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The amount of entanglement carried by a quantum bipartite state is usually evaluated in terms of
concurrence �S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 �1997�; P. Rungta, V. Bužek, C.
M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315 �2001��. We give a physical
interpretation of concurrence that reveals a way of its direct measurement and discuss possible
generalizations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2187398�

Entanglement, which has been considered for decades in
the context of fundamentals of quantum mechanics, turns
now more and more into a key tool of practical realization of
quantum information technologies. The quantum key
distribution1 for completely secured communications should
be mentioned here, first of all �e.g., see Ref. 2�.

The design and manufacturing of generators of en-
tangled states require a control of amount of entanglement
carried by the states. For pure state � of bipartite systems
HA � HB of format n�n �n=dim HA,B; n=2 corresponds to
qubits, n=3 corresponds to qutrits, etc.�, this quantity is
given by the concurrence

C��� = �v�1 − Tr��r
2�� , �1�

that has been proposed in Ref. 3. Here, �r denotes the re-
duced �single-party� density matrix, corresponding to the
state �, and we use the normalization factor v=n /n−1, to
reduce the concurrence to the interval �0,1�. See Ref. 4 for
further discussion.

The aim of this letter is to give a natural physical inter-
pretation of the concurrence, and thus to show a way of
direct measurement of the amount of bipartite entanglement
in terms of mean values of certain physical quantities. Our
approach also suggests a general definition of the concur-
rence for multipartite systems discussed below.

It has been shown in Ref. 5 that entanglement, like co-
herence and squeezing, can be associated with quantum fluc-
tuations or quantum uncertainties, which are minimal for co-
herent �separable� states and maximal for completely
entangled states. The fluctuations are measured by the total
variance defined by the equation

V��� = �
�

���X�
2 ��	 − ���X���	2, �2�

where the sum is extended over orthonormal basis X� of Lie
algebra of local observables. The basic observables X� act on
one of the components: X�=Xi

A or X�=Xj
B, where Xi

A and Xj
B

are are orthonormal bases in the space of traceless Hermitian
operators in HA and HB, respectively. It is important to real-
ize that the total variance is independent of the choice of the
basic observables X�.

The total uncertainty of all basic observables attains its
maximal value in the case of completely entangled states
�like Bell states of two qubits�.

The first sum in the right-hand side of Eq. �2� is inde-
pendent of the state �. In fact, the sum

C = �
�

X�
2

known as Casimir operator,6,7 acts as a multiplication by a
scalar CAB �equal to 6 for two qubits, for example�. Thus,

V��� = CAB − �
i

���Xi��	2, �3�

so that the measurement of the total uncertainty is reduced to
the measurement of mean values of basic observables in the
right-hand side of Eq. �3�. In the case of complete entangle-
ment,

���X���	 = 0

for all � �see Ref. 5�, so that the total uncertainty �3�
achieves its maximum.

We now show that concurrence �1� can be equivalently
expressed in terms of the total uncertainty �3� in the case of
bipartite systems. Consider first the case of two qubits with
the state

��	 = �
�,��=0

1

������,��	, �
�,��=0

1

������
2 = 1, �4�

where �� ,��	
��	 � ���	 denotes a composite state. It can be
easily seen that the concurrence �1� is then cast to the form

C��� = 2��00�11 − �01�10� ,

=2���00�2��11�2 + ��01�2��10�2,− 2 Re��00�11�01
* �10

* ��1/2.

�5�

On the other hand, using Pauli operators,

�x = �0	�1� + �1	�0� ,

�y = − i��0	�1� − �1	�0�� ,

�z = �0	�0� − �1	�1� �6�

as the basic local observables Xi
A and Xj

B, one gets

V��� = 4 + 4���00�2��11�2 + ��01�2��10�2

− 2 Re��00�11�01
* �10

* �� . �7�

Comparing now Eqs. �5� and �7� and taking into account that
Vmax=6 and Vmin=4 in the case of completely entangled anda�Electronic mail: boztop@fen.bilkent.edu.tr
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unentangled states of two qubits, respectively, we get

C��� =�V��� − Vmin

Vmax − Vmin
�8�

in the case of the general two-qubit state �4�. Thus, the
amount of entanglement carried by a pure two-qubit state can
be determined by measurement of mean values of the basic
observables given by Pauli operators �6�. These observables
can be directly measured in experiments, say by the Stern–
Gerlach apparatus in the case of spins, or by means of polar-
izers in the case of photons, etc.8

As a matter of fact, this expression �8� is equivalent to
�1� for any bipartite system.9 For example, in the representa-
tion of basic observables for qutrits �n=3� given in Ref. 10,
the maximal and minimal values of total uncertainty in bi-
partite system are Vmax=32/3 and Vmin=8, respectively. A
possible realization of qutrits is provided by biphotons.11

Equation �8� allows us to interpret concurrence �1� as a
square root of the normalized total uncertainty of basic ob-
servables, specifying the system. In view of Eq. �3�, the latter
can be determined in terms of measurement of expectation
values of the basic observables ���X���	. In other words, Eq.
�8� provides an operational definition of measure of bipartite
entanglement. Note also that Eq. �8� allows one to define the
concurrence for any multipartite system.

Our considerations so far have applied to the pure bipar-
tite states. In connection with mixed states, we now note that
the uncertainty of an observable Xi can be interpreted as a
specific Wigner–Yanase “quantum information” about a state
� extracted from the macroscopic measurement of Xi in this
state.12 The generalization of Wigner–Yanase “information”
on the case of mixed states with the density matrix � has the
form

Ii��� = −
1

2
Tr��Xi,�

1/2�2� � 0. �9�

It can be easily seen that in the case of pure states when �
= ��	��� the total amount of Wigner–Yanase skew informa-
tion

I��� = �
i

Ii��� �10�

coincides with the total uncertainty �2�. The supposition is
that Eq. �10� can represent a reasonable estimation from
above for the amount of concurrence in the mixed bipartite
state.9
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