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Abstract We give a concise review and extension of S-procedure that is an
instrumental tool in control theory and robust optimization analysis. We also dis-
cuss the approximate S-Lemma as well as its applications in robust optimization.

Keywords S-Procedure · S-Lemma · Robust optimization · Control theory

1 Introduction

The purpose of this paper is to give a concise review of recent developments related
to the S-procedure in a historical context as well as to offer a new extension.
S-procedure is an instrumental tool in control theory and robust optimization anal-
ysis. It is also used in linear matrix inequality (or semi-definite programming)
reformulations and analysis of quadratic programming. It was given in 1944 by
Lure and Postnikov without any theoretical justification. Theoretical foundations of
S-procedure were laid in 1971 by Yakubovich and his students (Yakubovich 1971).

S-procedure deals with the nonnegativity of a quadratic function on a set de-
scribed by quadratic functions and provides a powerful tool for proving stability
of nonlinear control systems. For simplicity, if the constraints consist of a single
quadratic function, we refer to it as S-Lemma. If there are at least two quadratic
inequalities in the constraint set, we use the term of S-procedure. Yakubovich
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(1971) was the first to prove the S-Lemma and to give a definition of S-procedure.
Recently, Polyak (1998) gave a result related to S-procedure for problems involving
two quadratic functions in the constraint set.

Although the S-Lemma was proved in 1971, results on the convexity problems
of quadratic functions were already there since 1918. From Toeplitz (1918) and
Hausdorff (1919) theorem to more recent results, many important contributions to
the field are available. In this period, not only the S-Lemma was improved, but also
a new result was introduced, called the approximate S-Lemma. The approximate
S-Lemma developed by Ben-Tal et al. (2002) establishes a bound for problems with
more than one constraints of quadratic type. Their result also implies the S-Lemma
of Yakubovich.

In the present paper we offer yet another generalization of the S-procedure
referred to as the extended S-procedure (a term coined in this paper), that implies
both the theorems of Yakubovich and Polyak. This procedure is obtained as a
corollary of Au-Yeung and Poon (1979), and Barvinok’s (1995) theorems.

Although papers concerning the S-procedure abound (as well as many that
make use of it), it appears that a summary review of the subject encompassing
the latest developments still remains unavailable to the research community. The
present paper should be considered an attempt to fulfill this need.

The remainder of this study is organized as follows: Sect. 2 provides a back-
ground on the S-procedure with an extensive (although not pretending to be exhaus-
tive) review of literature. In Sect. 3, our exposition of approximate S-Lemma and
extended S-procedure are given. Section 4 is devoted to a critical evaluation. Sec-
tion 5 gives concluding remarks. Open problems are also pointed out in the last
two sections.

Notation We work in a finite dimensional (Euclidian) setting Rn , with the
standard inner product denoted by 〈., .〉 and associated norm denoted by ‖.‖. We
use SR

n to denote (n × n) symmetric real matrices. For A ∈ SR
n , A � 0 (A � 0)

means A is positive semi-definite (positive definite). Also we use Mn,p(R) to
denote the space of real (n × p)-matrices. If A ∈ SR

n and X ∈ Mn,p(R), then
〈〈AX, X〉〉 = 〈〈A, X XT〉〉 := T r AX XT = trace of AT(X XT).

2 Background

S-procedure is one of the fundamental tools of control theory and robust optimi-
zation. It is related to several mathematical fields such as numerical range, convex
analysis and quadratic functions. Since it is at the crossroads of several fields,
efforts were undertaken to improve it or to understand its structure. Therefore, it is
only natural to begin with its history to appreciate its importance.

In 1918, Toeplitz introduced the idea of the numerical range (W (A)) of a com-
plex (n × n) matrix A in the “Das algebraische Analogon zu einem Satze von
Fejér”. For a quadratic form z∗ Az, he proved that it has a convex boundary for z
belonging to the unit sphere in the space Cn of complex n-tuples (it is also called
the numerical range of A). He also conjectured that the numerical range itself is
convex. One year later, Hausdorff (1919) proved it. The Toeplitz–Hausdorff theo-
rem is a very important result due to its extensions in the numerical range, and it
is applied in many fields of mathematics. This theorem can be formulated as: let
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W (A) = { z∗ Az | ‖z‖ = 1 }.
Then, the set W is convex in the set C of complex numbers. This result is the

first assertion on convexity of quadratic maps.
For the real field, the first result was obtained by Dines (1941) for two real

quadratic forms. Dines proved that for two dimensional image of Rn and for any
real symmetric matrices A and B, the set

D = { (〈Ax, x〉, 〈Bx, x〉) | x ∈ Rn }
is a convex cone where 〈Ax, x〉 = xT Ax , and that under some additional assump-
tion it is closed.

The next important result was obtained by Brickman (1961). He proved that
the image of the unit sphere for the n ≥ 3 (for any real symmetric matrices A and
B),

B = { (〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1 }
is a convex compact set in R2.

These three papers are the main contributions on the numerical range, and
mathematicians tried in several ways to generalize them. Before explaining these
developments, let us look at our main subject: S-procedure.

S-procedure deals with nonnegativity of a quadratic form under quadratic
inequalities. The first result in this area is Finsler’s Theorem (Finsler 1936/37)
(also known as Débreu’s lemma). Calabi (1964) also proved this result indepen-
dently in studying differential geometry and matrix differential equations by giving
a new and short topological proof (A unilateral version of this theorem was proved
by Yuan (1990)).

Theorem 1 The theorem of Finsler (1936), Calabi (1964)
For n ≥ 3, let A, B ∈ SR

n . Then the following are equivalent:

(i) 〈Ax, x〉 = 0 and 〈Bx, x〉 = 0 implies x = 0.
(ii) ∃µ1, µ2 ∈ R such that µ1 A + µ2 B � 0.

In 1971, Yakubovich proved the S-Lemma which became very popular in con-
trol theory. There exist several methods to prove it but we want to give here a proof
that uses Dines’ theorem to emphasize the link between convexity and the S-Lemma
which is a separation theorem for convex sets. (One can consult Nemirovski’s
(2002) book (pp. 132–135) or Luo et al. (2003) paper for different proofs).

Theorem 2 (S-Lemma) Let A,B be symmetric n ×n matrices, and assume that the
quadratic inequality

xT Ax ≥ 0

is strictly feasible(there exists x such that xT Ax > 0). Then the quadratic
inequality:

xT Bx ≥ 0
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is a consequence of it, i.e.,

xT Ax ≥ 0 ⇒ xT Bx ≥ 0

if and only if there exists a nonnegative λ such that

B � λA.

Proof The sufficiency part is immediately proved. Therefore, let us assume that
xT Bx ≥ 0 is a consequence of xT Ax ≥ 0. Let

S = {(xT Ax, xT Bx) : x ∈ Rn}
and

U = {(u1, u2), u1 ∈ R+, u2 ∈ R−−}.
S is a convex set by Dines’ theorem while U is a convex cone. Since their

intersection is empty, a separating hyperplane exists. I.e., there exists nonzero
c = (c1, c2) ∈ R2, such that (c, s) ≤ 0, ∀s ∈ S and (c, u) ≥ 0,∀u ∈ U . For
(0,−1) ∈ U we have c2 ≤ 0. For (1, −α) ∈ U where α is a small positive number
arbitrarily chosen, we obtain c1 ≥ αc2. Letting α tend to zero, we get c1 ≥ 0.
Since there exists x such that xT Ax > 0, and by the separation argument we have
c1xT Ax + c2xT Bx ≤ 0 for all x ∈ Rn , we can write

c1xT Ax + c2xT Bx ≤ 0.

Since we have c1 ≥ 0, xT Ax > 0, xT Bx ≥ 0 by hypothesis, and that c1 and c2
cannot both be zero, the last inequality implies that c2 < 0. Therefore, we obtain:
xT Bx ≥ −c1/c2xT Ax for all x ∈ Rn , which is equivalent to B � λA after defin-
ing λ = −c1/c2. This completes the proof of the necessity part. Hence, the result
is proved.

The idea of this proof is used in many papers about the subject. It is also used in
the first two results in the next section. At this point, we divide our review into two
sub-areas. Firstly, we try to generalize this theorem to obtain more complicated
cases. Then we look at a new area recently developed by Ben-Tal et al. (2002) to
obtain approximate version of the general result.

2.1 Review of research on the S-procedure

The first attack to generalize the above theorems was made by Hestenes and Mc-
Shane (1940). They generalized the theorem of Finsler (1936).

Theorem 3 The theorem of Hestenes and McShane (1940)
Assume that xTSx > 0 for all nonzero x such that {x ∈ Rn|⋂r

i=1(〈Ti x, x〉 =
0)}. Let Ti be such that

∑
i ai Ti is indefinite for any nontrivial choice of ai ∈ R.

Moreover assume that for any subspace L ⊆ Rn \⋂r
i=1(〈Ti x, x〉 = 0) there are

constants bi ∈ R such that xT
(∑

i bi Ti
)

x > 0 for all nonzero x ∈ L. Then, there
exists c ∈ Rr+1 that;

c0S + c1T1 + · · · + cr Tr � 0.

For r = 1 only the first assumption needs to be made.
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There are several papers in this area by Au-Yeung (1969), Dines (1942, 1943),
John (1938), Kühne (1964), Taussky (1967) and others. One of the benefits of
Finsler, and Hestenes and McShane’s theorems is the appearence of positive defi-
niteness of a linear combination of matrices a la S-procedure. One can find a review
of related results covering the period until 1979 in a nice survey by Uhlig (1979).

To generalize the S-Lemma, researchers either replace vector variables with
matrix variables, or make additional assumptions. First, we look into the first cat-
egory and among these theorems, we deal with a most popular unpublished result:
the theorem of Bohnenblust (unpublished Manuscript) on the joint positive defi-
niteness of matrices. Although this theorem can be stated for the field of complex
numbers and the skew field of real quaternions, we only deal with the field of real
numbers.

Theorem 4 The theorem of Bohnenblust
Let 1 ≤ p ≤ n − 1, m <

(p+1)(p+2)
2 − δn,p+1 and A1, . . . , Am ∈ SR

n . Suppose
(0, . . . , 0) /∈ Wp(A1, . . . , Am) where

Wp(A1, . . . , Am) =
{( p∑

i=1

xT
i A1xi , . . . ,

p∑

i=1

xT
i Am xi

)

: xi ∈ Rn,

p∑

i=1

xT
i xi = 1

}

.

Then there exist α1, . . . , αm ∈ R such that the matrix
∑m

1 αi Ai is positive definite.
(δn,p+1 is Kronecker delta).

With the help of this theorem, Au-Yeung and Poon (1979) showed the extension
of Brickman’s and Toeplitz-Hausdorff theorem in 1979, and Poon (1997) gives the
final version of this result in 1997. Here is the Au-Yeung and Poon theorem for
real cases:

Theorem 5 The theorem of Au-Yeung and Poon (1979) [Extension of Brickman
(1961) using Bohnenblust]
Let 1 ≤ p ≤ n − 1, m <

(p+1)(p+2)
2 − δn,p+1 and A1, . . . , Am ∈ SR

n . Then,

{(〈〈A1 X, X〉〉, 〈〈A2 X, X〉〉, . . . , 〈〈Am X, X〉〉)|X ∈ Mn,p(R), ‖X‖ = 1}
is a convex compact subset of Rm. (δi, j is equal to one when i = j , otherwise
zero). (‖.‖ denotes the Schur-Frobenius norm on Mn,p(R), derived from 〈〈., .〉〉).
Here 〈〈AX, X〉〉 = T r AX XT =∑p

i=1 xT
i Axi and xi denotes the columns of X . A

corollary of this theorem is given in the paper of Hiriart-Urruty and Torki (2002).

Theorem 6 Corollary (Hiriart-Urruty and Torki 2002) of the theorem of Poon
(1997)
Let A1, A2, . . . , Am ∈ SR

n and let

p :=
{

�
√

8m+1−1
2 � if n(n+1)

2 �= m + 1

�
√

8m+1−1
2 � + 1 if n(n+1)

2 = m + 1

}

(thus p = 1 when m = 2 and n ≥ 3, p = 2 when m = 2 and n = 2, etc.) Then
the following are equivalent:
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(i)






〈〈A1 X, X〉〉 = 0
〈〈A2 X, X〉〉 = 0
.
.
.
〈〈Am X, X〉〉 = 0






⇒ (X = 0).

(ii) There exists µ1, . . . , µm ∈ R such that

m∑

i=1

µi Ai � 0.

We note that the paper by Hiriart-Urruty and Torki (2002) gives a good overview
of the convexity of quadratic maps and poses several open problems.

Barvinok’s (1995) gave another theorem extending the Dines’s and Toeplitz–
Hausdorff theorem while working on distance geometry.

Theorem 7 The theorem of Barvinok(1995)[Extension of Dines(1941)]
Let A1, A2, . . . , Am ∈ SR

n , and let p := �
√

8m+1−1
2 �. Then

{(〈〈A1 X, X〉〉, 〈〈A2 X, X〉〉, . . . , 〈〈Am X, X〉〉)|X ∈ Mn,p(R)}
is a convex cone of Rm.

Papers of Poon and Barvinok are important for our extension results because
we use them for the extended S-procedure in section 3. Now we give the definition
of both S-procedure and extended S-procedure and turn our interest to results about
S-procedure without extension but using additional assumptions. The definition of
S-procedure is given by Yakubovich (1971) and his students in 1971. Before talking
about related papers on S-procedure, let us define the S-procedure and extended
S-procedure:

Definition 8 (S-procedure and Extended S-procedure)
Define

qi (X) =
p∑

j=1

xT
j Qi x j + 2bT

i

p∑

j=1

x j + ci ,

Qi ∈ SR
n , i = 0, . . . , m, j = 1, . . . , p, X = (x1, . . . , x p)

F := {X ∈ Mn,p(R) : qi (X) ≥ 0, i = 1, . . . , m},
qi (x j ) is called quadratic function and if bi and ci are zero, then it is called qua-
dratic form. Now consider the following conditions:

(S1) q0(X) ≥ 0 ∀X ∈ F
(S2) ∃s ∈ Rm+ : q0(X) −∑m

i=1 si qi (X) ≥ 0, ∀X ∈ Mn,p(R)

Method of verifying (S1) using (S2) is called S-procedure for p = 1 and called
extended S-procedure for p > 1.
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Note that always S2 ⇒ S1. Indeed,

q0(x) ≥
m∑

i=1

si qi (x) ≥ 0.

Unfortunately, the converse is in general false. If S1 ⇔ S2, the S-procedure is
called lossless. However, this condition is fulfilled only in some special cases.

The first paper reviewed on the S-Procedure with additional assumptions is the
paper of Megretsky and Treil (1993). They prove the S-procedure for the continuous
time-invariant quadratic forms.

Let L2 = L2((0,∞); Rn) be the standard Hilbert space of real vector-valued
square-summable functions defined on (0, ∞). A subspace L ∈ L2 is called time
invariant if for any f ∈ L , and τ > 0 the function f τ ,defined by f τ (s) = 0
for s ≤ τ , f τ (s) = f (s − τ) for s > τ , belongs to L . Similarly, a functional
σ : L → R is called time invariant if σ( f τ ) = σ( f ) ∀ f ∈ L , τ > 0.

Theorem 9 The S-procedure losslessness theorem of Megretsky and Treil(1993)
Let L ⊂ L2 be time invariant subspace, and σ j : L → R( j = 0, 1, . . . , m) be

continuous time-invariant quadratic forms. Suppose that there exists f∗ ∈ L such
that σ1( f∗) > 0, . . . , σm( f∗) > 0.
Then the following statements are equivalent:

(i) σ0( f ) ≤ 0 for all f ∈ L such that σ1( f ) > 0, . . . , σm( f ) > 0;
(ii) There exists τ j ≥ 0 such that

σ0( f ) + τ1σ1( f ) + · · · + τmσm( f ) ≤ 0

for all f ∈ L.

Although this theorem gives us the S-procedure, time-invariant quadratic forms
are very domain specific. Moreover, one can find another convexity result for com-
mutative matrices in the paper of Fradkov (1973) (Detailed information about
commutative matrices can be obtained from the book Matrix Analysis by Horn
and Johnson (1990)).

Theorem 10 Theorem of Fradkov
Let m quadratic forms fi (x) = 〈Ai x, x〉, x ∈ Rn, i = 1, . . . , m be given. If
matrices A1, . . . , Am commute, then

Fm = {( f1(x), . . . , fm(x))T : x ∈ Rn} ⊂ Rm

is a closed convex cone for all m,n.

In addition to Megretsky and Treil, and Fradkov’s papers, yet further exten-
sions of the S-procedure exist. A result in this direction was proved recently by
Luo et al. (2003) where quadratic matrix inequalities were used instead of linear
matrix inequalities.

Theorem 11 Theorem of Luo et al. (2003)
The data matrices (A, B, C, D, F, G, H) satisfy the robust fractional quadratic
matrix inequality
[

H F +G X
(F +G X)T C+XT B + BT X +XT AX

]

� 0 for all X with I −XT DX � 0



62 K. Derinkuyu and M. Ç. Pınar

if and only if there is t ≥ 0 such that



H F G
FT C BT

GT B A



− t




0 0 0
0 I 0
0 0 −D



 � 0.

Unfortunately, neither Megretsky and Treil, and Fradkov’s results nor extension of
Luo et al. imply the S-procedure in general.

Polyak (1998) succeeded in proving a version of S-procedure for m = 2 by
making an additional assumption, and it is the most valuable result found recently
in this field. He first proved the following theorem to obtain the S-procedure for
m = 2:

Theorem 12 Convexity result of Polyak in 1998 (relies on Brickman’s theorem,
1961)
For n ≥ 3 the following assertions are equivalent:

(i) There exists µ ∈ R3 such that

µ1 A1 + µ2 A2 + µ3 A3 � 0.

(ii) For fi (x) = 〈Ai x, x〉, x ∈ Rn, i = 1, 2, 3, the set:

F = {( f1(x), f2(x), f3(x))T : x ∈ Rn} ⊂ R3

is an acute (contains no straight lines), closed convex cone.

This nice theorem and its beautiful proof bring us the following S-procedure
for quadratic forms, m = 2.

Theorem 13 Polyak’s theorem, 1998 (uses separation lemma)
Suppose n ≥ 3, fi (x) = 〈Ai x, x〉, x ∈ Rn, i = 0, 1, 2, real numbers αi , i =
0, 1, 2 and there exist µ ∈ R2, x0 ∈ Rn such that

µ1 A1 + µ2 A2 � 0

f1(x0) < α1, f2(x0) < α2.

Then

f0(x) ≤ α0 ∀x : f1(x) ≤ α1, f2(x) ≤ α2

holds if and only if there exist τ1 ≥ 0, τ2 ≥ 0:

A0 � τ1 A1 + τ2 A2

α0 ≥ τ1α1 + τ2α2.

A related line of work on the optimality conditions for the minimization of quadratic
functions subject to two quadratic inequalities can also be followed by starting to
trace back the subject from the very nice, and relatively recent paper of Peng and
Yuan (1997). To keep the paper at a reasonable length, we do not review these
results here.

Unfortunately, Polyak’s theorem, although very elegant, is not sufficient to deal
with certain problems of robust optimization as we shall see in the next section.
Recently a new result in this direction was proved by Ben-Tal et al. (2002) referred
to as the approximate S-Lemma which we review next.
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2.2 Review of research on the approximate S-Lemma

In this section, we not only deal with the approximate S-Lemma but also con-
centrate on its impact on robust systems of uncertain quadratic and conic qua-
dratic problems whereby the reader may appreciate the importance of approximate
S-Lemma.

S-Lemma has been widely used within the robust optimization paradigm of
Ben-Tal et al. (2004, 1998, 2000), Boyd et al. (1994) and El-Ghaoui et al. (1998)
to find robust counterparts for uncertain convex optimization problems under an
ellipsoidal model of the uncertain parameters. Now we concentrate on approximate
S-Lemma, so we use the same notation as the paper of Ben-Tal (2002). Before
beginning to talk about the subject, we need additional notation and definitions
about robust methodology and conic quadratic problems. For conic programming,
Ben-Tal’s lecture notes (2002) are an excellent reference.

Definition 14 Let K ⊆ Rn be a closed pointed convex cone with nonempty inte-
rior. For given data A ∈ Mn,p(R), b ∈ Rn and c ∈ R p, optimization problem of
the form

min
x∈R p

{cTx : Ax − b ∈ K } (1)

is a conic problem (CP). When the data (A, b) belong to uncertain set U, the
problem

{

min
x∈R p

{cTx : Ax − b ∈ K } : (A, b) ∈ U

}

(2)

is called uncertain conic problem (UCP) and the problem

min
x∈R p

{cTx : Ax − b ∈ K : ∀(A, b) ∈ U } (3)

is called robust counterpart (RC).

A feasible/optimal solution of (RC) is called a robust feasible/optimal solution
of (UCP). Surely, the difficulty of problem is closely related to the uncertain set U
which is

U = (A0, b0) + W

where (A0, b0) is a nominal data and W is a compact convex set, symmetric with
respect to the origin.(W is interpreted as the perturbation set). If the uncertain set
U is too complex, we need an approximation to bracket the optimal value of the
problem in acceptable bounds. If the set X is the set of robust feasible solutions,
then we can define it as

X = {x ∈ R p : Ax − b ∈ K ∀(A, b) ∈ (A0, b0) + W }.
Also with an additional vector u, let the set R be

R := {(x, u) : Px + Qu + r ∈ K̂ }
for a vector r , some matrices P and Q, and a pointed closed convex nonempty
cone K̂ with nonempty interior.
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Definition 15 R is an approximate robust counterpart of X if the projection of R
onto the space of x-variables, i.e., the set R̂ ⊆ R p given by

R̂ := {x : Px + Qu + r ∈ K̂ for some u},
is contained in X :

R̂ ⊆ X .

To measure the approximation error between R̂ and X , one can shrink X until
it fits into R̂. To do this, we should increase the size of uncertain set U as

Uρ = {(A0, b0) + ρW }, ρ ≥ 1.

Then the new set of robust feasible solutions corresponding to Uρ is:

Xρ = {x ∈ R p : Ax − b ∈ K ∀(A, b) ∈ Uρ}.
If ρ is sufficiently large, the new robust feasible set becomes a subset of R̂. More
precisely we have:

Definition 16 The smallest ρ to obtain Xρ ⊆ R̂, i.e.

ρ∗ = in fρ≥1{ρ : Xρ ⊆ R̂},
is called the level of conservativeness of the approximate robust counterpart R.

Finally we get

Xρ ⊆ R̂ ⊆ X .

After all of these definitions, now it is time to turn our interest to the uncertain
quadratic constraint (it can also be written as a conic quadratic form):

xT AT Ax ≤ 2bTx + c ∀(A, b, c) ∈ Uρ,

where;

Uρ =
{

(A, b, c) = (A0, b0, c0) +
L∑

l=1

yl(Al , bl , cl) : y ∈ ρV

}

,

and

V = {y ∈ RL : yT Qk y ≤ 1, k = 1, . . . , K },
with Qk � 0 for each k and

∑K
k=1 Qk � 0.

At this point, let us give an example to understand where the S-Lemma enters
the system from the paper of Ben-Tal and Nemirovski (1998) (Theorem 3.2 in their
paper).(It is also discussed in the paper of El-Ghaoui and Lebret (1997)). For the
case K = 1, Q1 is identity matrix:
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Theorem 17 For Al ∈ Mn,p(R), bl ∈ R p, cl ∈ R, l = 0, . . . , L a vector x ∈ R p

is a solution of

xT AT Ax ≤ 2bTx + c ∀(A, b, c) ∈ Usimple, (4)

where

Usimple =
{

(A, b, c) = (A0, b0, c0) +
L∑

l=1

yl(Al , bl , cl) : ‖y‖2 ≤ 1

}

,

if and only if for some nonnegative λ, the pair (x, λ) is a solution of the following
linear matrix inequality (LMI):














c0 + 2xTb0 − λ 1
2 c1 + xTb1 · · · 1

2 cL + xTbL
(

A0x
)T

1
2 c1 + xTb1 λ

(
A1x

)T

· · ·
· · ·
· · ·

1
2 cL + xTbL λ

(
AL x

)T
(

A0x
) (

A1x
) · · · (AL x

)
In














� 0.

Proof Using uncertain set, (4) can be written as:

−xT

[

A0 +
L∑

l=1

yl Al

]T [

A0 +
L∑

l=1

yl Al

]

x + 2

[

b0 +
L∑

l=1

ylb
l

]T

x

+
[

c0 +
L∑

l=1

ylc
l

]

≥ 0 ∀(y : ‖y‖2 ≤ 1).

Taking τ ≤ 1,

−xT

[

A0τ +
L∑

l=1

yl Al

]T [

A0τ +
L∑

l=1

yl Al

]

x + 2τ

[

b0τ +
L∑

l=1

yl b
l

]T

x

+τ

[

c0τ +
L∑

l=1

yl c
l

]

≥ 0 ∀((τ, y) : ‖y‖2 ≤ τ 2).

Clearly, If τ 2 − ‖y‖2 ≥ 0 then the first inequality holds. Now the S-Lemma
enters the system and links these inequalities because both sides can be written as
a single matrix. From S-Lemma, we can write

−xT

[

A0τ +
L∑

l=1

yl Al

]T [

A0τ +
L∑

l=1

yl Al

]

x + 2τ

[

b0τ +
L∑

l=1

ylb
l

]T

x

+τ

[

c0τ +
L∑

l=1

ylc
l

]

− λ(τ 2 − ‖y‖2) ≥ 0
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which is the same as

(τ, yT)















c0 + 2xTb0 1
2 c1 + xTb1 . . 1

2 cL + xTbL

1
2 c1 + xTb1

.

.
1
2 cL + xTbL








−








(A0x)T

(A1x)T

.

.

(AL x)T








(A0x, A1x, .., AL x)








(
τ
y

)

+(τ, yT)







−λ
λ

.
.
λ







(
τ
y

)

≥ 0.

From Schur lemma given below, we obtain the matrix in the theorem. This com-
pletes the proof.

Lemma 18 (Schur complement lemma) Suppose A, B, C, D are respectively n ×
n, n × p, p × n and p × p matrices, and D is invertible. Let

M =
[

A B
C D

]

so that M is a (n + p) × (n + p) matrix. Then the Schur complement of the block
D of the matrix M is the n × n matrix

A − B D−1C.

Let D be positive definite. Then M is positive semi-definite if and only if the
Schur complement of D in M is positive semi-definite.

Clearly, the proof completely depends on the S-Lemma. However the S-Lemma
works only for a single quadratic form. Therefore we need a somehow different the-
orem that also works for the cases K > 1. Although it does not give an equivalence
result as above, it gives reasonable bounds for us to work on more complicated
problems. Now it is time to state this lemma and to see how it works.

Ben-Tal et al. (2002) proved the following result; see Lemma A.6, pp. 554–
559. (Ben-Tal et al. also showed that the approximate S-Lemma implies the usual
S-Lemma).

Lemma 19 (Approximate S-Lemma). Let R, R0, R1, . . . , Rk be symmetric n × n
matrices such that

R1, . . . , Rk � 0, (5)

and assume that

∃λ0, λ1, . . . , λk ≥ 0 s.t.
K∑

k=0

λk Rk � 0. (6)
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Consider the following quadratically constrained quadratic program,

QCQ = max
yεRn

{ yT Ry : yT R0 y ≤ r0, yT Rk y ≤ 1, k = 1, . . . , K } (7)

and the semidefinite optimization problem

SDP = min
µ0,µ1,...,µK

{ r0µ0 +∑K
k=1 µk : ∑K

k=0 µk Rk � R, µ ≥ 0 }. (8)

Then

(i) If problem (7) is feasible, then problem (8) is bounded below and

SDP ≥ QCQ. (9)

Moreover, there exists y∗ ∈ Rn such that

yT∗ Ry∗ = SDP, (10)

yT∗ R0 y∗ ≤ r0, (11)

yT∗ Rk y∗ ≤ ρ̃2, k = 1, . . . , K , (12)

where

ρ̃ := ( 2 log( 6
K∑

k=1
rank Rk ) )

1
2 , (13)

if R0 is a dyadic matrix (that can be written on the form xxT, x ∈ Rn) and

ρ̃ := ( 2 log( 16n2
K∑

k=1
rank Rk ))

1
2 (14)

otherwise.
(ii) If

r0 > 0, (15)

then (7) is feasible, problem (8) is solvable, and

0 ≤ QCQ ≤ SDP ≤ ρ̃2QCQ. (16)

After giving the approximate S-Lemma, now we are ready to work on more
complicated uncertainty sets which are e.g., the cases K > 1, from the paper of
Ben-Tal et al. (2002). Let us begin by defining the corresponding robust feasible
set:

Xρ = { x : xT AT Ax ≤ 2bTx + c ∀(A, b, c) ∈ Uρ },
where

Uρ =
{

(A, b, c)=(A0, b0, c0)+ρ
L∑

l=1
yl(Al , bl , cl) : yT Qk y ≤1, k =1, . . . , K

}

.
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Note that the robust counterpart of uncertain quadratic constraint with the inter-
section-of-ellipsoids (∩-ellipsoid) uncertainty Uρ is, in general NP-hard to form.
In fact, not only this, but also the problem of robust feasibility check is NP-hard.
(Ben-Tal et al. 2002, pp. 539).

To combine the sets of Xρ and Uρ , we need additional notation:

a[x] = A0x, c[x] = 2xTb0 + c0, Aρ[x] = ρ(A1x, . . . , AL x),

and

bρ[x] = ρ








xTb1

.

.

.

xTbL








, dρ = 1
2ρ








c1

.

.

.

cL








.

Then one may easily verify that x ∈ X ρ holds if and only if

yT Qk y ≤ 1, k = 1, . . . , K

⇒ (a[x] + Aρ[x]y)T(a[x] + Aρ[x]y) ≤ 2(bρ[x] + dρ)T y + c[x].
If y satisfies the above, −y also does. Therefore we can write:

yT Qk y ≤ 1, k = 1, . . . , K

⇒ yT Aρ[x]T Aρ[x]y ± 2yT(Aρ[x]Ta[x] − bρ[x] − dρ) ≤ c[x] − a[x]Ta[x].
If we take the t2 ≤ 1, the inequality can be rewritten as

t2 ≤ 1, yT Qk y ≤ 1, k = 1, . . . , K

⇒ yT Aρ[x]T Aρ[x]y + 2t yT(Aρ[x]Ta[x] − bρ[x] − dρ) ≤ c[x] − a[x]Ta[x].
If there exists λk ≥ 0, k = 1, . . . , K , we can join these inequalities such that

for all t and for all y:

K∑

k=1

λk yT Qk y +
(

c[x] − a[x]Ta[x] −
K∑

k=1

λk

)

t2

≥ yT Aρ[x]T Aρ[x]y + 2t yT(Aρ[x]Ta[x] − bρ[x] − dρ).

Surely, our new inequality needs more conditions than the first one. Therefore if
the last inequality holds, then the previous one also holds. If we write our inequality
in matrix form, we obtain

∃λ ≥ 0 s.t.

[
c[x] − a[x]Ta[x] −∑K

k=1 λk (Aρ[x]Ta[x] − bρ[x] − dρ)T

(Aρ[x]Ta[x] − bρ[x] − dρ)
∑K

k=1 λk Qk − Aρ[x]T Aρ[x]
]

� 0.

From the Schur complement lemma, we obtain the following theorem:
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Theorem 20 The set Rρ of (x, λ) satisfying λ ≥ 0 and



c[x] −∑K

k=1 λk (−bρ[x] − dρ)T a[x]T

(−bρ[x] − dρ)
∑K

k=1 λk Qk −Aρ[x]T

a[x] −Aρ[x] IM



 � 0 (17)

is an approximate robust counterpart of the set Xρ of robust feasible solutions of
uncertain quadratic constraint.

Although we obtained an approximate robust counterpart we still do not know
the level of conservativeness of this set. Now, we will see the relationship between
level of conservativeness and approximate S-Lemma.

Theorem 21 The level of conservativeness of the approximate robust counterpart
R (as given by 17) of the set X is at most

ρ̃ := ( 2 log( 6
K∑

k=1
rank Rk))

1
2 , (18)

Proof We have to show that when x cannot be extended to a solution (x, λ), then
there exists ζ∗ ∈ Rn such that

ζT∗ Qkζ∗ ≤ 1, k = 1, . . . , K (19)

and

ρ̃2ζT∗ Aρ[x]T Aρ[x]ζ∗ + 2ρ̃ζT∗ (Aρ[x]Ta[x] − bρ[x] − dρ) > c[x] − a[x]Ta[x].
(20)

The proof is based on approximate S-Lemma, so we need to work with the
following notation. Let

R =
[

0 (Aρ[x]Ta[x] − bρ[x] − dρ)T

Aρ[x]Ta[x] − bρ[x] − dρ Aρ[x]T Aρ[x]
]

,

R0 =
[

1 0T

0 0

]

, Rk =
[

0 0T

0 Qk

]

,

and r0 = 1. Note that R1, . . . , RK are positive semidefinite, and

R0 +
K∑

k=1

Rk =
[

1 0T

0
∑K

k=1 Qk

]

� 0.

Therefore conditions of approximate S-Lemma are satisfied, the estimate is
valid.
Case I In the first case we will prove that the following two conditions can-
not appear at the same time for our case written at the beginning of the proof.
Inequalities are:

R �
K∑

k=0

λk Rk, (21)

K∑

k=0

λk ≤ c[x] − a[x]Ta[x]. (22)
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Note Ben-Tal et al. try to prove this case by claiming: assumption that x cannot
be extended to a solution of (17) implies that x cannot be extended to a solution
of uncertain quadratic constraint. However this claim is erroneous because the
uncertain quadratic constraint set is larger than the set (17). Therefore, x cannot
be extended to a solution of (17), but may be extended to a solution of uncertain
quadratic constraint. Hence we change this part of the proof and we claim that these
two inequalities cause x to be a solution of (17), which contradicts our assumption.

Let us turn to the proof with the new claim. Assume that there exist λ0, . . . , λk ≥
0 such that

R ≺
K∑

k=0

λk Rk,

K∑

k=0

λk ≤ c[x] − a[x]Ta[x].

From assumption x cannot be extended to a solution of (17). On the other hand,
we have

(t, yT)R

(
t
y

)

≤
K∑

k=0

λk(t, yT)Rk

(
t
y

)

∀t, y

or

(t, yT)

(
0 (Ap[x]Ta[x] − bp[x] − dp)

T

(Ap[x]Ta[x] − bp[x] − dp) Ap[x]T Ap[x]
)(

t
y

)

≤ λ0t2 +
K∑

k=1

λk yT Qk y

or, equivalently

λ0t2+
K∑

k=1

λk yT Qk y−2t yT(Ap[x]Ta[x]−bp[x]−dp)−yT Ap[x]T Ap[x]y ≥ 0.

(23)

We know that

K∑

k=0

λk ≤ c[x] − a[x]Ta[x],

λ0 +
K∑

k=1

λk ≤ c[x] − a[x]Ta[x],

λ0 ≤ c[x] − a[x]Ta[x] −
K∑

k=1

λk .
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From (23) and taking −t instead of t , we obtain
(

c[x] − a[x]Ta[x] −
K∑

k=1

λk

)

t2

+
K∑

k=1

λk yT Qk y + 2t yT (Ap[x]Ta[x] − bp[x] − dp
)− yT Ap[x]T Ap[x]y ≥ 0,

or,

∃λ≥0, s.t. (t, yT)

(
c[x]−a[x]Ta[x]−∑K

k=1 λk (Ap[x]Ta[x]−bp[x]−dp)
T

(Ap[x]Ta[x]−bp[x]−dp)
∑K

k=1 λk Qk − Ap[x]T Ap[x]
)(

t
y

)

≥0, ∀t, y.

However x is extended to a solution of (17), so it contradicts with our assump-
tion. Case I cannot occur.

Case II There is no λ0, . . . , λK ≥ 0 that satisfies both (21) and (22). Hence from
approximate S-Lemma:

SDP > c[x] − a[x]Ta[x]. (24)

There exists y∗ = (t∗, η∗) such that

yT∗ R0 y∗ = t2∗ ≤ r0 = 1,

yT∗ Rk y∗ = ηT∗ Qkη∗ ≤ ρ̃2, k = 1, . . . , K ,

yT∗ Ry∗ = ηT∗ Aρ[x]T Aρ[x]η∗ + 2t∗ηT∗ (Aρ[x]Ta[x] − bρ[x] − dρ) = SDP

> c[x] − a[x]Ta[x],
from (24). Setting η = ρ̃−1η∗, these inequalities turn into

|t∗| ≤ 1,

ηT Qkη ≤ 1, k = 1, . . . , K ,

ρ̃2ηT Aρ[x]T Aρ[x]η + 2ρ̃ηTt∗(Aρ[x]T a[x] − bρ[x] − dρ)

> c[x] − a[x]Ta[x].
If (t∗, η) is a solution of this system, then ζ∗ = η or ζ∗ = −η is a solution of

(19), (20). This completes the proof.
Although the background on S-Lemma, S-procedure and approximate S-Lemma

is vast, we tried to give the main theorems we deemed important here and explain
them by giving some examples. In the next section, we give some results that
strongly rely on these theorems.

3 The extended S-procedure

We defined the Extended S-procedure (8) in the previous section. Now we prove
some related results by using the Barvinok, and Au-Yeung and Poon theorems.
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3.1 Corollary for Barvinok’s Theorem (1995)

In this subsection, we deal with changing Barvinok’s result into the form of an
extended S-procedure. If we define the function f (X) whose i th component is
fi (X) = (〈〈Ai X, X〉〉, with i = 0, 1, . . . , m − 1 and X ∈ Mn,p(R), then the
theorem of Barvinok can be written as:

Theorem 22 Let A0, A1, . . . , Am−1 ∈ SR
n , and let p := �

√
8m+1−1

2 �. Then

{( f0(X), f1(X), . . . , fm−1(X))|X ∈ Mn,p(R)}
is a convex cone of Rm.

By using separation lemma of convex analysis, we obtain the following corol-
lary:

Corollary 23 Let A0, A1, . . . , Am−1 ∈ SR
n , and let p := �

√
8m+1−1

2 �. Assume
there exists X0 ∈ Mn,p(R), such that

fi (X0) = (〈〈Ai X0, X0〉〉 > 0, i = 1, . . . , m − 1. (25)

Then

f0(X) ≥ 0 ∀X : fi (X) ≥ 0, i = 1, . . . , m − 1. (26)

holds if and only if there exists τi ≥ 0 for i = 1, . . . , m − 1:

f0(X) ≥
m−1∑

i=1

τi fi (X). (27)

Proof We proceed exactly as in the proof of the S-Lemma (Theorem 2). Since the
sufficiency part is again easy, we concentrate on the necessity. Let

S = {(〈〈A0 X, X〉〉, 〈〈A1 X, X〉〉, . . . , 〈〈Am−1 X, X〉〉) : X ∈ Mn,p(R)}
and

U = R−− × Rm−1+ .

S is a convex set by Barvinok’s theorem (Theorem 7). Since the intersection
of S and U is empty, a separating hyperplane exists. I.e., there exists nonzero
c = (c0, c1, . . . , cm−1) ∈ Rm , such that (c, s) ≤ 0,∀s ∈ S and (c, u) ≥ 0,
∀u ∈ U . Using similar arguments to those in the proof of Theorem 2 we obtain
c0 ≤ 0, and c1 ≥ 0, . . . , cm−1 ≥ 0. From first inequality, for ∀X ∈ Mn,p(R),

c0〈〈A0 X, X〉〉 + c1〈〈A1 X, X〉〉 + · · · + cm−1〈〈Am−1 X, X〉〉 ≤ 0.

We know that there exists X0 such that fi (X0) = (〈〈Ai X0, X0〉〉 > 0 and
ci ≥ 0 for i = 1, . . . , m − 1, so c0 cannot be zero by arguments similar to those
used in the proof of Theorem 2. Therefore, defining τi = − ci

c0
, we obtain:

f0(X) ≥
m−1∑

i=1

τi fi (X).

The proof is complete.

Clearly, there exists a link between the S-procedure and convexity provided by the
separation lemma.
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3.2 Corollary for Au-Yeung and Poon (1979) and Poon’s Theorem (1997)

The next theorem we deal with is the theorem of Au-Yeung and Poon(1979) that
strongly relies on Bohnenblust’s unpublished paper. With same definition of f (X)
as in the first corollary, we can rewrite this theorem as follows.

Theorem 24 Let the integer p be defined as

p :=
{

�
√

8(m−1)+1−1
2 � if n(n+1)

2 �= m

�
√

8(m−1)+1−1
2 � + 1 if n(n+1)

2 = m

}

,

and A0, . . . , Am−1 ∈ SR
n . Then,

{( f0(X), f1(X), . . . , fm−1(X))|X ∈ Mn,p(R), ‖X‖ = 1}
is a convex compact subset of Rm.

First, we establish the following corollary by using the procedure of Polyak’s
proof in the paper Polyak (1998):

Corollary 25 Let A0, A1, . . . , Am ∈ SR
n , and let p be defined as in theorem of

Au-Yeung and Poon. Also fi (X) = (〈〈Ai X, X〉〉, with i = 0, 1, . . . , m. If there
exists µ ∈ Rm+1 such that;

m∑

i=0
µi fi (X) > 0, i = 0, . . . , m, (28)

then the set

F = {( f0(X), f1(X), . . . , fm(X))|X ∈ Mn,p(R)}
is convex.

Proof We proceed as in Polyak (1998). If f ∈ F, f = f (X) = ( f0(X), f1(X), . . . ,

fm(X)), for λ > 0, then λ f = f (
√

λX) ∈ F, thus F is a cone.
With respect to linear transformations of a space, the convexity property is

invariant. Also, a linear combination of quadratic forms is a quadratic form. There-
fore there exists a linear map g = T f such that gm = ∑m

i=0 µi fi (X) > 0 and
G = {g(X) : X ∈ Mn,p(R)} is convex if and only if F is convex.

Also by making a nonsingular linear transformation (it does not change G), we
can assume that gm = ‖X‖2 where ‖X‖2 =∑p

i=1 ‖xi‖2 with n ×1 vectors xi . We
know that from Polyak’s paper it is nonsingular linear transformation when X is a
one column matrix. Therefore we have nothing but summation of nonsingular lin-
ear transformations which is also in this case a nonsingular linear transformation.
(It has still the characteristic of being injective, ‖X‖2 = 0 ⇔ X = 0, and of being
surjective as its range equals R+ ∪{0}). From the Theorem of Au-Yeung and Poon
we have

H = {((g0(X), g1(X), . . . , gm−1(X)))T|X ∈ Mn,p(R), ‖X‖ = 1}
is convex, but also G = {λQ, λ ≥ 0} where

Q = {(h0, h1, . . . , hm−1, 1)T : h ∈ H}.
Hence, G is convex. Therefore F is convex.

The previous result leads to the following corollary.
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Corollary 26 Let A0, A1, . . . , Am ∈ SR
n , and let

p :=
{

�
√

8m+1−1
2 � if n(n+1)

2 �= m + 1

�
√

8m+1−1
2 � + 1 if n(n+1)

2 = m + 1

}

.

Assume there exists X0 ∈ Mn,p(R), such that

fi (X0) = (〈〈Ai X0, X0〉〉 > 0, i = 1, . . . , m. (29)

and that

m∑

i=1

µi fi (X) > 0. (30)

Then

f0(X) ≥ 0 ∀X : fi (X) ≥ 0, i = 1, . . . , m. (31)

holds if and only if there exists τi ≥ 0 for i = 1, . . . , m:

f0(X) ≥
m∑

i=1

τi fi (X). (32)

Proof The proof is identical to that in the corollary of Barvinok’s theorem given
above.

These corollaries are extended versions of Yakubovich and Polyak’s S-proce-
dures. However none of them gives a better solution for the case p = 1. In other
words, we still fall back to the classical results when X is a one column matrix.

4 Further research on approximate S-Lemma

In this section, we summarize briefly our efforts to improve bounds of the approx-
imate S-Lemma. For the dyadic case which is of interest for robust optimization,
we obtained only a partial result.

Ben-Tal et al. (2002) give the following conjecture to improve the dyadic case
which is the main ingredient for proving approximation results in robust quadrati-
cally constrained programs and conic quadratic programs.

Conjecture Let x = {x1, . . . , xn} and ξ = {ξ1, . . . , ξn} ∈ Rn. If ‖x‖2 = 1 and
the coordinates ξi of ξ are independently identically distributed random variables
with

Pr(ξi = 1) = Pr(ξi = −1) = 1

2
(33)

then one has

Pr(|ξTx | ≤ 1) ≥ 1

2
. (34)
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This conjecture improves the bound to 1/2 from 1/3. We worked on this conjecture
by using n-dimensional geometry. However, we only proved the following relaxed
version of it Derinkuyu (2004):

Lemma 27 Let x = {x1, . . . , xn} and ξ = {ξ1, . . . , ξn} ∈ Rn. If ‖x‖2 = 1 and
‖ξ‖2

2 = n then one has

Pr(|ξTx | ≤ 1) ≥ 1

2
. (35)

This lemma is a relaxed version of the above conjecture, because the vectors ξ
are equally distributed on the surface of hyper-sphere of ‖ξ‖2

2 = n. The conjecture
states that for any x , at least half of the vectors satisfies the inequality. However, we
proved that for any x , half of the surface of the hyper-sphere satisfies the inequality.
We also proved the opposite side of it. In other words, for any ξ , half of the surface
of the hyper-sphere of x , which is ‖x‖2 = 1, satisfies the inequality. Since the
proof is long and quite involved we omit it here.

5 Discussion

In this section, we give a critical evaluation of our results on extended S-Lemma
and approximate S-Lemma.

For extended S-Lemma, we developed two corollaries from theorems of Barv-
inok and Poon. Although they resemble each other, we can get a better result from
corollary of Poon if we have positive linear combination of given matrices.

For the corollary of Barvinok’s theorem, the relationship between p and m is

p := �
√

8m+1−1
2 �. On the other hand, in the corollary of Poon’s result, we have:

p :=
{

�
√

8(m−1)+1−1
2 � if n(n+1)

2 �= m

�
√

8(m−1)+1−1
2 � + 1 if n(n+1)

2 = m

}

,

However, one needs additional assumption in the second case. In fact this assump-
tion is equivalent to assuming positive definiteness of a linear combination of
matrices. One can reach this result by observing 〈〈AX, X〉〉 = ∑p

i=1 xT Ax for
X ∈ Mn,p, x ∈ Rn . To obtain this positive definiteness, the corollary of Poon’s
theorem is given by Hiriart-Urruty and Torki that we explained in the background
section. Also Polyak gives an analysis for m = 2 case. For generalization of this
result, Uhlig’s survey is a useful paper.

Although we extended the S-Lemma, it does not improve the S-Lemma of Yak-
ubovich or Polyak for the cases X ∈ Mn,1. (Note that the corollary of Poon’s result
gives m = 3 for p = 1. It corresponds to quadratic function over two quadratic
constraints in the S-procedure). Therefore, we have still problems for m > 2.

The improvement in the approximate S-Lemma defied our efforts and remains
a difficult open problem.

6 Concluding remarks

In this study, we dealt with S-procedure and some of its variants that remain
fundamental tools of different fields such as control theory and robust optimi-
zation. In general, S-procedure corresponds to verifying that the minimum of a
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non-convex function over a non-convex set is positive. This problem belongs in
general to the class of NP-complete problems. Hence, to prove new theorems ei-
ther in S-procedure by extending or giving extra assumptions or in approximate
S-Lemma by narrowing the bounds will be valuable assets for the optimization and
control communities.

For general case, we dealt with corollaries of the theorems of Barvinok and
Poon to understand their meaning for S-procedure. This also highlighted the rela-
tionship between convex and quadratic worlds. In the corollary of Barvinok, we
obtain the extended version of Yakubovich’s theorem. However it does not give
any improvement for classical vector case. On the other hand, we obtain a better
result in the corollary of Poon’s theorem, if we make an assumption of positive
definiteness of a linear combination of matrices. This corollary also gives the same
result as Polyak’s theorem for classical vector case.

In the case of S-procedure, the best result due to Polyak is about m = 2 case.
Polyak shows counterexamples in his paper that the assumptions he gives are not
enough for the m > 2 case. Therefore we need additional assumptions to prove
new results on m > 2 case. The problem in this area is to obtain the minimal
assumptions satisfying the case m > 2. This problem is still open.

Then, we turned our interest into the approximate S-Lemma where our efforts
failed to improve the result in the dyadic case, which is the case of interest for
robust optimization. This also remains a major open problem.
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