring instances from Trick’s website constitute the last group. Table 1 consists
of seven columns divided into four groups. The first column presents the name of the
instance. The second group of columns reports the number of nodes | V |, the number
of edges | E |, and the size of the maximum stable set α(G), which coincides with
ϑ(G). The third group of columns presents the CPU times in seconds rounded to the
nearest integer. (T1) denotes the running time of the theta function using the subroutine
thetaproblem in SDPT3 with the default tolerances (i.e., 10−8 both for the relative
duality gap and feasibility). (T2) represents the running time of Algorithm 1 on the
corresponding instance. Finally, the last column presents the number of theta function
computations (i.e., number of times the while loop is executed) by Algorithm 1.

Table 1 indicates that Algorithm 1 is capable of extracting maximum stable sets in
graphs of size up to several hundred vertices and several thousand edges in a fairly short
amount of time. In particular, Algorithm 1 terminated in less than about 20 minutes
on all of the tested instances and in less than 5 minutes on most of the instances. A
comparison of the columns T1 and T2 reveals that the running time of Algorithm 1 is
comparable to the computation time of the theta number on the original graph. In fact,
Algorithm 1 was slower only on sixteen of the forty-five graphs and outperformed the
theta computation on most of the larger graphs. Line graphs were the only instances for
which it was significantly slower. On this class of graphs, Stephen and Tunçel established
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Table 1. Computational results.

Graph Time

Instance |V | |E | α(G) T1 T2 Num.

hamming6-2.co 64 192 32 2 4 5

hamming8-2.co 256 1024 128 14 40 16

johnson8-2-4.co 28 168 4 1 1 3

johnson8-4-4.co 70 560 14 4 7 6

johnson16-2-4.co 120 1680 8 24 27 7

san200-0.7-1.co 200 5970 30 1402 1208 4

san200-0.9-1.co 200 1990 70 53 53 6

san200-0.9-2.co 200 1990 60 61 62 7

san200-0.9-3.co 200 1990 44 89 71 8

line1 248 1202 50 23 84 25

line4 597 3486 100 281 1202 58

line5 597 3481 100 297 1146 57

line6 597 3625 100 325 1246 55

myciel3 11 20 5 2 1 1

myciel4 23 71 11 1 1 2

myciel5 47 236 23 2 3 3

myciel6 95 755 47 7 9 4

myciel7 191 2360 95 84 69 5

queen5.5 25 160 5 2 2 2

queen6.6 36 290 6 2 3 3

queen7.7 49 476 7 4 4 4

queen8.8 64 728 8 5 7 4

queen9.9 81 1056 9 10 11 5

queen10.10 100 1470 10 21 19 5

queen11.11 121 1980 11 42 40 6

queen12.12 144 2596 12 82 73 7

queen13.13 169 3328 13 159 138 8

queen14.14 196 4186 14 292 247 8

anna 138 493 80 8 2 5

david 87 406 36 5 6 8

huck 74 301 27 4 4 7

jean 80 254 38 4 2 4

games120 120 638 22 7 18 12

miles250 128 387 44 6 11 13

miles750 128 2113 12 63 54 6

miles1000 128 3216 8 180 123 4
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Table 1. Continued.

Graph Time

Instance |V | |E | α(G) T1 T2 Num.

miles1500 128 5198 5 690 589 3

zeroin.i.1 211 4100 120 334 232 4

zeroin.i.2 211 3541 127 239 162 7

zeroin.i.3 206 3540 123 239 162 7

mulsol.i.1 197 3925 100 288 177 4

mulsol.i.2 188 3885 90 280 213 7

mulsol.i.3 184 3916 86 284 211 6

mulsol.i.4 185 3946 86 291 222 7

mulsol.i.5 186 3973 88 296 224 6

that successive relaxation methods based on SDP perform poorly for the MSS problem
in the worst case [24].

Several factors contribute to the efficiency of Algorithm 1. First of all, a close ex-
amination of the last column in Table 1 reveals that the number of calls to the theta
function by Algorithm 1 is usually much smaller than the worst-case theoretical bound
of Theorem 4.1. This is mainly due to the fact that Algorithm 1 removes a vertex with
the largest degree, which results in a potentially significant reduction in the size of
the subsequent graphs. Line graphs are the only instances that require relatively large
number of theta function computations. Secondly, Algorithm 1 computes only an ap-
proximate solution. For our test set, the computed solution usually is correct up to only
three digits of accuracy since n < 1000 on all of the tested instances (cf. Proposi-
tion 3.2), which results in substantial savings in terms of the number of interior-point
iterations in comparison with the default value of eight digits of accuracy. Thirdly, Al-
gorithm 1 significantly reduces the computation time of the theta number for smaller
subgraphs by utilizing a warm-start strategy. Interior-point algorithms are known to
be very sensitive to the initial iterate. Since each theta function is solved to a fairly
rough accuracy, the reduced solution tends to be sufficiently far from the boundary of
the feasible region, thereby providing a very good starting point for the subsequent
theta number computation. In practice, we observed that it typically takes only two
to three interior-point iterations to resolve the theta problem up to the specified accu-
racy. Finally, the preprocessing stage helps to yield further reduction in the size of the
problem.

We do not compare Algorithm 1 with the other available efficient heuristic approaches
for the following reasons. Our main focus in this paper is to develop a practical al-
gorithm for perfect graphs without sacrificing polynomiality. The only polynomial-
time algorithm we are aware of is due to Grötschel et al. [14], which is based on the
computationally-not-so-efficient ellipsoid algorithm. On the other hand, there are sev-
eral efficient heuristics which can handle much larger instances than our algorithm (see,
e.g., the references in Bomze et al. [6] and Burer et al. [7]). The only bottleneck of
Algorithm 1 is the computation of the theta number using the SDP formulation with a |
V | × | V | matrix and | E | + 1 equality constraints (cf. T1(G)). The current solvers can



246 YILDIRIM AND FAN-ORZECHOWSKI

handle graphs of up to a few thousand vertices and a few thousand edges. In fact, we
were able to solve the theta problem on several larger instances on the same personal
computer from the Second DIMACS Challenge such as MANN-a45.co (1035, 1980),
brock200-4.co (200, 5066), keller4.co (171, 5100), where (·,·) denotes the number of
vertices and edges, respectively, However, all of these instances failed to produce an
integral theta number, which is a certificate of imperfectness. Therefore, we did not
include these instances in our results. Nevertheless, we stress that Algorithm 1 can com-
pute in polynomial-time a maximum stable set in a perfect graph whereas the heuristic
approaches do not have any theoretical guarantees. As a result, we do not think that a
comparison would be meaningful. Rather, we view Algorithm 1 as a complement to the
existing rich literature on the maximum stable set problem.

6. Concluding remarks

In this paper, we presented a practical polynomial-time algorithm to extract a maximum
stable set in perfect graphs using Lovász’s theta function. Our algorithm relies on var-
ious transformations and reductions among different formulations of the theta problem
and on several new properties of the near-optimal feasible solutions of the appropri-
ate formulation of the theta problem. The algorithm sequentially computes the theta
function up to an adaptively selected rough accuracy on successively smaller graphs
and effectively employs a warm-start strategy. Computational results indicate that our
algorithm can efficiently extract maximum stable sets on several test instances.

One disadvantage of our algorithm is the extensive memory requirements of interior-
point methods for SDP on large-scale graphs. Bundle methods [18] or recent nonlinear
optimization algorithms for SDP [3, 8] may lead to the successful application of our algo-
rithms to larger perfect graphs—especially since only a rough approximation is required
at each computation of the theta number. We intend to explore similar alternatives.

The minimum clique cover (equivalently graph coloring) problem can also be solved
in polynomial-time for perfect graphs [14]. In the near future, we intend to work on
a similar, practical, polynomial-time algorithm for the minimum clique cover problem
relying on an approximate solution of the theta function.
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Notes

1. The Science Citation Index lists about 150 papers citing Lovász’s original paper as of June 2004.
2. http://mat.gsia.cmu.edu/challenge.html
3. http://mat.gsia.cmu.edu/COLOR/instances.html
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