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COMPUTING MOMENTS OF FIRST PASSAGE TIMES TO A
SUBSET OF STATES IN MARKOV CHAINS∗
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Abstract. This paper presents a relatively efficient and accurate method to compute the mo-
ments of first passage times to a subset of states in finite ergodic Markov chains. With the proposed
method, the moment computation problem is reduced to the solution of a linear system of equations
with the right-hand side governed by a novel recurrence for computing the higher-order moments.
We propose using a form of the Grassmann–Taksar–Heyman (GTH) algorithm to solve these linear
equations. Due to the form of the linear systems involved, the proposed method does not suffer from
the drawbacks associated with GTH in a row-wise sparse implementation.
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1. Introduction. Let the state space of a Markov chain (MC) be partitioned
into the subsets of safe and unsafe states. The question “How much time on the
average will it take the system to reach an unsafe state if it starts in a safe state
and what is its variance?” is to be answered when reliability is of concern in the
system that is under investigation. Such reliability measures need to be known, for
instance, in repairable computer systems to forecast the time to an unavailable system
[22, pp. 328–330] or in railway systems [16, p. 12] where the passing of a train to a
prohibited track on the red light is considered to be unsafe.

Determining the mean and variance of first passage times (or hitting times) in
finite ergodic MCs [10, 11, 12] has centered around computing the stationary vector
of the MC at hand and the fundamental matrix [14] (or the group generalized inverse
[17]). In [23, p. 10], an iterative technique that does not require the computation
of the stationary vector, the fundamental matrix, or the group generalized inverse
had been proposed. Recently, another technique appeared in [7] to compute these
measures through Laplace transforms. Unfortunately, all of these techniques require
dealing with systems in the order of the state space size. However, when the mean
and variance of first passage times only to a subset of states in the MC are sought, it
is unnecessary to consider systems as large as the state space size. In fact, it suffices
to solve a linear system with as many equations as the number of safe states for two
different right-hand sides.

In this paper, we study the more general problem of computing all moments of
first passage times to a subset of states in finite ergodic MCs. The proposed method
reduces the computation of the first k moments to the solution of k linear systems
with a common coefficient matrix but different right-hand sides (one for each moment),
where the right-hand sides are governed by a novel recurrence involving the universally
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MOMENTS OF FIRST PASSAGE TIMES 397

well-known Pascal’s triangle. We also use a form of the Grassmann–Taksar–Heyman
(GTH) algorithm [6] for solving such linear systems. Due to the form of the linear
systems involved, the proposed method does not suffer from the drawbacks associated
with GTH in a row-wise sparse implementation.

The remainder of the paper is organized as follows. Section 2 provides an overview
of the existing methods for the computation of the mean and variance of first passage
times to a subset of states in MCs. Section 3 introduces the more efficient method
which is based on the novel recurrence to compute all moments of first passage times
to the subset of states. Section 4 shows how this method can be implemented rela-
tively accurately using a form of the GTH algorithm and discusses a row-wise sparse
implementation. Section 5 includes numerical experiments with MCs from the litera-
ture, and section 6 concludes the paper. The recurrence for computing the moments
of first passage times in discrete-time MCs (DTMCs) is proved in the appendix.

In the following, P denotes the transition probability matrix of a finite ergodic
MC of order n with steady state probability (row) vector π. As the steady state
vector, π is also the stationary vector and satisfies πP = π with the normalization
condition

∑n
i=1 πi = 1. The proposed method in this paper concerns DTMCs but

can be easily extended to continuous-time MCs (CTMCs) as we do in one of the test
problems.

2. Mean and variance of first passage times to a subset of states. With-
out loss of generality, let us assume that P has the following block partitioning:

P =

(
PS,S PS,U
PU,S PU,U

)
,(1)

where S and U are, respectively, the subsets of safe and unsafe states; let the number
of states in these subsets be, respectively, nS and nU . Otherwise, P can always be
symmetrically permuted to the block form in (1). Here PS,S is the square submatrix
of order nS obtained from P by deleting the rows and columns that correspond to the
states in U . Let the stationary vector be partitioned conformally as in π = (πS πU ),
where πS and πU are the subvectors of π associated with the states in S and U ,
respectively.

The mean and variance of first passage times to subset U from states in subset
S can be determined by first computing π using the GTH algorithm [6] and forming
the aggregated matrix

K =

(
PS,S PS,Ue

πU
‖πU‖1

PU,S
πU

‖πU‖1
PU,Ue

)
,

where e is a column vector of ones with appropriate length. Since πK = (πS ‖πU‖1)
is the stationary vector of K, its fundamental matrix [14, p. 75] can be computed
from

Z = (I −K + eπK)−1,(2)

where I is the identity matrix of appropriate order. Now let us assume that diag(A)
returns a column vector formed of the diagonal elements of matrix A, and diag(a)
returns a diagonal matrix having the elements of vector a along its diagonal. Then
the fundamental matrix enables us to compute the first and second moment matrices,
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398 TUǦRUL DAYAR AND NAIL AKAR

namely F (1) and F (2), respectively, of first passage times among states in K from [14,
p. 79]

F (1) = (I −K + ediag(Z)T )D

and [14, p. 83]

F (2) = F (1)(2 diag(diag(Z))D − I) + 2(ZF (1) − ediag(ZF (1))T ),

where D is the diagonal matrix having reciprocals of the elements of πK along its

diagonal. The (i, j)th element of F (1), denoted by f
(1)
i,j , is the mean first passage time

from state i to state j in K. Similarly, the (i, j)th element of F (2), denoted by f
(2)
i,j ,

is the second moment of the first passage time from state i to state j in K.
In terms of the entries of F (1) and F (2), the mean and variance of first passage

times from state i ∈ S to U are given respectively by

m
(1)
i = f

(1)
i,nS+1(3)

and

vi = f
(2)
i,nS+1 − (f

(1)
i,nS+1)

2,(4)

where f
(2)
i,nS+1 is the second moment of first passage time from state i ∈ S to U and

will be denoted by m
(2)
i . We remark that the time complexity of obtaining the two

measures in (3) and (4) with the described approach is O(n3) due to the necessity to
compute π.

It is well known that the computation of the fundamental matrix through matrix
inversion as in (2) is prone to numerical inaccuracies. This affects the accuracy of the
first and second moment matrices of first passage times that are computed using the
fundamental matrix. Through a series of papers [10, 11, 12], Heyman and O’Leary
have identified this situation and have provided algorithms that aim at remedying
it. Their idea is based on using the GTH algorithm [6] to factorize a singular linear
system involving the MC at hand and to compute the stationary vector accurately.

Since we are interested in computing the moments of first passage times to a
subset of states, in the next section we present a method that does not require the
stationary vector of the MC to be computed and has a time complexity that depends
on nS , as opposed to n with the existing techniques. After this presentation, we show
how a form of the GTH algorithm can be used to provide relatively accurate results
in solving the nonsingular linear systems that arise in this context.

3. A more efficient method. Let X be the random variable associated with
the first passage times to subset U conditioned on an initial probability vector τ in
the subset of safe states, S. Given T = PS,S , we have [15, p. 50]

E[X(X − 1) · · · (X − k + 1)] = τγ(k),(5)

where

γ(k) = k!(I − T )−kT k−1e(6)

is defined as the kth factorial moment vector of first passage times from states in
S to U for k > 0. This result follows from probabilistic arguments and is based on
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MOMENTS OF FIRST PASSAGE TIMES 399

aggregating the states in U to a single state and constructing an absorbing MC in
which all states in S are transient and the aggregated state is the single absorbing
state (see [15, pp. 47–50]).

When k = 1, (5) becomes

E[X] = τ(I − T )−1e.(7)

Then the mean first passage time from state i ∈ S to U , denoted by m
(1)
i , follows

from (7) by substituting eTi (i.e., ith row of I) for τ . More generally, the first moment

vector m(1), whose ith element is m
(1)
i , can be obtained from

(I − T )m(1) = e.(8)

We remark that (I − T ) is a nonsingular M-matrix1 and (I − T )−1 ≥ 0 [2]. Hence,
m(1) = (I − T )−1e, simply the row sums of the nonnegative matrix (I − T )−1. This
nonnegative matrix is referred to as the fundamental matrix of an absorbing MC in
which the states in S are transient and those in U are ergodic [14, p. 46]. In fact, (8)
is available in [14, p. 51] and has been derived following a different approach.

When k = 2, (5) and (6) yield

E[X2] = E[X] + 2τ(I − T )−2Te.(9)

Defining m(2) as the second moment vector of first passage times from states in S to
U , we obtain

(I − T )m(2) = 2m(1) − e(10)

from (9) after some algebra and again considering all rows of I for τ . Although not
exactly in the form of (10), an equivalent representation for m(2) is available in [14,
p. 51].

Once m(2) is available, the variance of the first passage time from state i in S to
U can be computed from

vi = m
(2)
i − (m

(1)
i )2 for i ∈ S.(11)

Equations (8) and (10) provide an alternative way (to that in section 2) of com-
puting the first and second moment vectors of first passage times to a subset of states
in finite ergodic MCs. Observe that neither a complete factorization based on P nor
the stationary vector of P is required to compute these measures. In conclusion, one
needs to factorize (I −PS,S) once, compute m(1), and then compute m(2) using m(1),
e, and the factors of (I − PS,S).

In fact, it is possible to compute (higher) moments of first passage times from
states in S to U using the recurrence

Sm(i+1) =

i∑
j=0

(−1)i−j

(
i + 1
j

)
m(j) for i ≥ 0 with m(0) = e,(12)

where S = I − PS,S . Here ( i+1
j ) denotes the binomial coefficient in Pascal’s triangle

that is read “(i+1) choose j” [5, p. 153]. To the best of our knowledge, the recurrence
in (12) has not been given before and is proved in the appendix.

1Any matrix A of the form A = sI − B with s > 0 and B ≥ 0 for which s ≥ ρ(B), the spectral
radius of B.
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400 TUǦRUL DAYAR AND NAIL AKAR

In the next section we show how the more efficient method which essentially solves
linear systems of the form Sy = c in (12), where S = I − PS,S , can be implemented
relatively accurately using a form of the GTH algorithm and discuss a row-wise sparse
implementation.

4. Implementation issues. In order to compute (higher) moment vectors of
first passage times, we use Algorithm 1 which follows from (12), which has the matrix
S = I − PS,S on the left-hand side and a linear combination of e and the previous
moment vectors on the right-hand side. We LU factorize S once at the outset using
GTH as discussed in the next subsection. Here, L and U are, respectively, the unit-
lower triangular factor and the upper-triangular factor of S. The very reason we use
GTH is to improve the accuracy in the computed factors when S is close to being
singular. Otherwise, S could very well be factorized using Gaussian elimination (GE)
but in no way should be inverted and passed to the right-hand side in (12). Finally,
the integer coefficients of the linear combination on the right-hand side of (12) may be
computed easily by observing the alternating signs and using the well-known identity
[5, p. 158]

(
i + 1
j

)
=

(
i

j − 1

)
+

(
i
j

)

that binomial coefficients satisfy.

Algorithm 1.

Computing the kth moment vector of first passage times to a subset of states in
DTMCs.

LU factorize S using GTH;
a0 = 1; a1 = −1; m(0) = e;
Solve for m(1) in LUm(1) = m(0);
For i = 1 up to k − 1 {

ai+1 = −1;
For j = i down to 1

aj = aj−1 − aj ;
a0 = −a0;
Solve for m(i+1) in LUm(i+1) =

∑i
j=0 ajm

(j);
}

4.1. Factorization using GTH. The GTH algorithm due to Grassmann, Tak-
sar, and Heyman [6] emerges from probabilistic arguments and shows how one can
compute the stationary vector of an MC using only nonnegative numbers and avoiding
subtraction operations. This algorithm achieves significantly greater accuracy than
other algorithms in the literature [8, 20]. The entrywise relative error in the station-
ary vector computed using the GTH algorithm is shown to be small, independent of
the structure of the matrix and the magnitudes of its elements [19].

A form of the GTH algorithm is used in the disaggregation phase of the iter-
ative aggregation-disaggregation (IAD) algorithm geared towards nearly completely
decomposable (NCD) MCs [4] (we will return to NCD MCs in the section on numerical
results). Within that phase, linear systems of the form yTS = cT (or the transposed
form ST y = c) need to be solved for y. To each such system one more unknown and
one more equation are added so as to have a homogeneous linear system with a coeffi-
cient matrix that is a singular M-matrix. Here we follow a slightly different approach
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MOMENTS OF FIRST PASSAGE TIMES 401

and construct a nonhomogeneous but consistent linear system with a singular coeffi-
cient matrix.

Consider Ax = b, where

A =

(
I − PS,S −PS,Ue

wT −wT e

)
, x =

(
y
0

)
, and b =

(
c
υ

)
.(13)

Observe that A has zero row sums since (I − PS,S)e = e − PS,Se = PS,Ue, and A is
a singular M-matrix with rank nS . The values of the vector w and the scalar υ are
irrelevant since in the LU factorization of the singular matrix A, the last row of the
upper-triangular factor turns out to be zero.

The properties of a singular M-matrix coupled with the idea of using nonnegative
arithmetic in the GTH algorithm suggests the following modification to GE when
upper-triangularizing A. At each step of GE, rather than computing the pivot element
in the usual way, one can correct the pivot by replacing it with the negated sum of
the off-diagonal elements in the unreduced part of the same row as the pivot. This
follows from the fact that at each step of GE, the unreduced square submatrix that
is to be updated turns out to be a singular M-matrix having zero row sums. We
remark that other than providing better roundoff properties, this modification has the
additional advantage of being able to be carried out completely in row-wise sparse
format with delayed row updates [23]. In particular, the computation of pivots is
in no way orthogonal to the access scheme of row-wise sparse format as opposed to
the situation with the systems solved in IAD (see section 4 in [4]) or the original
formulation of the GTH algorithm [6]. It is this modified GE which we refer to as the
GTH implementation in this paper.

The GTH reduction needs to be performed for only (nS−1) steps. This amounts
to premultiplying A by a unit lower-triangular multiplier matrix as in(

L−1 0
0T 1

)(
I − PS,S −PS,Ue

wT −wT e

)
=

(
U −L−1PS,Ue
wT −wT e

)

so that (I − PS,S) = LU , where L is unit lower-triangular and U is upper-triangular.
The product −L−1PS,Ue needs to be computed along the way to enable the correction
of the pivots. Then y can be obtained from LUy = c through forward and backward
substitutions (cf. (13)). Note that both L and U need to be stored since we will solve
for (at least) two right-hand sides.

4.2. Analysis. In this subsection we discuss issues pertaining to the row-wise
sparse factorization of S = I − PS,S using GTH and the sparse implementation of
Algorithm 1. Let nzS , nzL, and nzU denote, respectively, the number of nonzeros
in S, the strictly lower-triangular part of L (since 1’s along its diagonal need not
be stored), and U . Also let k denote the order of the highest moment vector to be
computed.

The nonzeros in nzL and nzU depend on the sparsity pattern of S, and there are
myriad ways discussed in the literature to reduce the fill-in that results from its sparse
factorization. However, a discussion on fill reducing orderings and their implications
is beyond the scope of this paper. Therefore, assuming that S is not reordered and a
row-wise sparse format is used, one needs (nzL +nzU ) real and (nzL +nzU +nS + 1)
integer storage space to store and index the nonzeros in the L and U factors of S
[23, pp. 80–81]. Since the sparse factorization can be performed through delayed row
updates (see section 4.1), it suffices to have an additional real row vector of length nS
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402 TUǦRUL DAYAR AND NAIL AKAR

to expand the row to be updated, do the reduction, compact the reduced row, and
store it. When GTH is used to carry out the factorization, a real vector of length
nS which sums the rows of S to zero (i.e., last column of A in (13)) should also be
allocated. This real vector of length nS is the only extra storage space compared to
using GE.

Algorithm 1 requires k real vectors of length nS to store the moment vectors and
one real vector of length nS to store the right-hand side in (12). This right-hand side
is a linear combination with well-defined integer coefficients of the previous moment
vectors and does not pose problems from a computational point of view other than
overflow as long as the integer coefficients are stored in a real vector of length (k+ 1)
(see the coefficients ai). Hence, the total storage space required by Algorithm 1 in
addition to the sparse factors of S is (k + 1) real vectors of length nS and one real
vector of length (k+ 1). Note that since the absolute values of the coefficients in (12)
follow from Pascal’s triangle and that this triangle is symmetric, it is possible to do
by storing only half of the coefficients.

The number of floating-point arithmetic operations (flops) to perform sparse GTH
on S is equal to the number of flops to perform sparse GE on S, minus 2(nS − 1)
flops for those that do not get executed in GTH due to the new way of computing
the pivots (note that the pivot in the first row is not updated) plus nzU flops due
to computing each pivot by summing the nonzeros in the strictly upper-triangular
part of U and the element of the updated extra column in the same row as the pivot.
Hence, the only disadvantage of GTH with respect to GE in this setting is the extra
(nzU − 2nS + 2) flops. Assuming that nzU is linear in nS for the sparse matrix S,
this extra cost in GTH is negligible since the number of flops to perform sparse GE
on S will be quadratic in nS . In passing to the analysis of Algorithm 1, we remark
that each pair of forward and backward substitutions (with the matrices L and U ,
respectively) for a different right-hand side requires 2(nzL + nzU ) − nS flops.

In the ith pass, the outer for-loop in Algorithm 1 requires the computation of (i+
1) coefficients (which takes i floating-point subtractions on integers), the computation
of a right-hand side vector (which takes 2(i + 1)nS flops), and a pair of forward and
backward substitutions (which take 2(nzL + nzU ) − nS flops). For a total of (k − 1)
passes, these amount to (k − 1)[2(nzL + nzU ) + nS(k + 1) + k/2] flops.

In the following section we provide results of numerical experiments with two
NCD MCs and a reliability problem from the literature.

5. Numerical results. In this section, we present results with three problems
to illustrate the proposed method. We have implemented the proposed method in
C using IEEE floating-point arithmetic with and without GTH [21]. We refer to
the latter approach as the proposed method with GE. Using these methods, we have
computed the moment vectors of first passage times to a subset of states in each MC. In
all problems, the results of the proposed method with GTH and GE in double precision
floating-point arithmetic (i.e., about sixteen decimal digits of precision) agree to more
than seven decimal digits. Hence, we have taken the first seven decimal digits of these
results as exact results and have compared the results of the proposed method with
GTH and GE in single precision floating-point arithmetic (i.e., about seven decimal
digits of precision) against these exact results. Furthermore, the condition number of
each coefficient matrix is reported so as to indicate the inherent difficulty associated
with computing the moment vectors accurately. Note that 1038 is about the size
of the largest positive number in single precision floating-point arithmetic, and any
attempt to compute moment vectors having elements larger than this value will be
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MOMENTS OF FIRST PASSAGE TIMES 403

futile. Assuming that k is the highest-order moment vector that can be computed
in single precision floating-point arithmetic for a given problem, in order to save
space we report only the first, second, and kth moment vectors. Since k in each of
the problems turns out to be less than or equal to twenty-two, the computation of
binomial coefficients in single precision arithmetic does not pose problems. In other
words, the largest entry in the twenty-second row of Pascal’s triangle, 22 choose 11,
is equal to 705,432 and can be represented in seven decimal digits of precision.

The first two problems are also considered in [11] and are examples of NCD MCs
[3, 18], which are irreducible stochastic matrices that can be symmetrically permuted
to the block form

Pn×n =

⎛
⎜⎜⎝

P11 P12 · · · P1N

P21 P22 · · · P2N
...

...
. . .

...
PN1 PN2 · · · PNN

⎞
⎟⎟⎠

n1

n2

...
nN

(14)

where nonzero elements in the off-diagonal blocks are small compared with those in
the diagonal blocks [23, p. 286]. Let P = diag(P11, P22, . . . , PNN ) + E. The diagonal

blocks Pii are square, of order ni, with n =
∑N

i=1 ni. The quantity ‖E‖∞ is referred
to as the degree of coupling and is taken to be a measure of the decomposability of
P . Such matrices are known to be numerically challenging. The third problem is the
reliability model that appears in [22].

5.1. Test problem 1. The first problem is the 8× 8 matrix due to Courtois [3]
with all row sums equal to 1 and given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.85
0.1
0.1
0
0.0005
0
0.00003
0

0
0.65
0.8
0.0004
0
0.00005
0
0.00005

0.149
0.249
0.0996
0
0.0004
0
0.00003
0

0.0009
0
0.0003
0.7
0.399
0
0.00004
0

0
0.0009
0
0.2995
0.6
0.00005
0
0.00005

0.00005
0.00005
0
0
0.0001
0.6
0.1
0.1999

0
0
0.0001
0.0001
0
0.2499
0.8
0.25

0.00005
0.00005
0
0
0
0.15
0.0999
0.55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix has the three subsets of NCD states, {1, 2, 3}, {4, 5}, {6, 7, 8}, for a degree
of coupling of 0.001.

Let us take S = {1, 2, 3}, which corresponds to an NCD subset of states. For
this choice of safe states, the 2-norm condition number of the coefficient matrix is
cond2(I − PS,S) = 1.5 × 103 from MATLAB. For this problem the first ten moment
vectors can be computed in single precision floating-point arithmetic. The computed
results are

⎛
⎝m

(1)
1

m
(1)
2

m
(1)
3

⎞
⎠

exact

=

(
1.122227
1.122461
1.123047

)
× 103,

⎛
⎝m

(1)
1

m
(1)
2

m
(1)
3

⎞
⎠

GE

=

(
1.122239
1.122473
1.123059

)
× 103,

⎛
⎝m

(1)
1

m
(1)
2

m
(1)
3

⎞
⎠

GTH

=

(
1.122227
1.122461
1.123047

)
× 103;
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404 TUǦRUL DAYAR AND NAIL AKAR

⎛
⎝m

(2)
1

m
(2)
2

m
(2)
3

⎞
⎠

exact

=

(
2.518215
2.518743
2.520059

)
× 106,

⎛
⎝m

(2)
1

m
(2)
2

m
(2)
3

⎞
⎠

GE

=

(
2.518271
2.518799
2.520115

)
× 106,

⎛
⎝m

(2)
1

m
(2)
2

m
(2)
3

⎞
⎠

GTH

=

(
2.518216
2.518744
2.520060

)
× 106;

⎛
⎝m

(10)
1

m
(10)
2

m
(10)
3

⎞
⎠

exact

=

(
1.147324
1.147565
1.148164

)
× 1037,

⎛
⎝m

(10)
1

m
(10)
2

m
(10)
3

⎞
⎠

GE

=

(
1.147451
1.147692
1.148292

)
× 1037,

⎛
⎝m

(10)
1

m
(10)
2

m
(10)
3

⎞
⎠

GTH

=

(
1.147325
1.147566
1.148166

)
× 1037.

We remark that the first moment vector of first passage times from the chosen NCD
subset to the remaining states has elements that are close to each other and are of
the order 103. See [1, 9] for detailed information regarding this phenomenon. The

relative errors in (m
(1)
GE ,m

(2)
GE ,m

(10)
GE ) and (m

(1)
GTH ,m

(2)
GTH ,m

(10)
GTH) for S = {1, 2, 3} are,

respectively, (1.1× 10−5, 2.2× 10−5, 1.1× 10−4) and (0, 4.0× 10−7, 1.7× 10−6) in the
infinity norm.

Now, let us consider S = {1, 4, 6} in which each state comes from a different
NCD subset. For this choice of safe states, we have cond2(I −PS,S) = 2.7× 100 from
MATLAB. For this problem the first twenty-two moment vectors can be computed in
single precision floating-point arithmetic. The computed results are

⎛
⎝m

(1)
1

m
(1)
4

m
(1)
6

⎞
⎠

exact

=

(
6.687500
3.333333
2.500000

)
× 100,

⎛
⎝m

(1)
1

m
(1)
4

m
(1)
6

⎞
⎠

GE

=

(
6.687501
3.333333
2.500000

)
× 100,

⎛
⎝m

(1)
1

m
(1)
4

m
(1)
6

⎞
⎠

GTH

=

(
6.687501
3.333333
2.500000

)
× 100;

⎛
⎝m

(2)
1

m
(2)
4

m
(2)
6

⎞
⎠

exact

=

(
8.261667
1.888889
1.000000

)
× 101,

⎛
⎝m

(2)
1

m
(2)
4

m
(2)
6

⎞
⎠

GE

=

(
8.261670
1.888889
1.000000

)
× 101,

⎛
⎝m

(2)
1

m
(2)
4

m
(2)
6

⎞
⎠

GTH

=

(
8.261668
1.888889
1.000000

)
× 101;

⎛
⎝m

(22)
1

m
(22)
4

m
(22)
6

⎞
⎠

exact

=

(
2.814053 × 1038

9.561367 × 1030

3.840642 × 1027

)
,

⎛
⎝m

(22)
1

m
(22)
4

m
(22)
6

⎞
⎠

GE

=

(
2.814063 × 1038

9.561357 × 1030

3.840647 × 1027

)
,

⎛
⎝m

(22)
1

m
(22)
4

m
(22)
6

⎞
⎠

GTH

=

(
2.814057 × 1038

9.561385 × 1030

3.840641 × 1027

)
.

In this case, the relative errors in (m
(1)
GE ,m

(2)
GE ,m

(22)
GE ) and (m

(1)
GTH ,m

(2)
GTH ,m

(22)
GTH) are,

respectively,
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MOMENTS OF FIRST PASSAGE TIMES 405

(1.5 × 10−7, 3.6 × 10−7, 3.6 × 10−6) and (1.5 × 10−7, 1.2 × 10−7, 1.4 × 10−6) in the
infinity norm. It is not surprising to encounter higher relative errors when computing
the larger means and variances of first passage times corresponding to the NCD subset
S = {1, 2, 3}.

5.2. Test problem 2. The second problem we consider is inspired by the class
of 10 × 10 matrices used in [20]. Let

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1
0.2
0.1
0.4
0.6
β
0
0
0
0

0.3
0.1
0.2
0.2
0.3
0
0
0
0
0

0.1
0.1
0.2
0.1
0
0
0
0
0
0

0.2
0.2
0.4
0.2
0
0
0
0
0
0

0.3
0.4
0.1
0.1
0.1
0
0
0
0
0

β
0
0
0
0
0.1
0.2
0.1
0.2
0.1

0
0
0
0
0
0.2
0.2
0.3
0.2
0.7

0
0
0
0
0
0.2
0.1
0.2
0.1
0

0
0
0
0
0
0.4
0.3
0.2
0.3
0

0
0
0
0
0
0.1
0.2
0.2
0.2
0.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If D = diag([1/(1 + β), 1, 1, 1, 1, 1/(1 + β), 1, 1, 1, 1]T ), then P = DS is an NCD MC
of order 10 with degree of coupling β/(1 + β). Note that P has two subsets of NCD
states, {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10}, that communicate with each other over a single
state in each direction.

We let S = {1, 2, 3, 4, 5}. For this choice of safe states and for β = 10−7, we
have cond2(I−PS,S) = 5.3× 107 from MATLAB. For this problem only the first four
moment vectors can be computed in single precision floating-point arithmetic. The
computed results are

⎛
⎜⎜⎜⎜⎝

m
(1)
1

m
(1)
2

m
(1)
3

m
(1)
4

m
(1)
5

⎞
⎟⎟⎟⎟⎠

exact

=

⎛
⎜⎜⎜⎝

3.478633
3.478633
3.478633
3.478633
3.478633

⎞
⎟⎟⎟⎠× 107,

⎛
⎜⎜⎜⎜⎝

m
(1)
1

m
(1)
2

m
(1)
3

m
(1)
4

m
(1)
5

⎞
⎟⎟⎟⎟⎠

GE

=

⎛
⎜⎜⎜⎝

1.484419
1.484419
1.484419
1.484419
1.484419

⎞
⎟⎟⎟⎠× 108,

⎛
⎜⎜⎜⎜⎝

m
(1)
1

m
(1)
2

m
(1)
3

m
(1)
4

m
(1)
5

⎞
⎟⎟⎟⎟⎠

GTH

=

⎛
⎜⎜⎜⎝

3.478632
3.478633
3.478633
3.478633
3.478633

⎞
⎟⎟⎟⎠× 107;

⎛
⎜⎜⎜⎜⎝

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
5

⎞
⎟⎟⎟⎟⎠

exact

=

⎛
⎜⎜⎜⎝

2.420177
2.420177
2.420177
2.420177
2.420177

⎞
⎟⎟⎟⎠× 1015,

⎛
⎜⎜⎜⎜⎝

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
5

⎞
⎟⎟⎟⎟⎠

GE

=

⎛
⎜⎜⎜⎝

4.406998
4.406999
4.406998
4.406998
4.406999

⎞
⎟⎟⎟⎠× 1016,

⎛
⎜⎜⎜⎜⎝

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
5

⎞
⎟⎟⎟⎟⎠

GTH

=

⎛
⎜⎜⎜⎝

2.420177
2.420177
2.420177
2.420177
2.420177

⎞
⎟⎟⎟⎠× 1015;
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406 TUǦRUL DAYAR AND NAIL AKAR

⎛
⎜⎜⎜⎜⎝

m
(4)
1

m
(4)
2

m
(4)
3

m
(4)
4

m
(4)
5

⎞
⎟⎟⎟⎟⎠

exact

=

⎛
⎜⎜⎜⎝

3.514354
3.514355
3.514355
3.514354
3.514354

⎞
⎟⎟⎟⎠× 1031,

⎛
⎜⎜⎜⎜⎝

m
(4)
1

m
(4)
2

m
(4)
3

m
(4)
4

m
(4)
5

⎞
⎟⎟⎟⎟⎠

GE

=

⎛
⎜⎜⎜⎝

1.165298
1.165298
1.165298
1.165298
1.165298

⎞
⎟⎟⎟⎠× 1034,

⎛
⎜⎜⎜⎜⎝

m
(4)
1

m
(4)
2

m
(4)
3

m
(4)
4

m
(4)
5

⎞
⎟⎟⎟⎟⎠

GTH

=

⎛
⎜⎜⎜⎝

3.514354
3.514354
3.514354
3.514354
3.514354

⎞
⎟⎟⎟⎠× 1031.

We remark that the first moment vector of first passage times from the chosen NCD
subset to the remaining states has elements that are identical to each other and are of
order 107. A similar argument is valid for the second moment vector of first passage
times, though with the squared exponent. This situation can be attributed to the very
strongly coupled interaction among the states in the NCD subset and to the very weak

single transition to the remaining states. The relative errors in (m
(1)
GE ,m

(2)
GE ,m

(4)
GE)

and (m
(1)
GTH ,m

(2)
GTH ,m

(4)
GTH) are, respectively, (3.3 × 100, 1.7 × 101, 3.3 × 102) and

(2.9× 10−7, 0, 2.8× 10−7) in the infinity norm. Hence, the proposed method with GE
does not have even a single digit of accuracy in any of the moment vectors of first
passage times.

5.3. Test problem 3. The third problem appears in [22] and is about a re-
pairable computer system. The system has two processors and three memory units
connected to a bus. All of these components can fail independently of each other and
are repaired by a single repairman. The system is up if at least one processor, two
memory units, and the bus are operational. It is assumed that no failures occur when
the system is down. We consider the first example model described in [22, pp. 328–
329] having 21 states, 6 of which are those corresponding to operational states. For
our purposes, these 6 states are classified as safe states and the rest as unsafe states.

In this case, the underlying problem yields a CTMC whose infinitesimal generator
matrix is denoted by Q. This matrix has nonnegative off-diagonal elements and
diagonal elements that are negated row sums of its off-diagonal elements; hence,
Qe = 0. Now, let Y be the random variable associated with the first passage times to
subset U conditioned on an initial probability vector τ in the subset of safe states, S.
Assuming the same kind of block partitioning as in (1) and R = QS,S , the moments
of Y (cf. (5)) are given by

E[Y k] = k!τ(−R−1)ke(15)

for k ≥ 1 [15, p. 45].
When k = 1, (15) becomes

E[Y ] = −τR−1e.

Then the first moment vector of first passage times from states in S to U can be
obtained from

−Rm(1) = e.(16)

We remark that (16) becomes identical to (8) when one replaces −R with (I − T ).
The coefficient matrix, −R, is again a nonsingular M-matrix and −R−1 ≥ 0. Hence,
m(1) = −R−1e, simply the row sums of the nonnegative matrix −R−1.
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MOMENTS OF FIRST PASSAGE TIMES 407

When k = 2, (15) becomes

E[Y 2] = 2τR−2e.

Then the second moment vector of first passage times from states in S to U can be
obtained from

−Rm(2) = 2m(1).(17)

Note that (17) has a different right-hand side compared to that of (10).
As for DTMCs, it is possible to compute higher moments of first passage times

from states in S to U using a recurrence. However, the recurrence is much simpler in
this case and follows from (15) as

−Rm(i+1) = (i + 1)m(i) for i ≥ 0 with m(0) = e.(18)

In conclusion, one needs to factorize −QS,S once, compute m(1), and then com-
pute m(2) using m(1) and the factors of −QS,S . The factorization can be performed
using GTH as in section 4, but this time on the coefficient matrix

A =

(
−QS,S −QS,Ue
wT −wT e

)

in (13).
An algorithm similar to Algorithm 1 can be given for CTMCs. The matrix S

should be replaced with R, and R should be LU factorized using GTH. There should
be a single for-loop consisting of a single statement in which the linear system with
the right-hand side, (i + 1) times the ith moment vector, in (18) is solved for the
(i+1)st moment vector through forward and backward substitutions using the L and
U factors of R. The storage requirement of the algorithm for CTMCs is smaller than
its counterpart for DTMCs since there is no need for a real vector of length (k+1) to
store coefficients and there is no need for k real vectors of length nS to store moment
vectors. Other than storage space for the L and U factors, it suffices to have two
real vectors of length nS , one for the moment vector to be computed and one for the
right-hand side. The time requirement is also smaller since the computation of the
right-hand side takes altogether only (nS + 1) flops. For a total of (k− 1) passes over
the for-loop, the computation of the right-hand side and the forward and backward
substitutions amount to (k − 1)[2(nzL + nzU ) + k/2] flops.

In the reliability problem, S = {1, 2, 3, 4, 6, 7} and we have cond2(−QS,S) =
2.7 × 103 from MATLAB. For this problem the first ten moment vectors can be
computed in single precision floating-point arithmetic. The computed results are⎛

⎜⎜⎜⎜⎜⎜⎝

m
(1)
1

m
(1)
2

m
(1)
3

m
(1)
4

m
(1)
6

m
(1)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

exact

=

⎛
⎜⎜⎜⎜⎜⎝

9.031009
8.940884
8.448356
8.751327
8.664630
7.766966

⎞
⎟⎟⎟⎟⎟⎠× 102,

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(1)
1

m
(1)
2

m
(1)
3

m
(1)
4

m
(1)
6

m
(1)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

GE

=

⎛
⎜⎜⎜⎜⎜⎝

9.031031
8.940908
8.448377
8.751351
8.664653
7.766987

⎞
⎟⎟⎟⎟⎟⎠× 102,

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(1)
1

m
(1)
2

m
(1)
3

m
(1)
4

m
(1)
6

m
(1)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

GTH

=

⎛
⎜⎜⎜⎜⎜⎝

9.031010
8.940884
8.448356
8.751328
8.664630
7.766965

⎞
⎟⎟⎟⎟⎟⎠× 102;
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408 TUǦRUL DAYAR AND NAIL AKAR

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
6

m
(2)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

exact

=

⎛
⎜⎜⎜⎜⎜⎝

1.627131
1.610873
1.521222
1.576529
1.560893
1.397454

⎞
⎟⎟⎟⎟⎟⎠× 106,

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
6

m
(2)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

GE

=

⎛
⎜⎜⎜⎜⎜⎝

1.627139
1.610882
1.521230
1.576538
1.560901
1.397461

⎞
⎟⎟⎟⎟⎟⎠× 106,

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(2)
1

m
(2)
2

m
(2)
3

m
(2)
4

m
(2)
6

m
(2)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

GTH

=

⎛
⎜⎜⎜⎜⎜⎝

1.627131
1.610873
1.521222
1.576530
1.560893
1.397454

⎞
⎟⎟⎟⎟⎟⎠× 106;

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(10)
1

m
(10)
2

m
(10)
3

m
(10)
4

m
(10)
6

m
(10)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

exact

=

⎛
⎜⎜⎜⎜⎜⎝

1.280432
1.267638
1.197083
1.240611
1.228306
1.099680

⎞
⎟⎟⎟⎟⎟⎠× 1036,

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(10)
1

m
(10)
2

m
(10)
3

m
(10)
4

m
(10)
6

m
(10)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

GE

=

⎛
⎜⎜⎜⎜⎜⎝

1.280466
1.267672
1.197115
1.240645
1.228339
1.099710

⎞
⎟⎟⎟⎟⎟⎠× 1036,

⎛
⎜⎜⎜⎜⎜⎜⎝

m
(10)
1

m
(10)
2

m
(10)
3

m
(10)
4

m
(10)
6

m
(10)
7

⎞
⎟⎟⎟⎟⎟⎟⎠

GTH

=

⎛
⎜⎜⎜⎜⎜⎝

1.280433
1.267639
1.197084
1.240612
1.228307
1.099681

⎞
⎟⎟⎟⎟⎟⎠× 1036.

The relative errors in (m
(1)
GE ,m

(2)
GE ,m

(10)
GE ) and (m

(1)
GTH ,m

(2)
GTH ,m

(10)
GTH) are, respec-

tively, (2.7 × 10−6, 5.5 × 10−6, 2.7 × 10−5) and (1.1 × 10−7, 6.1 × 10−7, 7.8 × 10−7) in
the infinity norm. In this problem, the unit of time is hour, which indicates that on
the average failure does not happen before a month (see m(1)), and thus the system
is considered reliable.

6. Conclusion. We have presented a relatively efficient and accurate method to
compute the moments of first passage times to a subset of states in finite ergodic MCs.
The method amounts to solving linear systems with a common coefficient matrix but
different right-hand sides with the latter governed by a novel recurrence introduced
in this paper. This proposed recurrence involves the Pascal’s triangle and is shown to
lead to a stable implementation. The efficiency and accuracy of the proposed method
rest respectively on the smaller linear systems solved and the GTH implementation
used. Due to the form of the linear systems involved, the method can be implemented
in row-wise sparse format with delayed updates. The proposed method is expected
to be useful in large MCs that have a relatively small number of safe states and pose
computational problems.

Appendix. We prove (12) after we present some basic results about Stirling
numbers, which are closely associated with binomial coefficients. We follow the dis-
cussion and notation in [5]. Further information concerning Stirling numbers may be
obtained from [13].
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MOMENTS OF FIRST PASSAGE TIMES 409

Lemma 1. The kth factorial moment vector, γ(k), is a linear combination of the
first k moment vectors m(i), i ∈ {1, 2, . . . , k}, and is in the form

γ(k) =

k∑
i=0

(−1)k−i

[
k
i

]
m(i) for k ≥ 0 with m(0) = e,(19)

where [ki ] denotes the Stirling number of the first kind that is read “k cycle i.”

Proof. This result follows from the left-hand side of (5), our definition of m(i) as
the ith moment vector, the definition of Stirling numbers of the first kind [5, p. 245],
and the definition involving Stirling numbers of the first kind with alternating signs
[5, p. 249].

Remark 1. Stirling numbers of the first kind satisfy the recurrence [5, p. 250][
k
i

]
= (k − 1)

[
k − 1
i

]
+

[
k − 1
i− 1

]
for k > 0

with [
k
i

]
= 0 for k < i,

[
k
0

]
= 0 for k > 0, and

[
k
k

]
= 1.

The next result is intimately related to Lemma 1 and is used in the proof of (12).
Lemma 2. The kth moment vector, m(k), is a linear combination of the first k

factorial moment vectors γ(i), i ∈ {1, 2, . . . , k}, and is in the form

m(k) =

k∑
i=0

{
k
i

}
γ(i) for k ≥ 0 with γ(0) = e,(20)

where {k
i } denotes the Stirling number of the second kind that is read “k subset i.”

Proof. This result follows from Lemma 1, the definition of Stirling numbers of
the second kind [5, p. 244], and (6.10) in [5, p. 248].

Remark 2. Stirling numbers of the second kind satisfy the recurrence [5, p. 250]{
k
i

}
= i

{
k − 1
i

}
+

{
k − 1
i− 1

}
for k > 0

with {
k
i

}
= 0 for k < i,

{
k
0

}
= 0 for k > 0, and

{
k
k

}
= 1.

The following is a fundamental result which is also used in the proof of (12).
Lemma 3. The factorial moment vectors can be computed from the recurrence

Sγ(k+1) =

k∑
i=0

(−1)k−i (k + 1)!

i!
γ(i) for k ≥ 0 with γ(0) = e.(21)

Proof. We recall that S is a nonsingular M-matrix and S−1 ≥ 0. Furthermore,
S−1T = TS−1, where T = I − S. The basis Sγ(1) = e is easy to derive from (6).
Using the fact that S−1 and T commute, after some algebra on (6), we obtain

γ(k+1) = (k + 1)S−1Tγ(k) for k > 0.(22)
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410 TUǦRUL DAYAR AND NAIL AKAR

The recurrence between two consecutive factorial moment vectors in (22) yields

γ(k+1) = (k + 1)!(S−1T )kγ(1) for k ≥ 0.(23)

Premultipliying both sides of (6) by T and using the fact that S−1 and T commute,
we obtain

Tγ(k) = k!(S−1T )k−1S−1Te.(24)

But

S−1Te = γ(1) − e(25)

since T = I − S and Sγ(1) = e. Hence, (24) becomes

Tγ(k)

k!
= (S−1T )k−1γ(1) − (S−1T )k−1e.

Using (23), this can be written as

Tγ(k)

k!
=

γ(k)

k!
− (S−1T )k−1e.(26)

Factoring (S−1T )k−1 as (S−1T )k−2(S−1T ) in (26), using (25), and continuing in this
manner, we obtain

Tγ(k) =

k∑
i=0

(−1)k−i k!

i!
γ(i) for k > 0 with γ(0) = e.(27)

Now, rewriting (22) as

Sγ(k+1) = (k + 1)Tγ(k)

and using the result in (27) on its right-hand side, we have (21).
Corollary 1. The (k + 1)st moment vector can be computed from the linear

system obtained by premultiplying both sides of (20) by S and then using the recurrence
in (21).

Now we state and prove the theorem.
Theorem 1. Let P be the transition probability matrix of an ergodic DTMC, S

be a subset of states in P , and m(k+1) denote the (k + 1)st moment vector of first
passage times from states in S to states outside S for k ≥ 0. Then m(k+1) can be
computed from the recurrence

Sm(k+1) =

k∑
i=0

(−1)k−i

(
k + 1
i

)
m(i) for k ≥ 0 with m(0) = e,(28)

where PS,S is the submatrix of P corresponding to the states in S and S = I −PS,S .
Proof. Our objective is to express S times the (k + 1)st moment vector in terms

of the first k moment vectors as in (28) (i.e., (12) in the text). To that end, following
Corollary 1, we write

Sm(k+1) =

k∑
i=0

{
k + 1
i + 1

}
Sγ(i+1) for k ≥ 0.(29)
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MOMENTS OF FIRST PASSAGE TIMES 411

After substituting the result in (19) in the right-hand side of (21) and then sub-
stituting the obtained result in the right-hand side of (29), we get

Sm(k+1) =

k∑
i=0

i∑
j=0

j∑
l=0

(−1)i−l (i + 1)!

j!

{
k + 1
i + 1

}[
j
l

]
m(l) for k ≥ 0 with m(0) = e.

(30)

We prove the theorem by showing that (30) reduces to (28); in other words,

k∑
i=0

i∑
j=0

j∑
l=0

(−1)i−l (i + 1)!

j!

{
k + 1
i + 1

}[
j
l

]
m(l) =

k∑
i=0

(−1)k−i

(
k + 1
i

)
m(i) for k ≥ 0.

(31)

Let Y (k) refer to the left-hand side of (31). Note that therein it is possible to
replace the upper limit of the third summation with k since j < k and [ jl ] = 0 for
l > j. Hence, we can write

Y (k) =

k∑
i=0

i∑
j=0

k∑
l=0

(−1)i−l (i + 1)!

j

{
k + 1
i + 1

}[
j
l

]
m(l)

=

k∑
l=0

(−1)k−lm(l)
k∑

i=0

(−1)i−k

{
k + 1
i + 1

}
(i + 1)!

i∑
j=0

[
j
l

]
/j! .

But

i!

i∑
j=0

[
j
l

]
/j! =

[
i + 1
l + 1

]

from identity (6.21) on page 251 in [5]. Therefore, we have

Y (k) =

k∑
l=0

(−1)k−lm(l)
k∑

i=0

(−1)i−k

{
k + 1
i + 1

}
(i + 1)

[
i + 1
l + 1

]
.

After replacing the lower limit of the second summation with l since [ i+1
l+1 ] = 0 for

i < l and then exchanging the variables i and l, we obtain

Y (k) =
k∑

i=0

(−1)k−im(i)
k∑

l=i

(−1)l−k(l + 1)

{
k + 1
l + 1

}[
l + 1
i + 1

]
.

Hence, the only thing that remains is to show that

k∑
l=i

(−1)l−k(l + 1)

{
k + 1
l + 1

}[
l + 1
i + 1

]
=

(
k + 1
i

)
.

But this follows from identity (12) on page 188 in [13].

Acknowledgment. We thank the anonymous referees for their constructive
reports, which led to an improved manuscript.

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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