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The amount of entanglement carried by a quantum bipartite state is usually evaluated in terms of
concurrence [S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997); P. Rungta, V. Buzek, C.
M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315 (2001)]. We give a physical
interpretation of concurrence that reveals a way of its direct measurement and discuss possible
generalizations. © 2006 American Institute of Physics. [DOI: 10.1063/1.2187398]

Entanglement, which has been considered for decades in
the context of fundamentals of quantum mechanics, turns
now more and more into a key tool of practical realization of
quantum information technologies. The quantum key
distribution' for completely secured communications should
be mentioned here, first of all (e.g., see Ref. 2).

The design and manufacturing of generators of en-
tangled states require a control of amount of entanglement
carried by the states. For pure state ¢ of bipartite systems
H,® Hp of format nXn (n=dim H, p; n=2 corresponds to
qubits, n=3 corresponds to qutrits, etc.), this quantity is
given by the concurrence

C() =\o[1 - Tr(p)], (1)

that has been proposed in Ref. 3. Here, p, denotes the re-
duced (single-party) density matrix, corresponding to the
state ¢, and we use the normalization factor v=n/n-1, to
reduce the concurrence to the interval [0,1]. See Ref. 4 for
further discussion.

The aim of this letter is to give a natural physical inter-
pretation of the concurrence, and thus to show a way of
direct measurement of the amount of bipartite entanglement
in terms of mean values of certain physical quantities. Our
approach also suggests a general definition of the concur-
rence for multipartite systems discussed below.

It has been shown in Ref. 5 that entanglement, like co-
herence and squeezing, can be associated with quantum fluc-
tuations or quantum uncertainties, which are minimal for co-
herent (separable) states and maximal for completely
entangled states. The fluctuations are measured by the fotal
variance defined by the equation

V() = 20 (UXEL) — (X )2, (2)

where the sum is extended over orthonormal basis X, of Lie
algebra of local observables. The basic observables X, act on
one of the components: XazX? or onz)(j.9 , where X? and Xf
are are orthonormal bases in the space of traceless Hermitian
operators in H, and Hp, respectively. It is important to real-
ize that the total variance is independent of the choice of the
basic observables X,,.

The total uncertainty of all basic observables attains its
maximal value in the case of completely entangled states
(like Bell states of two qubits).
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The first sum in the right-hand side of Eq. (2) is inde-
pendent of the state . In fact, the sum

c=>X

known as Casimir 0perator,6’7 acts as a multiplication by a
scalar Cyp (equal to 6 for two qubits, for example). Thus,

V() = Cap = 2 (X%, (3)

so that the measurement of the total uncertainty is reduced to
the measurement of mean values of basic observables in the
right-hand side of Eq. (3). In the case of complete entangle-
ment,

(X ) =0

for all a (see Ref. 5), so that the total uncertainty (3)
achieves its maximum.

We now show that concurrence (1) can be equivalently
expressed in terms of the total uncertainty (3) in the case of
bipartite systems. Consider first the case of two qubits with
the state

1 1
W= 2 el 2 el =1, (4)

€.0'=0 .0'=0
where |€,¢")=|€)®|€’) denotes a composite state. It can be

easily seen that the concurrence (1) is then cast to the form

C() = 2|dhooth11 — Yo1¥h10

[l

=20 ool 11 * + [0 P 10]%. — 2 Re (oot o1 #1012

(5)
On the other hand, using Pauli operators,
o= 0X(1] +[1)0],
oy =—i(|0)1] = [1)0]),
o, =10)0] - [1)(1 (6)

as the basic local observables Xf‘ and Xf , one gets

V() = 4 + 4[| oo *[th11)* + [ou [ ol
— 2 Re (Yoot o1 101 (7)

Comparing now Egs. (5) and (7) and taking into account that
Vimax=6 and V_;.=4 in the case of completely entangled and
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unentangled states of two qubits, respectively, we get

V( W) - Vmin (8)

C =
(lp) Vmax - Vmin

in the case of the general two-qubit state (4). Thus, the
amount of entanglement carried by a pure two-qubit state can
be determined by measurement of mean values of the basic
observables given by Pauli operators (6). These observables
can be directly measured in experiments, say by the Stern—
Gerlach apparatus in the case of spins, or by means of polar-
izers in the case of photons, etc.’

As a matter of fact, this expression (8) is equivalent to
(1) for any bipartite system.9 For example, in the representa-
tion of basic observables for qutrits (n=3) given in Ref. 10,
the maximal and minimal values of total uncertainty in bi-
partite system are V,,=32/3 and V;,=8, respectivelly. A
possible realization of qutrits is provided by biphotons. :

Equation (8) allows us to interpret concurrence (1) as a
square root of the normalized total uncertainty of basic ob-
servables, specifying the system. In view of Eq. (3), the latter
can be determined in terms of measurement of expectation
values of the basic observables (#/|X,|#). In other words, Eq.
(8) provides an operational definition of measure of bipartite
entanglement. Note also that Eq. (8) allows one to define the
concurrence for any multipartite system.

Our considerations so far have applied to the pure bipar-
tite states. In connection with mixed states, we now note that
the uncertainty of an observable X; can be interpreted as a
specific Wigner—Yanase “quantum information” about a state
¢ extracted from the macroscopic measurement of X; in this
state.'” The generalization of Wigner—Yanase “information”
on the case of mixed states with the density matrix p has the
form

1
Ii{p) == Tr([X;.p"*J) = 0. 9)
It can be easily seen that in the case of pure states when p

=|y)(y| the total amount of Wigner—Yanase skew informa-
tion
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1(p) = 2 I(p) (10)

coincides with the total uncertainty (2). The supposition is

that Eq. (10) can represent a reasonable estimation from

above for the amount of concurrence in the mixed bipartite
9

state.
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