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Abstract In today’s markets, non-uniform, customized products complicate the manufactur-

ing processes significantly. In this paper, we propose a cellular manufacturing system design

model to manage product variety by integrating with the technology selection decision. The

proposed model determines the product families and machine groups while deciding the

technology of each cell individually. Hedging against changing market dynamics leads us

to the use of flexible machining systems and dedicated manufacturing systems at the same

facility. In order to integrate the market characteristics in our model, we proposed a new cost

function. Further, we modified a well known similarity measure in order to handle the oper-

ational capability of the available technology. In the paper, our hybrid technology approach

is presented via a multi-objective mathematical model. A filtered-beam based local search

heuristic is proposed to solve the problem efficiently. We compare the proposed approach

with a dedicated technology model and showed that the improvement with the proposed

hybrid technology approach is greater than 100% in unstable markets requiring high product

varieties, regardless of the volumes of the products.

Keywords Cellular manufacturing systems · Technology selection · Product variety

1. Introduction

Business world of the 21st century witnesses an expanding global competition with increased

variety of products and low demand. Old manufacturing technologies fail to meet the increas-

ing demand for customized production. The concept of Group Technology (GT) had risen

to reduce WIP inventories, setups, material handling distances, and batch sizes. Cellular

manufacturing system design (CMSD) is the application of GT at the production floor. In

literature, different approaches are proposed to solve the CMSD problem. In their review pa-

per, Selim et al. (1998) critically evaluate the research on cell formation. They highlight the

need for incorporation of manufacturing flexibility as a strategic and operational competitive
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weapon in cellular manufacturing systems. The general assumption of stable markets with

highly standardized products with high and stable demand patterns is no more valid. Thus,

we propose a new model to incorporate the market information effectively, while designing a

flexible and efficient manufacturing system. We are inspired by the case study of Venkatesan

(1990). The author reports the dissatisfaction of CMSD to cope with the increasing product

variety and the actions taken by the factory to become more flexible while maintaining the

benefits of cellular manufacturing. Ramdas (2003) provides a framework for managerial de-

cisions about variety. The author states that an increase in long run profits depends on how

the firm’s functions are managed to implement variety.

On the other hand, increased product variety, customized and instable product designs,

and international competition lead to the development of new manufacturing technologies.

Productivity, quality, and flexibility are critical measures of manufacturing performance for

justifying the investment in computer integrated manufacturing systems. Flexibility is the key

concept used in the design of modern automated manufacturing systems. In literature, there

are number of studies that analyze the trade off between flexible technology and dedicated

technology. Gupta and Goyal (1989) provide a comprehensive review of the literature on

flexibility. Singhal et al. (1987) define the benefits of flexible technologies as the ability

to respond quickly to changes in design and demand, lower direct manufacturing costs,

improved quality, economies of scope, and flexibility in scheduling.

Technology selection problem deals with selecting the best alternative among available

technologies while designing a manufacturing system. In this paper, the proposed model

makes use of the automated technologies while keeping the dedicated technologies as an

alternative. There exist studies that considered technology selection problem simultaneously

with the facility location and capacity acquisition problems. Rajagopalan (1993), Li and

Tirupati (1994), and Verter and Dasci (2002) studied technology selection problem integrated

in the facility location and capacity expansion decision models. In general, technology se-

lection models do not deal with specific manufacturing system design issues. As far as we

know, the cellular manufacturing and technology selection problems are studied separately

in the literature; Bokhorst et al. (2002) is a notable exception. They present a mixed in-

teger programming model to solve the part-operation allocation problem together with the

investment appraisal of CNC machines to maximize the net present value over a specified

planning horizon. Recently Abdi and Labib (2004) studied the manufacturing flexibility to

sustain competitiveness via grouping the products into families. They focus on the design for

new product introduction and analyze reconfigurable manufacturing systems. Their model

does not include machining decisions. Wicks and Reasor (1999) studied on a multi period

formulation that incorporates demand uncertainty. They suggested a model that minimizes

the relocation costs of a dedicated cellular manufacturing system, focusing on the expected

demand fluctuations. In our model we focus on the design problem such that the set of parts

and their attributes (including part volume, location in the life cycle and number of design

changes) are all known at the beginning of the problem. We introduce flexible systems to-

gether with dedicated systems in the same cellular manufacturing system. It is known that the

flexible manufacturing systems are more robust to fluctuations in demand and design than

dedicated systems given that they have higher processing flexibilities. Although we do not

test robustness in our study, we assume that it is a side benefit of flexibility discussed here.

We show the significance of hybrid technology implementation at the production floor to

cope with the variations in the market at the present. On the other hand, Garbie et al. (2005)

propose a strategy to introduce a new part into an existing cellular manufacturing system.

They provide new similarity, productivity and flexibility measures that can be used at any

time in the future to evaluate and quantify the effectiveness of the system.
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The product variety management should be effectively put into operation in today’s world.

Today’s high product variety environments come not only with the higher number of dif-

ferentiated products with higher number of design changes but also with higher variations

in demand and lower volumes of production. We believe that the new era of higher product

variety environments should be analyzed together with all the associated costs. The proposed

model captures all these characterizations of the new manufacturing environment. The model

determines the product families and machine groups while deciding the technology of each

cell individually such that we can analyze product variety management in cellular manufac-

turing systems by integrating technology selection decision in the model. In order to hedge

against the market variability we make use of flexible machining systems and dedicated man-

ufacturing systems at the same facility. Our hybrid technology approach allows both types of

manufacturing systems exist in the same facility (but in different cells). The model forces the

parts with high demand and/or design variability to the cells with flexible machining systems.

The parts with stable demand and/or design patterns are processed in dedicated manufactur-

ing cells. The economies of scope advantage of flexible machining systems are integrated

with the economies of scale advantage of dedicated manufacturing systems in the hybrid

technology approach. Further, in order to integrate the market characteristics in our model,

we propose a new cost function. In the paper, our hybrid technology approach is presented

via a multi-objective mathematical model. Few studies (e.g. Akturk and Balkose (1996) and

Suresh and Slomp (2001)) have formulated the cell formation problem by a multi-objective

modeling approach, which is another contribution to part-machine grouping problem. A

filtered-beam based local search heuristic is proposed to solve the problem efficiently.

The remainder of the paper is organized as follows. In Section 2, we define the scope of

the study with underlying assumptions and state a mathematical formulation of the problem.

In Section 3, we present the proposed solution procedure. The results of the experimental

design to test the efficiency of the proposed algorithm are discussed in Section 4. Finally,

Section 5 concludes the discussion about the study and some future research directions are

provided.

2. Problem statement

In this study, an integrated approach is proposed to solve the cell design and technology

selection problems simultaneously during the design of an advanced manufacturing system.

The notation that will be used throughout the paper is as follows:

N : number of parts

FM : set of flexible machine types

DM : set of dedicated machine types

O : number of operations

K : maximum number of cells

Di : annual demand of part i
MCMmo : 0-1 binary parameter that equals to 1 if machine m is capable of performing

operation o
PRMio : 0-1 binary parameter that equals to 1 if part i requires operation o
cid : cost of assigning part i to a dedicated cell

cif : cost of assigning part i to the FMS cell

avol : production volume coefficient of the part

aσ : demand variation coefficient of the part

ades : design stability coefficient of the part
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DMJd
ij : dissimilarity of parts i and j in a dedicated cell

DMJ f
ij : dissimilarity of parts i and j in a flexible cell

Invm : annual investment cost of machine m (total investment costs/expected

lifetime)

Maintm : annual maintenance cost of machine m
Labord : cost of one labor in a dedicated cell

Labor f : cost of labor operating the FMS cell

OR : operator ratio

SR : supplementary labor ratio

UBK : upper bound on the cell size

H : a very large constant

TCap : theoretical capacity of machines

Ptimeimo : processing time of operation o of part i on machine m
Ltimeim : load-unload time of part i on machine m
αm : upper utilization limit of machine m
βm : lower utilization limit of machine m
TotLdk : total cost of labor in dedicated cell k
TotL f k : total cost of labor in FMS cell k
Utilmk : utilization of machine type m in cell k
Excessmk : excess capacity of machine type m in cell k
Norm fh : normalized value of objective h
GMinf h : global minimum value of objective h
LMaxf h : local maximum value of objective h

In the model, we assume there exist two available technologies: flexible and dedicated

manufacturing systems. Machine Capability Matrix (MCM) is a 0-1 matrix presenting the

operational capabilities of the machines. The matrix is composed of two blocks: one iden-

tity matrix representing the dedicated machines and an irregular 0-1 matrix that shows the

capability of flexible machines. As the number of 1’s in a flexible machine’s row increases,

we assume the machine gets more flexible, since the machine flexibility can be measured

by the number of operations that can be handled by that machine. Part Requirement Matrix

(PRM) is a 0-1 matrix representing the processing requirements of the parts. The processing

time of each operation of each part on each machine (Ptimeimo) is predetermined. Processing

times of parts are important not only because they are utilized in determining the number

of machines required of each type, but also they form a basis for the technology decision

via determining the throughput times. The processing times of flexible machines are longer

compared to that of dedicated machines. Load and unload times (Ltimeim) are assumed to

be equal for each part-machine pair and known a priori, but on the average, the load/unload

times of a flexible machine is longer compared to that of a dedicated machine. However,

each part should be loaded and unloaded on a dedicated machine for each operation while

the flexible machines can handle a number of operations with a single load/unload. Since

there are several machines in a dedicated cell, total load/unload time of a flexible cell will

be shorter than it is in dedicated cells. We assume that one operator is enough to handle the

required activities in a flexible cell whereas each machine needs an operator in a dedicated

cell. The machine investment, maintenance, and labor costs are assumed to be known.

In order to integrate the market characteristics in our model, we proposed a new cost func-

tion. This is the first study to assign costs to design instabilities and demand variations. The

costs associated with product variety is quantified via the differences in three characteristics

of a product in a production environment: production volume, demand pattern, and design

Springer



Int J Flex Manuf Syst (2006) 17: 93–117 97

Table 1 Proposed product
variety cost function parameters Production volume avol Effect in cid Effect in ci f

High 1 avol 4 - avol

Medium 2 avol 4 - avol

Low 3 avol 4 - avol

Position in the life-cycle aσ Effect in cid Effect in ci f

P3, P4 1 a2
σ (4 − aσ )2

P2, P5 2 a2
σ (4 − aσ )2

P1 3 a2
σ (4 − aσ )2

Number of design changes
Part age

ades Effect in cid Effect in ci f

Low 1 a3
des (4 − ades )3

Medium 2 a3
des (4 − ades )3

High 3 a3
des (4 − ades )3

Fig. 1 Traditional product life cycle

stability. An important question is how we can quantify and also unify these intangible

measures as discussed below. The proposed product variety costing scheme is given in

Table 1.

Production volume, avol: A part can have a high production volume whereas another,

but operationally similar, part can have a low production volume. If these two parts are

assigned in the same cell, the frequent and interrupting setup requirements can become a

burden contradicting that setup should have been an advantage of cellular manufacturing.

Low volume parts should be directed to FMS cells, whereas the high-volume parts to the

dedicated cells.

Demand pattern, aσ : In the early stages of the typical life cycle of a product (periods P1

and P2 of Fig. 1), demand variation is high. However, the demand has much less variation

during the saturation phase (periods P3 and P4). It is not wrong to assume that there exists no

product of period P6. To allocate resources for a newly introduced part may not end up with

satisfactory results. We should benefit from the flexibility of flexible manufacturing cells, and

force the high variation parts to be assigned to FMS cells. The importance of the variation

cost is emphasized by assigning the square power of the coefficients as the cost values. The

coefficients are based on the life cycle positions of the parts.
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Design stability, ades: Many parts have evolving designs to satisfy the changing demands

of customers. The design is said to be stable when the processing requirements are not changed

often. When it is evolving, new operations may be added or some may be discarded from

the routing frequently. The flexible manufacturing systems are more robust to fluctuations

in design than the dedicated systems given that they have higher processing flexibilities.

There is positive probability that the flexible cell can handle the added operation without

any change whereas this probability is much lower in a dedicated cell. Thus, we should

assign an evolving part to a dedicated cell if and only if we have no other alternative. The

operational requirements of each part are an important attribute of the CMSD problem,

which is quite sensitive to the design stability. The significance and superiority of the design

stability is emphasized by assigning the triple power of the coefficients as the cost values.

The coefficients are based on the average number of design changes per life time unit of the

product as presented in Table 1.

After identification of the values of coefficients and associated cost values of parts, final

product variety cost function values are calculated for each part. Having assigned different

weights to the attributes, we make use of the simplicity and power of additivity in our proposed

cost function. The following cid and cif parameters can be interpreted as complementary costs,

such that the more we prefer to assign a part to the flexible cell, the less we prefer to assign

that part to a dedicated cell, and vice versa.

cid = avol + a2
σ + a3

des and cif = (4 − avol) + (4 − aσ )2 + (4 − ades)3

The cost function have several important missions to be used in the solution procedure.

It is basically used as a surrogate objective function of the model. Further, it provides us

a strong basis for the selection of technology for each cell. The possible values of cid and

cif range in between [3, 39]. For example, cid = 3 and cif = 39 if there is a part i with a

high production volume (avol = 1), position in the life-cycle is P3 or P4 (aσ = 1) and the

number of design changes is low (ades = 1). Similarly, cid = 39 and cif = 3 if there is a

part i with a low production volume (avol = 3), newly introduced to market (aσ = 3) with

high design changes (ades = 3). Therefore the parts with small cid values are most probable

members of families being processed on dedicated cells, and the ones with high cid (or with

low cif ) values are most probably selected for being processed on flexible cells. When we

plot all the possible values of these cost functions, we observe that the cid cost value of 15

is a meaningful candidate to represent a threshold value to choose between dedicated and

flexible technologies. This threshold value is utilized at critical points in the algorithm.

In addition to the new cost function, we modified a well known operational similarity

measure in order to handle the operational capability of available technology. Jaccard co-

efficient (JC) is the most often used coefficient in the similarity context. It is not only a

powerful coefficient but also very simple and effective. JC calculates the similarity between

two machines m and n as follows:

JCmn = number of parts visiting both machines

total number of parts processed on these machines
where 0 ≤ JCmn ≤ 1

The main assumption underlying this coefficient is that a specific operation can be han-

dled by a specific machine, and whenever a part requires that operation, it has to visit that

machine. However, with the available flexible manufacturing technology, an operation can

be handled by several different types of machines. Similarity context should be adapted to the

technological advancements. The proposed coefficient calculates the dissimilarity between

two parts i and j in two stages based on JC as follows:
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1. A hypothetical manufacturing cell is designed to find the minimum number of machines

required to produce two parts in the same cell. Calculations are based on the average

product variety costs (cid ’s) of the two parts. If the average cost of parts i and j is lower

than the threshold value, the dedicated block of the MCM is available for the calculation

of the similarity and hence the dissimilarity (DMJd
ij). Otherwise, if the average cost is

high, i.e., parts are more likely to meet in a flexible cell, flexible block of MCM is used to

calculate the dissimilarity of parts (DMJ f
ij ).

2. After the hypothetical cell design, the Dissimilarity Coefficients (DMJij) are calculated as

follows:

DMJij = 1 − number of machines where both parts have an operation

total number of machines in the hypothetical cell
,

where 0 ≤ DMJij ≤ 1

Example 1. Let the threshold value be 15 and PRM and MCM data are given as follows:

PRM op1 op2 op3 Variety Costs (cid )
p1 1 1 1 15
p2 1 1 0 5
p3 0 1 0 33

MCM op1 op2 op3
dm1 1 0 0
dm2 0 1 0
dm3 0 0 1
fm1 1 0 1
fm2 0 1 1

Average Costp1p2 = 15 + 5
2

= 10 < 15. Since the average cost is less than the preselected

threshold value, these two parts p1 and p2 can be assigned to a dedicated cell composed of

machines dm1, dm2 and dm3 so that

DMJd
12 = 1 − |dm1 + dm2|

|dm1 + dm2 + dm3| = 1 − 2

3
= 1

3
.

On the other hand, for parts p1 and p3, Average Costp1p3 = 15 + 33
2

= 24 > 15, and hence

they can be processed by the flexible machines so that

DMJ f
13 = 1 − | f m2|

| f m2 + f m1| = 1 − 1

2
= 1

2
.

As shown in the numerical example, we calculate a dissimilarity value for each part pair

based on their variety costs and operational similarities.

Under the assumptions and definitions presented, the decision variables of the model are

the following:

xik : 0-1 binary variable that equals to 1 if part i is assigned to cell k
ymk : nonnegative integer variable for number of machines of type m assigned to

cell k
zimok : 0-1 binary variable that equals to 1 if operation o of part i is performed by

machine m in cell k
Limk : 0-1 binary variable that equals to 1 if part i is loaded on machine m in cell k
Openfk : 0-1binary variable that equals to 1 if cell k is opened with flexible technology

Opendk : 0-1 binary variable that equals to 1 if cell k is opened with dedicated techno-

logy

IMik : 0-1 binary variable that equals to 1 if part i makes an intercellular movement
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to cell k

The mathematical formulation of the problem is as follows:

min f1 =
∑
i,j,f

xif · xjf · DMJ f
ij +

∑
i, j,d

xid · xjd · DMJd
ij (1)

min f2 =
∑

i

xif · cif +
∑

i

xid · cid (2)

min f3 =
∑

i,m,o,k

zimok · Ptimeimo +
∑
i,m,k

Limk · 2 · Ltimeim (3)

min f4 =
∑
m,k

ymk · (Invm + Maintm) +
∑

k

Openfk · Labor f

+
∑
m,k

Opendk · ymk · Labord (4)

min f5 =
∑
i,k

IMik (5)

subject to
K∑

k=1

xik = 1 ∀ i = 1, . . . , N (6)

ymk = 0 ∀ m ∈ DM and flexible cell k (7)

ymk = 0 ∀ m ∈ F M and dedicated cell k (8)

H · Openfk ≥
∑

i

xik ≥ Openfk ∀ flexible cell k (9)

H · Opendk ≥
∑

i

xik ≥ Opendk ∀ dedicated cell k (10)

zimok ≤ PRMio · ymk · MCMmo ∀ i, m, o, k (11)∑
m,k

zimok = PRMio ∀ i, o (12)

TCap · βm · ymk ≤
∑
i,o

zimok · Ptimeimo · Di

≤ TCap · αm · ymk ∀ m, k (13)∑
m

ymk ≤ UBK · Openfk ∀ flexible cell k (14)

∑
m

ymk ≤ UBK · Opendk ∀ dedicated cell k (15)

H · Limk ≥
∑

o

zimok ≥ Limk ∀ i, m, k (16)

H · I Mik ≥
(∑

m,o

zimok

)
· (1 − xik) ≥ I Mik ∀ i, k (17)
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The model is structured to be multi-objective. Our aim is to find a good compromise solu-

tion in order to satisfy all objectives. When considered alone, the minimization of objective

1 results in part families that have the best operational similarities among the member parts

and objective 2 results in two groups of parts, that are processed either in flexible or dedicated

cells. Each part is preferred to be placed in the group of parts in which the associated variety

cost term is smaller. The objective 3 is significant because it has two contradicting parts re-

garding the technology selection at the same time. In the flexible cells processing times will

be longer favoring dedicated cells, whereas in dedicated cells load-unload times will become

a burden favoring flexible cells. In the objective 4, the critical measures for the technology

selection decision are analyzed. The two contradicting parts of the function (investment and

labor costs) form a strong basis for technology selection decision. In cellular manufactur-

ing, one of the most critical objectives is the minimization of intercellular movements. The

objective 5 is in conflict with other objectives in order not to allow exceptional parts.

Each part is a member of only one family in the system by the constraint 6. The constraints

7 and 8 assure that none of the dedicated machines are assigned in the FMS cell, in order not

to destroy the total computer integration in the cell, and dedicated cells are totally composed

of dedicated machines. The constraints 9 and 10 control the opening of the cells, whereas

11 and 12 control the operational allocation of parts. Each necessary operation of a part

should be handled by a machine in any one of the cells. To be able to assign an operation of

a part to a machine in a cell (zimok = 1), three conditions should hold: Operation should be

necessary for the part (PRMio = 1), at least one machine should exist in that cell (ymk ≥ 1),

that machine should be capable of that operation (MCMmo = 1). Upper utilization level

of dedicated machines is lower because of the longer setup requirements of the dedicated

machines. Although we do not deal with setup times directly, we still consider this difference

between technologies under utilization constraints. Central part of the constraint 13 calculates

the required total processing times of each cell and machine type. The constraints 14 and 15

control the total number of machines in a cell. We could have different cell size limitations

for the flexible and dedicated cells, if necessary. The constraint 16 controls the loading of a

part on a machine. The constraint 17 logically controls the intercellular movement of a part.

We also have a set of integrality and nonnegativity constraints as described while defining

the decision variables above.

3. Solution approach

Since the proposed mathematical model has a large number of binary and integer variables,

and nonlinear constraints, it is difficult to obtain an optimal solution to the proposed model in

a reasonable computation time. Furthermore, the objectives 1 and 4 have quadratic functions

of the decision variables. In order to solve this problem in an acceptable computation time,

we propose a local search heuristic as outlined below.

Stage 1. Finding an Initial Solution

Step 1.1 (Data generation) Calculate the cid and cif for each part, and the modified Jaccard

dissimilarities, DMJij, for each pair of parts.

Step 1.2 (Fuzzy analysis) Perform a fuzzy analysis that uses dissimilarity coefficients and

provides a list of membership coefficients for each part.

Step 1.3 Initial part family formation and technology selection

Step 1.4 Initial machine group formation
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Step 1.5 Feasibility Check

Stage 2. Implement a filtered beam search algorithm to improve the initial solution.

The details of each step are discussed below.

3.1. Stage 1—Finding an initial solution

At this stage of the algorithm, an initial solution is found under consideration of variety costs

and operational similarity between parts. Intercellular movements of parts are expected to be

at a better level in the initial solution compared to the final solution since the other objectives

are not taken into consideration at this first stage.

In Step 1.2, we have adapted the fuzzy algorithm of Kaufmann and Rousseeuw (1990)

to find a list of membership coefficients for each part as discussed in the Appendix. We

utilize the advantage of the fuzzy clustering over hard clustering. Fuzzy clustering yields

much more detailed information on the structure of the data. In the CMSD problem, fuzzy

clustering eases the alternative solution generation process at the local search stage. It provides

a quantifiable basis where to move the candidate part in the next iteration. We make use of

membership matrix frequently in our solution approach as demonstrated in the following

numerical example. Although it looks more reasonable to assign each part to the cluster with

the maximum membership value, other performance measures such as investment costs,

capacity utilizations, etc., might force us to assign this part to some other cluster. This matrix

gives us a qualitative measure to compare different clusters.

Example 2. Let the output of a fuzzy analysis performed on the dissimilarity matrix of a

CMSD problem is as presented in Table 2, where c1, c2, c3 represent the possible clusters of

the system. In this output, we read that it is 50% beneficial for the part 1 to be in cluster c1,

20% beneficial to be in cluster c2 and 30% beneficial to be in cluster c3 in terms of operational

similarities. The decision maker has the chance to choose among these alternatives. While

choosing cluster c2 for part 10 is an obvious alternative, for part 2 all clusters are candidates

to be assigned in.

After completing the initial calculations, the proposed algorithm identifies the initial part

families in Step 1.3. At this step, each part is assigned to the cluster where it has the greatest

membership value. The opening of cells are decided at this point in the algorithm. If a cluster

Table 2 An example fuzzy membership matrix

Membership c1 c2 c3 cid Initial cluster

p1 0.50 0.20 0.30 20 ⇒ 1

p2 0.33 0.32 0.35 19 ⇒ 3

p3 0.20 0.60 0.20 7 ⇒ 2

p4 0.25 0.30 0.45 5 ⇒ 3

p5 0.25 0.25 0.50 8 ⇒ 3

p6 0.75 0.15 0.10 11 ⇒ 1

p7 0.80 0.15 0.05 4 ⇒ 1

p8 0.15 0.70 0.15 34 ⇒ 2

p9 0.25 0.40 0.35 20 ⇒ 2

p10 0.05 0.90 0.05 37 ⇒ 2

p11 0.30 0.55 0.15 32 ⇒ 2
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is not selected by any of the parts, the corresponding cell is not considered any more in the

algorithm.

The technology of the cell is determined based on the market characteristics and the

operational similarity between parts. It is determined by the average product variety costs of

the associated cluster. If the member parts of a cell tend to have unstable market characteristics,

i.e. high variety costs (cid ’s), it is good to open a cell with flexible technology to process these

parts. However, if the general tendency of the member parts is stability in terms of design

and demand, i.e. low variety costs (cid ’s), the algorithm prefers to open a cell with dedicated

technology. Although the flexible cells are more promising in terms of handling changes

more effectively than dedicated cells, we should note that there might be costs associated

with high number of changes in the future in flexible cells, too. Since we do not consider

future periods in our model, we just assume that these costs are lower than the costs involved

in a dedicated cell.

However, FMS cells are often only flexible within a certain range of products. If processing

requirements change often (high number of design changes) than there are also a lot of costs

involved in the FMS cell (writing new CNC programs, new fixtures, tools, etc.).

Example 3. Let the threshold value be 15 and the product variety costs and fuzzy membership

matrix values of a problem be as given in Table 2. Each part is assigned to the cluster where it

has the greatest membership value. In such a configuration, the algorithm opens all the cells

since each cluster has members. To select the technology of each cell, the average variety

costs are calculated:

Average Cost of Cluster 1 = 20 + 11 + 4

3
= 11.66 < 15

Average Cost of Cluster 2 = 7 + 34 + 20 + 37 + 32

5
= 26 > 15

Average Cost of Cluster 3 = 19 + 5 + 8

3
= 10.66 < 15

As a result, technology of cells 1 and 3 are selected to be the dedicated ones, while cell 2 to

be the flexible one.

As an initial configuration of the machines, all the necessary machines are placed in the

cell in Step 1.4. Initial operational allocation of parts is also performed simultaneously. If

part i in cell k (xik = 1) requires operation o (PRMio = 1), and no machine that is capable

of the operation exists in the cell, the first machine in the list with appropriate technology

and capable of operation o (MCMmo = 1) is assigned to the cell (ymk = 1) and operation is

allocated to the machine (zimok = 1). If there exists a machine (MCMmo = 1 and ymk = 1),

the operation is directly allocated to the machine (zimok = 1). After allocations, appropriate

number of machines are calculated for the cell k according to the upper utilization levels of

each machine type as follows:

Utilmk =
∑
i,o

(zimok · Ptimeimo · Di ) and ymk = � Utilmk

TCap · αm
	

At this point of the algorithm, initial part families and machine groups are identified.

However, this configuration may not be feasible. Since the cells are initially designed to be

independent, some machines may exist with very low utilizations in the cells, and sizes of

the cells might be larger than the acceptable level. Therefore, we have to check the machine

utilization feasibility (the constraint 13) and the cell size feasibility (the constraints 14 and

15). In a cell, if the utilization level of a machine type turns out to be low, first the operations

performed on the machine are determined and these operations should be re-allocated. If the
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machine is a dedicated one, parts are forwarded to other cells. We attain feasibility at a cost

of number of intercellular movements. If it is a flexible machine, then there is a possibility

to find a capable machine within the same flexible cell. If the design is not feasible in terms

of cell sizes, algorithm first considers the least utilized machine as a candidate for deletion

from the cell. If still the constraint is not satisfied, the algorithm moves a required number

of the least utilized machines to another cell.

3.2. Stage 2—Local search heuristic

At the second stage of the algorithm, the monetary and throughput time objectives that have

been ignored at the first stage are inserted back in the model. The second stage searches

for a better solution in terms of monetary costs, while not deviating much from the other

objectives. Filtered beam search technique is the tool employed for the local search, which

has three distinguishing parameters beam width, b, filter width, f , and child width, c. The

last parameter limits the number of new beams that originate from the same parent beam.

Details of the steps are as follows:

3.3. While not stopping criteria met do

The algorithm stops either no other candidate machines or parts can be identified in the search

space or a pre-specified number of iterations is reached. The details of one search iteration

are provided below:

3.3.1. For each parent solution

Each iteration begins with generating alternative solutions for each parent solution. Phases

of this step are detailed below:

3.3.1.1. Candidate machine selection. If we consider deleting some of the low utilization

machines from the cells, we might improve our solution in terms of monetary costs. The best

way of finding the low utilization machines is to identify the highest excess capacity machine

types in a cell.

Excessmk = (TCap · αm · ymk) − Utilmk

First filtering mechanism is employed at this step. If the first filter parameter is selected to

be f 1, first f 1 machines are selected for further analysis among the machines with highest

excess capacities. Other machines are not considered since the least utilized machines provide

the most promising paths around the solution space.

Example 4. Let there exist 5 machines (m1, m2, m3, m4, m5) in different cells (k1-

dedicated, k2-dedicated, k3-flexible) which have excess capacities. Let f 1 = 3, TCap =
119, 808 min./year and αm = 80% for dedicated machines and 95% for flexible machines.

Furthermore, let’s say

Excessm1,k1 = 75,482 Excessm2,k1 = 54,237 Excessm3,k2 = 15,156

Excessm4,k2 = 80,872 Excessm5,k3 = 45,278
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The algorithm chooses 3 candidate machines regardless of their technologies; so that

m4 of k2, m1 of k1 and m2 of k1 are selected and new solutions are generated by deleting

these machines in the following steps.

3.3.1.2. Candidate part identification. Parts having an operation on the candidate machines

are candidates to change clusters. We increase the number of alternatives by considering

different part-cluster allocations. Second filtering mechanism is employed at this step. If the

second filter parameter is selected to be f 2, first f 2 part-cluster pairs which have the greatest

fuzzy membership coefficients are selected for further evaluation. Highest coefficient parts

lead to better solutions since the loss in the objective function values occurs the least with

relatively high similarity coefficients.

Example 5. Let the parts, p8, p9 and p11 of Table 2 have an operation on a candidate

machine, and hence they are the candidates to change clusters. Let f 2 = 3, and all the cells

be open. Initially, x82 = 1, x92 = 1 and x11,2 = 1. The algorithm finds the part-cluster pairs

that give the greatest fuzzy membership coefficients which are different than their current

assignments. Since the filter parameter is equal to 3, only three of pairs are selected for

further evaluation such that (p9 − k3), (p11 − k1) and (p9 − k1) and we have three new

configurations [x ′
82 = 1, x ′

93 = 1, x ′
11,2 = 1], [x ′′

82 = 1, x ′′
92 = 1, x ′′

11,1 = 1] and [x ′′′
82 =

1, x ′′′
91 = 1, x ′′′

11,2 = 1].

3.3.1.3. Alternative solution generation. At this point in the algorithm, we generate new

alternative solutions based on the candidate machines and parts. At each iteration, for each

b parent solutions, the algorithm identifies f 1 candidate machines and f 2 candidate parts.

Then, the number of alternatives (Alt) at each iteration depends on the parameters of the

algorithm:

b · f 1 · ( f 2 + 1) ≤ Alt ≤ b · f 1 · 2 · ( f 2 + 1)

� Without any part transfers, the machine is deleted from the system and parts make inter-

cellular movements for the operation. This design creates a single alternative design.� Candidate parts are transferred to their candidate cells (one for each alternative) and re-

maining operations are forwarded to other machines. This design creates f 2 alternative

designs.� For each new design, the number of intercellular movements are calculated, and if any

part travels more than a pre-defined number of movements, new and revised designs are

constructed. This design creates less than ( f 2 + 1) alternative designs.

3.3.2. Evaluate alternatives

For each alternative we have 5 different objectives. In order to have a common measure for

each criterion, we applied a 0-1 normalization procedure for each objective function at each

iteration. At the end of each iteration, objective function values (Equations 1, 2, 3, 4, 5) of

each alternative are calculated. Each objective function is normalized compared to the same

objective functions of the remaining alternatives of the iteration through following equation:

Normfh = fh − GMinfh
LMaxfh − GMinfh
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We use the minimum value attained at that point in the algorithm as the global minimum

value, and the maximum value achieved just in that iteration as the local maximum value.

Since our aim is minimization, we should compare the alternatives relative to the best (global

minimum) value. On the other hand, we should not lose any information by taking maximum

value unnecessarily high. The same equation applies for all of the objectives except the fifth

objective, the intercellular movement function. Because of the power of 0 value, which is

the global minimum value in general for f5, we observed that this function results in very

dominant and misleading results. Thus, we change local maximum value to global maximum

value for objective 5. The fitness value of each alternative is simply the summation of five

normalized objective function values. Best solution is preserved as the incumbent solution,

and best b alternatives of the iteration are chosen to be the parents of new iteration. The

child mechanism is employed at this step. Child width c limits the number of new parents

originating from the same old parent.

Example 6. Let the number of alternatives generated at an iteration is 5. Let b is 3, and the

objective function values are given in Table 3. Furthermore, the normalized objective function

values are given in Table 4. As it is seen from the fitness values of each of the alternatives

that Alternative 4 is the best value attained at that point. The incumbent solution, which is

represented as the current best, is changed to Alternative 4 at the next iteration. Secondly,

the algorithm chooses the parents of the new iteration. They are the best 3 alternatives of this

iteration, namely the alternatives 4, 1 and 5.

Table 3 Example 6—Objective function values

Alternatives f1 f2 f3 f4 f5

Initial 175 415 315,565 978,247 0

Current Best 180 457 375,672 672,169 0

Alt 1 182 415 289,614 742,245 2

Alt 2 197 567 197,723 691,837 3

Alt 3 248 502 298,521 572,893 2

Alt 4 177 499 214,345 619,361 1

Alt 5 314 467 155,983 580,347 0

G Min 175 402 155,983 565,741 0

Max 314 567 375,672 978,247 8

3.3.3. Go to step 3.3. (Iterative procedure goes on until the stopping criteria is met)

3.4. Return the final solution

At the end of the search, the algorithm terminates. Finally, the initial solution, best solution,

and global minimum values are reported.

4. Experimental design

The proposed algorithm is coded in C language. The code is compiled with Gnu C 5.0

compiler and the set of problems are solved on a 12 × 400 MHz UltraSparc Station under

Solaris 2.7.
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Table 4 Example 6—Normalized objective function values

Norm f1 Norm f2 Norm f3 Norm f4 Norm f5 Fitness

Initial 0.00 0.08 0.72 1.00 0.00 1.80

Current Best 0.04 0.33 1.00 0.26 0.00 1.63

Alt1 0.05 0.08 0.61 0.43 0.25 1.42

Alt2 0.16 1.00 0.19 0.31 0.38 2.04

Alt3 0.52 0.61 0.65 0.02 0.25 2.05

Alt4 0.01 0.59 0.27 0.13 0.13 1.13

Alt5 1.00 0.39 0.00 0.04 0.00 1.43

4.1. Experimental setting

Five factors that provide different system properties with their different levels are shown in

Table 5. At the production floor, the most important data are the number of parts to be produced

and the amount of production volume for each part. Factors A and B together determine the

volume data for each part and the amount of production. Table 6 shows the probability of a

part to become a high, medium or low volume part. In Table 7, ratios of mean production

amount of high and medium volume parts to that of low volume parts are presented.

Table 5 Experimental design factors

Factors Definition Level 0 Level 1 Level 2

A Highest Number of Parts High Vol. Low Vol. Medium Vol.

B (DHigh Vol. Part / DLow Vol. Part) Low Ratio High Ratio —

C Stability of Environment Stable Volatile —

D Flexibility Low High —

E (Labor f / Labord ) Low Ratio High Ratio —

Table 6 Factor A

Level High Vol Med. Vol Low Vol Total

0 0.35 0.50 0.15 1.00

1 0.15 0.50 0.35 1.00

2 0.15 0.70 0.15 1.00

Table 7 Factor B

Level High/Low Med/Low Low

0 8 4 1

1 27 9 1

In order to receive consistent results, we have to fix the total demand. For each run, the

algorithm partitions the total demand to each part type according to the factorial combination.

The ratio of the average production amounts to the entire demand comes out to be as it is

shown in Table 8. Calculation of the average values are explained below in example 7. After

identification of the average values of production amounts, the algorithm assigns volume

data for each part in a random fashion ±10% around the averages. At the end of the demand

calculation process, it is verified to maintain the constant demand in total.
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Table 8 Average demand ratios

Setting 00 01 10 11 20 21

Ratio for Low Avg. 0.202 0.071 0.282 0.112 0.241 0.095

Ratio for Med. Avg. 0.808 0.639 1.128 1.008 0.964 0.855

Ratio for High Avg. 1.616 1.917 2.256 3.024 1.928 2.565

Table 9 Demand—Age ratios

Demand P1 P2 P3 P4 P5

High 0.00 0.15 0.35 0.35 0.15

Medium 0.10 0.30 0.15 0.15 0.30

Low 0.50 0.25 0.00 0.00 0.25

Example 7. Take the factorial setting for factors A and B as 0 and 1, respectively, favoring the

high volume environment. According to the setting 0 of factor A, 35 of 100 parts have high

volume, 50 of 100 have medium and 15 of 100 have low production volume. According to

the setting 1 of factor B, high amount means 27 times of low amount, and medium amount

equals 9 times of low amount.

Mean Low Volume =
Total Demand · 15 · 1

35 · 27 + 50 · 9 + 15 · 1

N · 15

100

= Total Demand

N
· 0.071 (18)

The numerator of the Eq. (18) gives the concentration of the low volume parts in the entire

system. The denominator is the number of low volume parts in the system. On the other hand,

(Mean Med Volume) and (Mean High Volume) equal to (Total Demand/N ) times 0.639 or

1.917, respectively.

We assume the traditional product life cycle curve as shown in Fig. 1. The associated

parameters used in the design are provided in Table 9. In the table, the probability of a part

to have a position in each period of the life cycle is presented. In order to be in accordance

with the traditional life cycle curve, we assumed that no part might have a high demand in

its initial period of lifetime, and no part might have low demand if it is in its third or fourth

life periods. For example, if a part has low demand, according to the traditional product life

cycle curve, it is in its first period of life with probability 0.50, in its second life period with

probability 0.25, and in its fifth life period with probability 0.25. There exist direct relation

between age, demand and design patterns of the part. The amount of this relation is affected

by the market characteristics. The market might demand design changes either frequently

(unstable) or seldom (stable). This triple relation is presented in Table 10. For example, if a

part has a high demand, and it is in its second life period, the probability of having a stable

design is 0.50 in a stable market, whereas 0.20 in an unstable market.

We understand the machine flexibility as the operational capability of the machines.

We assumed that the requirement frequency of an operation shows the expected capability

of a machine on that operation. If the level of factor D is 1, more flexibility is favored.

Otherwise, machines are designed to be less capable than expected as presented in Table 11.
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Table 10 Factor C

Stable environment 0 Unstable environment 1

Life cycle Stable Moderate Volatile Stable Moderate Volatile

Volume position design design design design design design

High 2 0.50 0.30 0.20 0.20 0.30 0.50

High 3 0.60 0.30 0.10 0.40 0.30 0.30

High 4 0.60 0.30 0.10 0.40 0.30 0.30

High 5 0.50 0.30 0.20 0.20 0.30 0.50

Medium 1 0.45 0.30 0.25 0.25 0.30 0.45

Medium 2 0.50 0.30 0.20 0.20 0.30 0.50

Medium 3 0.55 0.30 0.15 0.35 0.30 0.35

Medium 4 0.55 0.30 0.15 0.35 0.30 0.15

Medium 5 0.50 0.30 0.20 0.20 0.30 0.50

Low 1 0.30 0.30 0.40 0.10 0.30 0.60

Low 2 0.35 0.30 0.35 0.15 0.30 0.55

Low 5 0.35 0.30 0.35 0.15 0.30 0.55

Table 11 Factor D

Level Range

0, Less Flexible −20%

1, More Flexible +20%

A representative example is provided below. After construction of the machine capability

matrix with respect to these probabilities, a control mechanism checks the matrix whether a

meaningful matrix is produced or not.

Example 8. Take the given part requirement matrix as the input data to the algorithm. Ac-

cording to this part requirement matrix, we calculate the flexibility probability expectation

matrix with the following formula:

Expected Probability = Number of 1’s in the column

Total number of parts

PRM Operations

Parts 1 2 3

1 1 0 1
2 1 0 0
3 0 1 1

MCM Probability Operations

Machines 1 2 3

fm1 0.67 0.33 0.67
fm2 0.67 0.33 0.67
fm3 0.67 0.33 0.67

Each figure in the table shows the probability of the machine to be capable of the operation,

i.e. the probability of machine capability matrix (MCM) entry to be 1. Thus, MCM31 = 1

with the expected probability of 0.67, and 0 otherwise. Let’s assume that the design is

constructed in order to favor more flexibility. Let the range parameter be 20% and our random

number generator gives 0.50. Then, the effective probabilities to produce 1’s in the MCM31

increases by factor (1 + (0.20 · 0.50)). Thus, MCM31 = 1 with the expected probability of

0.74 (= 0.67 · 1.10), and 0 otherwise.

Labor costs get higher when computers are integrated in the system. Not only the

operator is paid more with ratio OR, but also there exists supplementary labor who is
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Table 12 Factor E

Level Operator ratio Supplementary ratio

0, Low Level 2 0.20

1, High Level 5 0.50

Table 13 Machining center specifications

SQT SQT SQT Integrex Variaxis

200 200M 200MY 200Y 500

Chuck Size 8” 8” 8” 8” —

Max.Diameter 350 mm 300 mm 300 mm 540 mm —

Spindle speed 5000 rpm 5000 rpm 5000 rpm 5000 rpm 12000 rpm

RTS speed — 4500 rpm 4500 rpm 10000 rpm —

Axes X,Z X,Z,C X,Z,C,Y X,Z,C,Y,B X,Z,C,Y,A

Represent 2 op.s 3 op.s 4. op.s 5 op.s ≥ 6 op.s

Average Euro Euro Euro Euro Euro

Investment 100.000 130.000 150.000 175.000 200.000

responsible from the software, maintenance, etc. Supplementary labor is paid with SR ra-

tio to the dedicated machine labor. While one operator is enough for the entire flexible

cell, each machine requires an operator in the dedicated cell. The labor cost values are cal-

culated as follows: TotLfk = (Labord · OR) + ∑
m (Labord · SR · ymk) ∀ flexible cell k, and

TotLdk = ∑
m (Labord · ymk) ∀ dedicated cell k.

There should exist virtual part groups in order to apply cellular manufacturing. Ran-

dom data should not be used. We have employed the part-machine incidence matrices of

Chandrasekharan and Rajagopalan (1989). Authors have provided many data sets ranging

in different structures. We have implemented the data set 6 in our experimental design since

it is neither perfectly groupable nor badly structured (grouping efficiency is 73.43%). This

machine-part incidence matrix is utilized as the part requirement matrix of our algorithm.

Derived from this data, number of parts in the system is 40, number of operations is 24,

and number of dedicated machines is also 24. The number of available flexible machines is

assumed to be 12.

Machine investment cost is another key concept in the proposed algorithm. The data is

adapted from Mazak Corporation. We analyzed the properties of numerous types of flexible

machines produced by Mazak, and selected some benchmark machine types that are the

most representative ones to be employed in our study. Machining center properties of the

selected types are provided in Table 13. We have selected the machines with nearly same size

specifications while with different operational capabilities. The prices are disguised without

altering the real ratios.

We employed universal turning machine as a basis for the dedicated technology with its

worth of Euro 15.000 on the average. The number of axes in a machining center significantly

affects the operational capability of these machines. SQT 200 is one of the least capable

flexible machines. SQT 200M and SQT 200MY are multi-tasking CNC turning centers that

can turn and mill a workpiece in a single machine setup. Integrex Series machines are the

most widely used multi-tasking machine tools in the world. Integrex 200Y is a representative

machine type for our 5-operations case with its 5 axes (X,Z,C,Y,B) available for different
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operations. Variaxis Series machines are multi-face and simultaneously controlled 5-axis

double-column machining centers. We have selected Variaxis 500 to represent the flexible

machines that are the most capable ones in terms of operations. Under consideration of

lifetimes of the machines (10 years for dedicated technology, 15 years for flexible technology),

annual machine investment costs are selected randomly in a range of ±5% of investment

costs. Maintenance costs of machines are simply taken to be 10% of investment costs. Number

of machines in each cell has an initial upper bound (UBK) of 15 machines. This initial limit

tends to be halved at the end of the search procedure. In the final design, total annual demand

(
∑

i Di ) is taken to be 50,000 units and number of cells is assumed to be 4. Theoretical

capacity of machines is calculated as follows:

TCap = 48 min/hour · 8 hours/day · 6 days/week · 52 weeks/year = 119, 808 min/year

Because of setups and maintenance stops, the theoretical capacities can never be achieved.

Upper level of utilization (αm) for dedicated machines is taken to be 80%, and for flexible

machines it is 95%. The lower utilization bound (βm) is determined to be the same for both

types of machines as 5%. The processing times of parts on dedicated machines are selected

randomly from the uniform interval U [5, 10] whereas that of flexible machines are selected

from the uniform interval U [5, 15]. Load-unload times of parts on dedicated machines are

selected randomly from the uniform interval U [1, 2] whereas that of flexible machines are

selected from the uniform interval U [1.5, 2.5].

4.2. Experimental results

The experimentation is performed by a (3 · 24) full factorial design with the factors detailed

in the previous section. With 5 different random number seeds, 240 randomly generated

problems are solved by the proposed algorithm and a challenger algorithm with different

beam widths (b = 3 and b = 6). As far as we know, there does not exist hybrid technol-

ogy approaches in the literature handling product variety, and most of the existing cellular

manufacturing literature assumes dedicated technology. Therefore, we consider a fully ded-

icated technology as the challenging algorithm in our case. For the challenger, we have

re-constructed the proposed algorithm such that the available technology is the dedicated

technology for the whole system. We utilized the summation of normalized objective func-

tion values as the performance measures. The relative difference between the two challenger

algorithms shows the performance of the algorithms for different factorial combinations.

Performance Measure = Dedicated − Hybrid

Hybrid
∗ 100

Performance measure computes the difference between results of the proposed hybrid algo-

rithm and challenger dedicated algorithm. In the measure, we rate this difference compared

to the value of the proposed algorithm. The overall improvement that the hybrid algorithm

achieves is 53.6%. Table 14 presents the average values for each factor level. The improve-

ment percentages for each factor shown are the averages of all possible combinations of

levels of other factors. They represent the main effects considered in the study.

As expected, when the general tendency is low volume (Factor A is at level 1), hybrid

technologies prove much better. Factor B, on its own, does not provide a significant effect

on the system. Factor C is the most effective factor in the entire system. The stability of

the environment is a crucial attribute which should never be discarded. It is seen from the
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Table 14 Improvement percentages for each factor

Factor Performance measure

Type Level Min Avg Max

A 0 −39.3 45.4 165.9

A 1 −29.8 68.7 146.7

A 2 −39.2 46.7 160.9

B 0 −39.3 54.4 152.8

B 1 −39.2 52.8 165.9

C 0 −39.3 27.9 145.6

C 1 −29.1 79.3 165.9

D 0 −39.2 45.5 165.9

D 1 −39.3 61.7 152.8

E 0 −36.3 60.2 165.9

E 1 −39.3 47.1 120.6

results that when the market gets more volatile, the need for hybrid manufacturing systems

significantly rises. Under high product variety assumption, the improvement we get by imple-

menting hybrid strategies instead of dedicated technology is as high as 80% on the average.

When the machines get more capable in terms of operations (Factor D is at level 1), it is

easier to justify the high investment of these machines. When the difference between flexible

and dedicated labor costs decreases (Factor E is at level 0), in other words, to hire a flexible

machine operator becomes cheaper, the algorithm tends to implement hybrid technology

systems, as expected.

Since we use the summation of normalized objective function values as the performance

measures, all objectives have the equal weight on the final performance values. Regarding

the objectives, it should be noted that Factors A, B, and C are related to the variety costs

objectives 1 and 2, Factor D is related to machine costs and intercellular movement objectives

3, 4 and 5, and Factor E is related to machine costs objective 4. We expect Factor C to have

a greater effect on the results than Factors A and B because of the definition of variety cost

function. The design stability was given the highest weight during the calculation of variety

costs. However, it is surprising for Factor C to have a greater effect than monetary and

technological factors. This result shows that it is crucial to implement hybrid technologies

in unstable environments regardless of the high investment costs.

The results for each objective are shown in Table 15. It is observed that the similarity

achieved in hybrid approach is better. The study shows the necessity of integration of oper-

ational flexibility of machines in the similarity context. Further, although we expect that the

search algorithm worsens the similarity objective, we have found a better solution after the

search stage. This shows that it is better to perform search with the help of fuzzy membership

coefficients in cellular manufacturing system design problems. We have the same product

variety results in three phases of the dedicated technology, since all the parts are always in

dedicated cells. It is observed that the product variety costs are significantly higher when

we force dedicated technology. The study shows the necessity of hybrid technology imple-

mentation at the production floor to hedge against the variations in the market. Throughput

time objective is used as a secondary objective in the search algorithm. It affects the results

indirectly at the evaluation step, together with the other objectives. The other noteworthy

objective of this study is the machine investment, maintenance and labor costs objective ( f4).

Costs of hybrid approach are significantly higher, because of the flexible machines integrated
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Table 15 Objective function values

Initial Beam Width = 3 Beam Width = 6

Min Avg Max Min Avg Max Min Avg Max

f1 Ded. 518.3 518.3 518.3 436.4 448.7 478.3 435.0 447.0 518.3

Hyb. 6.8 161.2 491.2 1.5 123.0 443.4 1.5 121.0 444.6

f2 Ded. 414.0 707.9 995.0 414.0 707.9 995.0 414.0 707.9 995.0

Hyb. 414.0 600.1 839.0 372.0 587.6 839.0 370.0 588.0 839.0

f3 Ded. 160,902 219,163 266,576 399,027 470,915 528,848 190,964 466,468 528,848

Hyb. 225,233 500,127 751,864 345,757 545,828 663,791 471,284 543,840 663,791

f4 Ded. 326,715 492,928 653,021 221,557 267,569 291,480 221,557 268,737 326,715

Hyb. 450,230 681,907 976,300 279,163 473,421 734,839 279,163 468,692 680,833

f5 Ded. 3 10.8 22 30 39.7 47 14 39.7 49

Hyb. 0 2.77 20 0 16.9 53 0 17.2 47

in the system. When the overall averages are analyzed, we observe that the justification of

high investment of flexible systems is achieved easily. The last objective is the intercellular

movement objective ( f5). Although the initial solution is constructed to form independent

cells, feasibility forces the parts make intercellular movements at the last step. The number

of intercellular movement of parts in hybrid approach is less than the dedicated challenger.

Integration of flexible systems decreases the exceptional parts in the system, increasing the

efficiency of the CMSD.

In Table 16, improvements of hybrid approach against the dedicated approach for several

selected factorial combinations are presented. Setting (101–) constructs a system in an unsta-

ble marketing environment which has more number of low volume parts and with relatively

high average demand ratio. Hybrid technology selection for cellular manufacturing systems

prove more than 100% better than the fully dedicated cellular manufacturing systems in such

an environment. The study shows that the hybrid technology approach to CMSD problem

works much better than the dedicated technology in unstable markets with high product vari-

eties. Further, if the flexible labor cost is low, i.e. in the setting (101-0), average improvement

reaches up to 116%. In setting (–110), algorithm constructs a system in an unstable envi-

ronment which has highly capable machines and low costs of flexible labor. Improvement

provided by the proposed algorithm is more than 95% regardless of the volumes of the parts.

Even in setting (01110), where (01—) provides a high volume dominant production envi-

ronment, the average improvement is still around 95%. Moreover, when the environment is

set to favor low volume parts (1-110), average improvement achieved becomes 108%. There

are cases where the investment in flexible technology cannot be justified. When the system

provides high demand ratio for high volume parts in stable environments, or less capability of

Table 16 Improvement percentages for selected factor combinations

Performance measure
Factors

(ABCDE) Min Avg Max

(101- -) 55.1 103.8 146.7

(101-0) 64.1 116.1 146.7

(- -110) 49.7 98.9 152.8

(1-110) 81.3 107.9 137.9
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Table 17 CPU times in seconds

Initial Beam width = 3 Beam width = 6

Algorithm Min Avg Max Min Avg Max Min Avg Max

Dedicated 5.8 6.3 6.9 45.6 104.1 169.1 72.5 199.2 330.2

Hybrid 5.7 6.3 7.5 9.0 93.6 325.5 14.9 189.0 619.5

the flexible machines and higher cost of flexible labor, the improvements decrease to negative

values favoring the dedicated technology. Dedicated systems are still very powerful when the

market is stable and production volumes are high. Negative performance values show that

the proposed algorithm favors flexible technologies even when dedicated technology would

be enough.

Another significant attribute of the algorithm is the beam width selection. As the beam

width gets larger, the solution space that is inspected also enlarges. This brings a higher

cost of computation time. Table 17 shows the final average CPU times of the algorithms.

Both algorithms provide 20% improvement from the initial solution at the search phase.

This improvement is worth computation. However, the quality of the final solution of larger

beam width is only in 1% neighborhood of the smaller beam width. We believe this much

improvement is not worth twice much computation time.

5. Conclusion

In today’s world, while the customers are expecting product variety, it makes the manu-

facturing processes considerably difficult. This has implications for integration of flexible

manufacturing systems. Group technology applications has further benefits at the produc-

tion floor. We propose a model that makes technology selection and cell formation to hedge

against the changing market dynamics. In our multi-objective study, we modified a well

known similarity measure to handle the operational capability of available technology. In

order to integrate the market characteristics in our model, we proposed a new cost function.

This is the first study to assign costs for design instabilities and demand variations for the

CMSD problem. The study shows the significance of hybrid technology implementation at

the production floor to cope with the variations in the market. We also show the necessity

of integration of operational capability of machines in the similarity context. Integration of

flexible systems decreases the exceptional parts in the system, while increasing the efficiency

of the CMSD. Some future research directions can be summarized as follows. We emphasize

the design problem in this study, although the impact of operational issues, such as cell load-

ing and scheduling, can be analyzed. The proposed model does not take into account neither

the operation sequences of parts nor the layout of the facility. Integration of these attributes

in the model can be a challenging study.

Appendix: Fuzzy analysis algorithm

Fuzzy clustering is a generalization of partitioning. In a partition, each object of the data

set is assigned to one and only one cluster. Therefore, partitioning methods produce a hard

clustering, because they make a clear-cut decision for each object. On the other hand, a fuzzy
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clustering method allows for some ambiguity in the data. We use the following notation for

the fuzzy analysis algorithm of Kaufmann and Rousseeuw (1990):

C : minimization objective function

k : maximum number of clusters

n : number of parts

uiv : fuzzy membership coefficient of part i in cluster v
di, j : given dissimilarities between parts i and j

min C =
k∑

v=1

∑n
i, j=1(uiv)2 · (ujv)2 · di,j

2 · ∑n
j=1(vjv)2

(19)

The algorithm attempts to minimize the objective function C in Eq. (19). It contains the

dissimilarities (di, j ) and the membership coefficients that we are trying to find. The sum in the

numerator ranges over all pairs of parts (i, j). Since ( j, i) also occurs, the sum is divided by

2. The outer sum is over all clusters, so the objective is comprehensive. The algorithm works

iteratively and stops when the objective function converges. The membership functions are

subject to the constraints 20 and 21 expressing that memberships cannot be negative and that

each part has different membership values distributed over the different clusters which sum

up to 1:

uiv ≥ 0 for i = 1, . . . , n; v = 1, . . . , k (20)∑
v

uiv = 1 for i = 1, . . . , n (21)

Via use of Lagrange multipliers, the corresponding Kuhn and Tucker conditions are

calculated taking into account the objective function (19) and the constraints (20, 21). The

interested reader on the mathematical proof of the algorithm is referred to Kaufmann and

Rousseeuw (1990). Having arbitrary initial values for all uiv,the algorithm computes new

and better membership coefficients at each iteration, until the objective function converges.

The proposed iterative algorithm has the following form: (Note that superscripts stand for

the number of iteration step)

1 Initialize the membership functions as u0
iv for all i =1, . . . , n and all v =1, . . . , k, taking

into account constraints 20 and 21. Calculate the objective function C0 by 19.

In our algorithm, we have k = 4, and the following arbitrary initial membership

coefficients are provided as initial feasible values in terms of the constraints:

u0
i1 = 0.10, u0

i2 = 0.20, u0
i3 = 0.30 and u0

i4 = 0.40.

2 Compute for each i =1,. . . , n the following quantities:

2.1 Compute for each v =1,. . . , k :

am
iv = Num1 − (Num2 + Num3 + Num4 + Num5)

Den

Num 1 = 2 ·
(

i−1∑
j=1

(
um+1

jv

)2 · dij +
n∑

j=i

(
um

jv

)2 · dij

)
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Num 2 =
i−1∑
j=1

i−1∑
h=1

(
um+1

jv

)2 · (
um+1

hv

)2 · di j

Num 3 =
i−1∑
j=1

n∑
h=i

(
um+1

jv

)2 · (
um

hv

)2 · dij

Num 4 =
n∑

j=i

i−1∑
h=1

(
um

jv

)2 · (
um+1

hv

)2 · dij

Num 5 =
n∑

j=i

n∑
h=i

(
um

jv

)2 · (
um

hv

)2 · dij

Den =
i−1∑
j=1

(
um+1

jv

)2 +
n∑

j=i

(
um

jv

)2

2.2 Compute for each v = 1,. . .,k:

Av = 1/am
iv∑

w(1/am
iw)

2.2.1 if Av ≤ 0 ⇒ V 1 = V 1 ∪ {u}
2.2.2 if Av > 0 ⇒ V 2 = V 2 ∪ {u}
2.3 Put for all v ∈ V 1

um+1
iv = 0

2.4 Compute for all v ∈ V 2

um+1
iv = 1/am

iv∑
w∈V 2(1/am

iw)

2.5 Put V 1 = V 2 = /0 and restart from Step 2.1 with the next i.
3 Calculate the new objective function value Cm+1 by Equation (19). If (Cm/Cm+1− 1) <

∈, then go to Step 2; otherwise stop.
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