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Abstract

This paper provides new empirical evidence for intraday scaling behavior of stock market returns utilizing a 5min stock

market index (the Dow Jones Industrial Average) from the New York Stock Exchange. It is shown that the return series

has a multifractal nature during the day. In addition, we show that after a financial ‘‘earthquake’’, aftershocks in the

market follow a power law, analogous to Omori’s law. Our findings indicate that the moments of the return distribution

scale nonlinearly across time scales and accordingly, volatility scaling is nonlinear under such a data generating

mechanism.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Intraday return; Intraday volatility; Pivotal statistics; Multifractals; Self-similarity; Scaling; Omori’s law
1. Introduction

The principle source of the intense intellectual curiosity behind the work on asset pricing is to discover the
underlying data generating process of returns (and volatility) and generate testable hypotheses. In general, a
hypothesis can always be represented by a model which is a collection of data generating processes. A
hypothesis is classified as a simple one if it is represented by a model which contains only one data generating
process. If the hypothesis is compound, the model contains more than one data generating process.1 In this
paper, we examine the nature of the data generating process of returns. Our findings indicate that the return
(and volatility) distribution changes nonlinearly under scaling. Furthermore, it is not certain whether the
statistical inference from the existing return/volatility literature can be classified as pivotal.
e front matter r 2006 Elsevier B.V. All rights reserved.

ysa.2005.12.019

ing author.

esses: faruk@bilkent.edu.tr (F. Selc-uk), gencay@sfu.ca (R. Genc-ay).

/www.bilkent.edu.tr/�faruk.

s is classified as a simple one if it is represented by a model which contains only one data generating process. If the

mpound, the model contains more than one data generating process. Under a compound hypothesis, a test statistic has

utions under each DGP contained in a model. Therefore, the distribution of the test statistic may not be known if we do

DGP generated the data for the model. A test statistic is said to be pivotal only when the distribution of the test statistic

othesis is the same for all DGP contained in a model. For further discussions of simple and compound hypotheses and the

votal random variables, the reader may refer to Ref. [1].
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The most prominent property of intraday dynamics of returns is the nonlinear scaling of moments across
time scales. Also, each moment scales at a different rate (nonlinearly) across each time scale. This prohibits
popular continuous time representations, such as Brownian motion, as possible candidates in explaining
return dynamics. Since no time scale is privileged, and an arbitrary time scale may not necessarily be
representative, any inference based on a particular time scale may need to be interpreted locally without any
universal implications.

Surprisingly, different time scales in decision making process of different entities received little attention in
economics and finance literature. Studies from the perspective of a universal time clock is the prevalent mode
of economic and financial research. In an extensive survey of risk and return trade off in asset pricing,
Campbell [2] studies the literature with a universal time clock where the issues in respect to returns, risk and
stochastic discount factors are examined. A survey of Ref. [3] looks at stock and bond returns, risk premiums
in bond and foreign exchange markets from a universal time scale perspective as well. In a recent survey by
Poon and Granger [4], volatility is also examined from a universal time perspective. Our view is that often
decisions made in low-frequency time scales act as conditions (restraints) for those decisions which need to be
made in higher-frequency scales. Therefore an unconditional universal time scale for the examination of risk
and return may not necessarily be the route to follow to examine risk and return. The conditions of risk are
not universal across all time scales and this issue deserves careful examination by the theorists by embedding
the time scale as a determinant (as a conditioning restraint) in risk-return tradeoffs in dynamic environments.2

Dacorogna et al. [6], and Genc-ay et al. [7–9] argue that conventional time series analysis, focusing
exclusively on a time series at a given scale, lacks the ability to explain the nature of the data generating
process in general. A process equation that successfully explains daily price changes, for example, is unable to
characterize the nature of hourly price changes. On the other hand, statistical properties of monthly price
changes are often not fully covered by a model based on daily price changes. Lynch and Zumbach [10]
similarly emphasize the importance of a multiscale framework in the analysis of absolute price changes to
accommodate the underlying heterogeneity with intraday, daily, weekly and monthly components. Therefore,
a comprehensive multi-scale approach is needed to elaborate the market dynamics across time scales in which
economic agents operate.3

Multifractality is defined by a set of nonlinear restrictions on the moments of the underlying process at
different time-scales. Recently, some studies claim that multiscaling reported in the finance literature might be
an artifact. For example, Ref. [23] showed that multiscaling can be observed as a result of a slow crossover
phenomenon on a finite time event although the underlying process is a monofractal. They warn that it might
be hard to distinguish apparent and true multifractal behavior in financial data. Similarly, LeBaron [24]
provided a simple stochastic volatility model which is able to produce visual power laws and long memory
similar to those from actual return series. However, Stanley and Plerou [25] showed that the simple stochastic
volatility model provided by LeBaron [24] cannot produce power laws and long memory. In their model of a
multifractal model of asset returns, Mandelbrot et al. and Calvet and Fisher [26–28] demonstrate that most
diffusions are characterized by increments that grow locally at a constant rate throughout their sample paths
whereas multifractals have multiplicity of local time-varying growth rates. Multifractal models, in general,
have the ability to generate nearly uncorrelated returns, with long-memory volatility and meanwhile achieving
scale-consistency.4

A scale invariant environment is a precursor in our understanding of financial markets and proper
management of financial risks.5 The primary objective of this paper is to obtain a deeper understanding of the
2A simple example is that often a decision to buy how many cars for a household depends upon the decision made where to live. Buying

a home is a lower frequency decision whereas buying and selling cars can be classified as higher frequency decisions. Sharpe [5], for

instance, points out the absence of a body of positive microeconomic theory dealing with conditions of risk.
3Ghashgaie et al. [11], Mantegna and Stanley [12,13] have analyzed the scaling relationship from the perspective of turbulence in

financial markets. Refs. [14–19] examine risk-return relationships across time scales and point out the fragility of inference based on a

single universal time scale. A wavelet perspective for time scaling in economics is studied in Refs. [20,21]. Bjornson [22] note the impact of

high and low frequency macroeconomic movements in terms of systematic factor risks in an economy.
4If the aggregated processes all belong to the same class as the original process, then the underlying framework is referred to as scale

consistent.
5Ref. [29] has an excellent survey of issues surrounding scaling in finance.
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underlying multifractal nature of financial time series towards developing scale invariant models of financial
markets. In doing so, we study the scaling laws which govern the data. As noted by Brock [30], scaling laws are
useful because ‘‘(i) they stimulate the search for interpretive frameworks, (ii) they impose discipline on theory
formation (the theory must generate data consistent with the observed scaling results), (iii) (they) give clues to
the properties of the space of possible underlying data generating process.’’

This paper is structured as follows. The following section gives a brief description of data and provides some
preliminary analysis including intraday stylized facts. Section 3 reports our findings on the multifractal nature
of returns and persistence properties of large shocks. We conclude afterwards.
2. Data and preliminary analysis

Our data set is the Dow Jones Industrial Average (DJIA), recorded at five minute (5-min) intervals during
the sample period of September 19, 1994–October 16, 2002.6 The New York Stock Exchange opens at 13:30
(GMT) and the first record of the DJIA index for that day is registered at 13:35. The market closes at 20:00
(GMT) and the last record of the day is registered at 20:05.7 Therefore, there are 79 index records at 5-min
intervals during one business day. Overall, our sample period consists of 2,949 days. We eliminated weekends
(841 days) and observed holidays (72 days) during which the market was closed.8 In addition, we eliminated
the days in which there were at least 12 consecutive 5 min zero returns since these periods indicate no market
activity (119 days). Note that we eliminated the entire day, not just consecutive zero-return periods during the
day, to keep the frequency characteristics of the data set intact. The pre-filtered sample consists of 151,443
data points, covering 1917 business days.

The 5-min stock market return is defined as

rt ¼ log xt � log xt�1; t ¼ 1; 2; . . . ; 151; 443, (1)

where xt is the DJIA level at time t. The volatility is defined as absolute return, jrtj.
5-min returns and the corresponding volatility (in percentage) are presented in Fig. 1. The average 5-min

return implies a 10.2% (compound) annual rate of return during the sample period.9 The sample statistics
indicate that the 5-min stock index return distribution in this frequency is far from being normal. The sample
skewness is 0.68 while the sample kurtosis is 55.2, implying several extreme returns relative to the standard
normal distribution. Even if the highest and the lowest 500 5-min returns from the sample are excluded, the
sample kurtosis is still 5.3. The highest intraday 5-min positive return (4.7% on October 28, 1997) is 39
standard deviations ðsÞ away from the mean while the highest intraday 5-min negative return (2.9% on
October 8, 1998) is 24s. An evaluation of the normal probability density function shows that the probability of
observing a large negative return of this size in a normally distributed world would be 10�126.

In Fig. 2, the estimated autocorrelation coefficients of returns at 5-min intervals are plotted against their
lags along with the 95% Bartlett confidence intervals. There is a significant autocorrelation at the first two lags
(10-min), the 42nd lag (half-day) and the 79th lag (one-day). Other seemingly significant autocorrelation
coefficients may be due to sampling deviation. The positive autocorrelation for daily stock portfolio returns
has long been reported in the literature.10 One possible explanation for the first-order positive autocorrelation
is the different response time of individual stocks to aggregate information (nonsynchronous trading). A stock
market index consists of several stocks with different liquidities. One group of stocks may react to new
information more slowly than another group of stocks. Since the autocovariance of a well-diversified portfolio
is the average of cross-covariances of individual stocks, significantly positive high-frequency autocorrelations
6Our results are implicitly conditioned on our choice of 5-min intervals and an alternative would be to study scale effects with data as

generated by the market.
7See Ref. [31] for an extensive coverage of the market mechanism in the NYSE.
8See The New York Stock Exchange official website www.nyse.com for a complete list of observed holidays and other historical closings

since 1885.
9The average 5-min return r5 is 4:71e� 006. Assuming 260 business days in one year, the compound annual rate of return is given by

ry ¼ ð1þ r5Þ
ð79�260Þ

� 1 ¼ 0:1016.
10See for example, Refs. [32, 33, Ch. 2, 34], and references therein. More recently, Bouchard and Potters [35] have reported significant

autocorrelations (up to four lags) of the S&P500 increments measured at 5-min intervals.

http://www.nyse.com
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Fig. 1. Dow Jones Industrial Average at 5-min intervals: (a) DJIA level (b) 5-min return (log difference, in percent) (c) 5-min volatility

(absolute return, in percent). Sample period is September 19, 1994–October 16, 2002 (151,443 5-min, 1917 days). Data source: Olsen

Group (www.olsen.ch).
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Fig. 2. Autocorrelation coefficients (ACC) of the DJIA returns at 5-min lags. (a) Intraday. (b) 15 days. 95% confidence intervals are

plotted as solid lines. First two, 42nd (half-day) and 79th (one-day) lag autocorrelation coefficients are statistically significant. One

business day consists of 79 5-min intervals (6 h, 30min). The sample period is September 19, 1994–October 16, 2002 (151,443 5-min, 1917

days). Data source: Olsen Group (www.olsen.ch).
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for stock portfolio returns are feasible [34]. It is well known that bid–ask bounce leads to negative
autocorrelation in stock returns [36]. Therefore, one may argue that the true autocorrelation coefficient may
be higher than the one reported here.

As illustrated in Fig. 3(a), the sample autocorrelation coefficients of 5-min volatility, defined as absolute
returns, are statistically significant, and the intraday autocorrelations have a U shape pattern. The correlation
coefficient takes a value of 23% at the first lag and decreases afterwards, reaching a minimum of 10% at
around 2.5 h lag before starting to rise again. There is a significant peak at lag 79 which indicates that there is a
strong seasonal cycle which completes itself in one day. Fig. 3(b) illustrates the autocorrelation coefficients at

http://www.olsen.ch
http://www.olsen.ch
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Fig. 3. DJIA volatility autocorrelation coefficients at 5-min lags. (a) Intraday. (b) 15 days. Volatility is defined as absolute percent return.

Note that there is a strong daily seasonality. One business day consists of 79 5-min intervals (6 h and 30min). Sample period is September

19, 1994–October 16, 2002 (151,443 5-min, 1917 days). Data source: Olsen Group (www.olsen.ch).
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Fig. 4. Average 5-min (a) return (b) volatility during 1-day in sample period. Volatility is defined as absolute percent return. Stock market

volatility is relatively high at the opening of the session, especially during the first 45-min. Average volatility drops afterwards, reaches to a

minimum during lunch hours and slightly increases again. The minimum 5-min average volatility is observed during the last 5-min

(closing). Sample period is September 19, 1994–October 16, 2002 (151,443 5-min, 1917 days). Data source: Olsen Group (www.olsen.ch).
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5-min lags up to 15 days. Regarding the weekly seasonality, we do not observe a strong peak at 5 days or
integer multiple of 5 days. However, this observation should be interpreted with caution since the presence of
daily seasonalities may obscure relatively weaker weekly or longer period seasonal dynamics.

Fig. 4 provides 5-min average returns and 5-min average volatilities at 5-min intervals during the day in our
sample period. The highest 5-min returns are observed at the opening and at the closing 5min. Note that the
first 5-min return is actually the return between the previous day’s closing and the opening. Therefore, the
effects of news and trading when the market is closed should be taken into consideration when interpreting
this ‘‘first 5-min’’ return. Recently, Barclay and Hendershott [37] have reported that relatively low after-hours
trading can generate significant price discovery, although prices are noisier after hours implying that price
discovery is less efficient. They find that the probability of an informed trade is significantly greater during the
pre-open than during the post-close, likely due to the accumulated information during nontrading hours.
When the market opens, this information advantage is a likely reflection on prices, causing a larger return (and
volatility) during the opening than the rest of the day. However, there is no convincing explanation for the
large 5-min average return at the closing. Note that the highest average volatilities are observed at the opening
of the session, especially during the first 45-min. An early study by Amihud and Mendelson [38] reported that
trading during the opening exposes traders to a greater variance than in the close. They attribute this
difference to the trading mechanism in the NYSE. The average volatility drops during the early session,
reaches a minimum during lunch hours and slightly increases again. Excluding the last 20min of trading, the
volatility has a U shape during the day, similar to the U shape of volatility autocorrelations. The minimum of

http://www.olsen.ch
http://www.olsen.ch
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5-min average volatility occurs during the last 5-min before the market closes. The lowest average volatility
and a relatively large average return during the closing of the market require further investigation.

3. Scaling properties

3.1. Scaling of risk across time scales

A fractal is an object which can be subdivided into parts, each of which is a smaller copy of the whole. Self-
similarity, an invariance with respect to scaling, is an important characteristic of fractals. This means that the
underlying object is similar at different scales subject to a scaling factor. A stochastic process, ½yt� is said to be
self-similar if for any positive stretching factor t, the rescaled process with time scale tt, t�H ½yt�t, is equal in
distribution to the original process ½yt�,

½yt�t¼
d tH ½yt�. (2)

The Hurst exponent H, also called self-affinity index, or scaling exponent, of ½yt�, satisfies 0oHo1. The
operator, ¼

d
, indicates that the two probability distributions are equal. This necessitates that samplings at

different intervals yield the same distribution for the process ½yt� subject to a scale factor.11 The principle of
scale invariance suggests an observable relationship between volatilities across different time frequencies.
Series exhibiting long-term persistence should scale by a factor equivalent to their Hurst exponent which is
typically H40:5.12 By contrast, a random walk process scales by the factor H ¼ 0:5. For 0oHo0:5, the
process has a short memory.

Rather than being subject to a unique scaling factor, the underlying data generating process may also follow
nonlinear forms of scaling. This is where the concept of multifractals plays an important role in explaining the
scaling behavior of several financial time series. In general, we can define an exponent xðqÞ as

Eðj½yt�tj
qÞ ¼ cðqÞtxðqÞ, (3)

where E is the expectation operator, q is the order of moments, cðqÞ and xðqÞ are both deterministic functions
of q. The functions cðqÞ and xðqÞ are called the scaling functions of the multifractal process. Unifractals or
uniscaling are a special case of multifractals where cðqÞ and xðqÞ are reduced to be linear functions of q. For
example, xðqÞ ¼ 0:5q for a Gaussian white noise. Multifractal processes, on the other hand, are characterized
by the nonlinearity of functions cðqÞ and xðqÞ.

3.2. Empirical results

Fractal properties of DJIA returns are investigated by studying the 5-min and aggregate lower frequency
intraday returns. The aggregated returns are defined by

½rt�t ¼
Xt

i¼1

rtðt�1Þþi; t ¼ 1; . . . ; 151; 443=t, (4)

where rt is the original 5-min returns defined in Eq. (1), ½rt�t represents the returns at an aggregated level of t.
For example, the 10-min returns are constructed by summing two 5-min returns where t ¼ 2. 10-min
aggregate returns are defined via

½rt�2 ¼
X2

i¼1

r2ðt�1Þþi; t ¼ 1; . . . ; 75; 721.
11A detailed discussion on self-similarity can be found in Refs. [39–41]. A self-similar process is also called uniscaling (unifractal). A

multiscaling (multifractal) process extends the idea of similarity to allow more general scaling functions. Multifractality is a form of

generalized scaling that includes both extreme variations and long-memory. Calvet and Fisher [27,28], Matteo et al. [42,43] and Selcuk [18]

have recent findings on the evidence of scaling and multifractality in financial markets.
12The original work on the Hurst exponent is due to Hurst [44]. Later Lo [45] suggested a modification to eliminate low order

persistence.
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Similarly, lower frequency intraday returns are obtained for different aggregation periods, t ¼ 2;
3; . . . ; 12; 24; 36; 48; 60; 72, corresponding to 10min–6 h of aggregated returns. The last aggregation period
corresponds to approximately one business day since the market is open for 6.5 h (79 5-min). Thus, the mean
moment of absolute returns, for different powers of absolute returns, is examined at 17 time scales, starting
5-min original returns up to 6 h, t ¼ 1; 2; 3; . . . ; 12; 24; 36; 48; 60; 72. In our estimations we used the following
version of Eq. (3)

fEðj½rt�tj
qÞg1=q ¼ cðqÞtDðqÞ, (5)

where DðqÞ ¼ xðqÞ=q. We preferred this form so that a fractional Gaussian process (FGN) would result in a
constant DðqÞ for different values of q. For example a Gaussian white noise would have DðqÞ ¼ 0:5 regardless
of the choice of q.

To investigate the multifractal properties of DJIA returns, Fig. 5(a) plots fEðj½rt�tj
qÞg1=q across 17 time scales

for different values of q in a double logarithmic scale. The time intervals range from 5-min to one day. From
bottom to top, the values of q increase from 0.5 to 4 at equal increments. The straight lines in the figure
indicate the power scaling law of Eq. (5). That is, the qth moment of the returns subject to a scaling factor
when moving from a high-frequency interval to low-frequency interval.

The estimated exponent DðqÞ for different values of q in Eq. (5) is presented in Table 1. In order to obtain
robust estimates, we changed the highest aggregation factor t ¼ 6; 7; . . . ; 12; 24; 36; 48; 60; 72 each time and
estimated the exponent DðqÞ for each aggregation period for different values of q. The final estimate is
obtained as an average of these estimated exponents. In addition, we calculated bootstrapped estimates and
their corresponding confidence intervals. The bootstrap is implemented by sampling without replacement
from the return data set to produce a new data set each time and from this new sample, new estimates are
calculated as an average of changing aggregation period estimates as before. The procedure is replicated 100
times. Reported drift exponents in Table 1 are averages of these bootstrap estimates. 95% confidence intervals
from the bootstrapping results are reported in brackets under each exponent estimate. In order to check the
robustness of this procedure, we generated a Gaussian white noise ðDðqÞ ¼ 0:50Þ with a sample size identical to
our sample (151,443 data points). Estimated exponents using the same procedure (changing aggregation
periods and 100 bootstrapping) for this simulated series in Table 1 show that the procedure produces very
reliable estimates.

In Fig. 5(a), each line describes the rate at which moments scale in double logarithmic scale. For all q, the
scaling is linear and slopes are smaller for higher moments. The interpretation is that the lower the frequency,
the higher the value of the corresponding moment from 5-min to 6-h time scales. The basic idea about scaling
is that the different moments at a given time scale can be extended to another time scale. For example, the
normalized first moment (the mean absolute return) of 5-min absolute returns can be rescaled to the first
moment of 6-h absolute returns by considering the scaling factor via E½jrtj�72 ¼ 1� 720:567 ¼ 11:3 (assuming
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Fig. 5. Intraday scaling. Left: fEðj½rt�tj
qÞg1=q (vertical axis) against the different time scales t (horizontal axis) for different values of the

exponent q ¼ 0:5; 1; 1:5; 2; 2:5; 3; 3:5; 4 (from top to bottom) on a log-log scale. t values range from 10-min to 6 h. Right: Estimated

exponents DðqÞ are plotted against corresponding order of moments, q. A second order estimated polynomial is imposed on this plot. As a

benchmark, estimated exponents from a simulated Gaussian white noise for different order of moments are also plotted. Sample period is

September 19, 1994–October 16, 2002 (151,443 5-min, 1917 days). Data source: Olsen Group (www.olsen.ch).
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Table 1

Estimated exponents DðqÞ in Eq. (5) and 95% bootstrap confidence intervals for the 5-min DJIA returns. As a benchmark, estimated

exponents from a simulated Gaussian white noise for different order of moments and 95% confidence intervals are also provided. Sample

period is September 19, 1994–October 16, 2002 (151,443 5-min, 1917 days). Data source: Olsen Group (www.olsen.ch)

q Dow Jones Simulated FGN

0.5 0.599 0.50

½0:595 0:603� ½0:494 0:504�
1 0.567 0.50

½0:563 0:570� ½0:496 0:506�
1.5 0.536 0.50

½0:531 0:540� ½0:495 0:504�
2 0.50 0.50

½0:496 0:503� ½0:496 0:506�
2.5 0.456 0.50

½0:451 0:461� ½0:495 0:504�
3 0.403 0.50

½0:397 0:411� ½0:495 0:505�
3.5 0.349 0.50

½0:339 0:357� ½0:495 0:505�
4 0.30 0.50

½0:286 0:312� ½0:495 0:504�
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5-min mean absolute return is 1%). Similarly, the normalized second moment of 5-min absolute returns can be
utilized to obtain the second moment of 6-h absolute returns as Ejrtj

2
72 ¼ 722�0:50. For the DJIA series, the 5-

min mean absolute return is 0.076%. For Dð1Þ ¼ 0:567, the 6-h absolute return is 0:076� 720:567 ¼ 0:86%. If
we examine actual data (returns aggregated at 72 5-min, 6-h scale), the actual mean absolute return at 6-h scale
is 0.81%. Note that with square root scaling ðDðqÞ ¼ 0:5Þ, the 6-h absolute return would only be 0.64%
ð0:076� 720:5Þ. The study of the first and the last one-thirds of the data do not change the scaling results as
illustrated in Fig. 6.

The estimation results indicate different exponents DðqÞ for different values of q in Eq. (5), which suggest
that there are different scaling laws for different order of moments. The lower moments of absolute returns
scale faster than the higher moments. Particularly, the moments up to q ¼ 2 scale faster than a Gaussian white
noise while the moments greater than 2 ðq42Þ scale slower than a Gaussian white noise. The second moment
q ¼ 2 appears to be the borderline. For example, suppose that the normalized mean absolute return is 1%. If
we assume a Gaussian white noise, the corresponding 6-h mean absolute return would be 720:50 ¼ 8:5% while
the estimated exponent implies 720:567 ¼ 11:3% mean absolute return at the 6-h scale. Note that higher
moments of the absolute returns give more weight to large observations (tails of the empirical distribution).
Similar results are obtained earlier in the literature. By employing Eq. (5) in their estimations, Dacorogna et al.
[6] report Dð1Þ around 0.60 and Dð2Þ at around 0.50 for major foreign exchanges and Eurofutures. Similarly,
Selc-uk [18] reports that the estimated Dð1Þ is in between 0.55 and 0.59, Dð2Þ is around 0.50 and the higher
moments have DðqÞ less than 0.50.

Recall that the return process is monofractal if xðqÞ ¼ qxð1Þ is a linear function of q and multifractal if xðqÞ is
nonlinear function of q. To illustrate, the estimated exponent DðqÞ is plotted against q along with estimated
DðqÞ from a Gaussian white noise in Fig. 5(b). The exponent DðqÞ for the Gaussian white noise stays constant
at 0.5 as expected while the estimated exponents from 5-min Dow Jones return series start with 0.6 at q ¼ 0:5
and fall to 0.3 at q ¼ 4, suggesting multifractal behavior of the return process. An estimated second order
polynomial for the estimated exponents DðqÞ in Fig. 5(b) is

y ¼ �0:0023q2 � 0:023qþ 0:62,

where y is the estimated exponent. Clearly, DðqÞ is nonlinear and the nonlinearity of DðqÞ verifies that the
DJIA return process is multifractal.

http://www.olsen.ch
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The nonlinearity of xðqÞmay also be tested by plotting Eðj½rt�tj
qÞ=Eðj½rt�tjÞ

q versus time intervals for different
values of q. Fig. 7(a) shows that Eðj½rt�tj

qÞ=Eðj½rt�tjÞ
q is an approximate linear function of t for different values

of q ranging from 0.5 (bottom) to 4 (top) in a log-log space. The straight lines which are observed have a slope
of xðqÞ � qxð1Þ. In the case that xðqÞ is a linear function of q, the slopes of the straight lines must be 0.
However, if xðqÞ is nonlinear, a trend should be expected. The graph shows that the slopes of the straight lines
are nonzero except for q ¼ 1. When qo1, the slope is positive. In other cases, negative slopes are observed. To
illustrate the properties of the exponent function, the estimated slopes from Fig. 7(a) are plotted against
corresponding exponents, q, in Fig. 7(b). The estimated second order polynomial in this case is

y ¼ �0:07q2 þ 0:13q� 0:054,

http://www.olsen.ch
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where y is the estimated slope coefficient. Once again, it is evident that xðqÞ is a nonlinear function of q, which
provides further evidence that the DJIA return process is multifractal.

3.3. Financial earthquakes and aftershocks

Mandelbrot [46,47] eloquently demonstrated the importance of Pareto’s law for the power decay of the tails
of return distributions.13 Although the tails of return distributions follow a power law at high frequency scales,
this decay does not take the time order into account. The time path followed by these shocks is an identifying
factor for a model of returns. Along with Sornette et al. [49], Lillo and Mantegna [50,51] and Selc-uk [18], we
examine the persistence of shocks in intraday scales.

A major earthquake in a region is usually followed by smaller ones, labeled as ‘‘aftershocks’’. There are
several approaches to describe the dynamics of aftershocks. A well-known simple rule is the Gutenber-
g–Richter relation, which says that the number of earthquakes of magnitude M or greater, NðMÞ, is given by

log10 NðMÞ ¼ a� bM, (6)

where a and b are two constants. In several studies, b is found to be within the range of 0.7 to 1 regionally.
However, for larger geographical areas and the world, the slope parameter is usually 1. The interpretation is
such that we will observe approximately ten times as many aftershocks with a magnitude one unit less than the
main shock. Fitting the tail of a distribution in finance is analogous to this relationship.

Another approach relates the time after the main shock to the number of aftershocks per unit time, nðtÞ.
This is known as the Omori law.14 Omori’s law states that the number of aftershocks per unit time decays
according to the power law of t�p. In order to avoid divergence at t ¼ 0, Omori’s law is rewritten as

nðtÞ ¼ Kðtþ tÞ�p, (7)

where K and t are constants. By integrating Eq. (7) between 0 and t, the cumulative number of aftershocks
between the main shock and the time t can be expressed as

NðtÞ ¼ K ½ðtþ tÞ1�p
� t1�p�=ð1� pÞ, (8)

when pa1 and NðtÞ ¼ K lnðt=1þ tÞ for p ¼ 1 [50].
By performing numerical simulations and theoretical modeling, Lillo and Mantegna [50] show that the

nonlinear behavior observed in real market crashes cannot be described by popular volatility models.
Particularly, they show that simulated GARCHð1; 1Þ time series converges to its stationary phase very quickly
after a large shock and it is unable to show a significant nonlinear behavior. Recently, a series of papers has
investigated the behavior of volatility in financial markets after big crashes. An early work by Sornette et al.
[49] shows that the implied volatility in the S&P500 after the 1987 financial crash has a power law-periodic
decay. Lillo and Mantegna [50,51] have shown that S&P500 index returns above a large threshold are well
described by a power law function which is analogous to Omori’s law in Eq. (8). More recently, Selc-uk [18] has
investigated the financial aftershocks (defined as absolute daily returns above a certain threshold following a
significant drop in the stock market) in ten different emerging economies. Selc-uk [18] has reported that the
majority of estimated exponents in Eq. (8) for these economies is less than 1, concentrating between 0.50 and
0.70.15

On October 8, 1998, the DJIA went down from 7827.9 at 9:40 AM to 7606.3 at 9:45 AM resulting in a 2.9%
drop within 5min and the trade was not suspended. This shock is the largest percentage drop in 5-min in our
sample without an interruption in the market. Fig. 8 plots the cumulative number of aftershocks for the
following 2370 5-min intervals (dotted line). An aftershock is defined as 5-min absolute return greater than 3s
where s ¼ 0:0012 is the 5-min sample standard deviation. The solid line is the best fit of Eq. (8) for the sample.
The estimated exponent p is 0.95. Another example is provided in Fig. 9. On January 3, 2001, the DJIA went
up from 10636 at 1:15 PM to 10920 at 1:20 PM resulting in a 2.6% increase in 5min. This shock is one of the
13LeBaron [24], Mandelbrot [48] Stanley and Plerou [25] discuss whether stochastic volatility models follow a power law behavior.
14See Refs. [52,50,51].
15Refs. [53,54] show that the exponent of the ‘‘Omori’’ law (measured differently) is a function of the size of the peak, which can be

predicted by the multifractal random walk model.
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Fig. 8. Cumulative number of aftershocks and Omori’s Law. On October 8, 1998, DJIA went down from 7827.9 at 9:40 AM to 7606.3 at

9:45 AM resulting in a 2.9% drop within 5min and the trade was not suspended. This shock is the largest percentage drop in a 5-min in

our sample without an interruption in the market. The plot shows the cumulative number of aftershocks for the following 2370 5-min

intervals (30 business days) (dotted line). An aftershock is defined as 5-min absolute return greater than 3s where s ¼ 0:0012 is the 5-min

sample standard deviation. The solid line is the best fit of Eq. (8) for the above sample. The estimated exponent p is 0.95. Data source:

Olsen Group (www.olsen.ch).
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largest percentage increase in 5-min during the day in our sample without an interruption in the market. Fig. 9
illustrates the cumulative number of aftershocks for the following 2370 5-min intervals (30 business days). As
before, an aftershock is defined as the 5-min absolute return greater than 3s where s ¼ 0:0012. The estimated
exponent p is 1.17 and Eq. (8) describes intraday aftershock dynamics fairly well.

4. Conclusions

This paper provides new empirical evidence for intraday scaling behavior of stock market returns utilizing a
5-min stock market index (the Dow Jones Industrial Average) from the New York Stock Exchange. Our
findings indicate that the return (and volatility) distribution changes nonlinearly under scaling. Furthermore,
it is not certain whether the statistical inference from the existing return/volatility literature can be classified as
pivotal.
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