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Utilization of a quantum system whose time-development is described by the nonlinear
Schrödinger equation in the transformation of qubits would make it possible to construct
quantum algorithms which would be useful in a large class of problems. An example of
such a system for implementing the logical NOR operation is demonstrated.
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1. Introduction

Quantum computing algorithms1 make use of the possibility of parallel operations

on states which make up a superposed set. After appropriate operations have been

made, a number of measurements may be carried out, resulting in the collapse of

the wavefunction to a smaller set, from which information related to the solution

of the particular problem may be deduced.

Emphasis in previous work on quantum computing algorithms has been on time

independent unitary operations on the superposed states. Focus on such operations

is natural, as the superposed states need to be associated with relatively simple

quantum degrees of freedom, whose time development could be described by a

Schrödinger equation incorporating a simple Hamiltonian. On the other hand, it

was noted by Abrams and Lloyd2 that a much richer set of problems can lend

themselves to solution by quantum computation if nonlinear evolution of the qubit

states could be realized. In particular, they demonstrate that the availability of a

special nonlinear operation on a single qubit enables the construction of a quantum

algorithm whose repetitive application results in efficient progressive separation

of searched states from others. They also show that implementation of a two-bit

nonlinear quantum AND gate allows for an algorithm which finds the answers to

an NP-complete problem with certainty in linear time. It is indicated that the

two-bit nonlinear transformation itself may be obtained through ordinary unitary

operations in combination with single qubit nonlinear operations.

Such nonlinear single qubit operations have been studied in Refs. 3–7, with the

emphasis being on the analysis of fidelity in obtaining the results of these operations
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through unitary transformations.

A possibility for realizing nonlinear quantum operations is through system dy-

namics described by the nonlinear Schrödinger equation which appears in the anal-

ysis of Bose–Einstein condensation8 (BEC) and other contexts.9

Recent developments in the ability to experimentally control, manipulate, and

detect these condensates10, 11 lend hope to the idea that it may indeed be possible to

construct some building blocks for quantum computation utilizing this phenomena.

Shi12 has demonstrated that nonlinear quantum evolution is possible in Bose–

Einstein condensates coupled to one another through a tunneling junction. An

explicitly nonlinear equation of motion for the containment well occupation coeffi-

cients has been derived. An important feature of this work is that it demonstrates

how entanglement in BEC is realized, starting from fundamental considerations.

The work also contains a discussion of the possibility of utilizing this nonlinearity

in quantum computations.

Admittedly, these equations involve approximations, and appear only because

the “background” in a collective quantum system is treated in some mean-field

form. The discussion of the validity of the range of the approximation to a particu-

lar implementation may be deferred as a technical detail. However, the utilization

of a (possibly macroscopic) collective quantum event as a qubit raises deeper ques-

tions which must be answered. We briefly touch upon this point in the concluding

paragraph.

In this paper, we will assume that the dynamics of such nonlinear Schrödinger

equations may be applicable to operations on qubits and look into the possibilities

introduced by such operations. It will be shown that a two-qubit quantum gate can

be constructed with a single condensate (in contrast to the more than one studied

in Refs. 12–15) in the presence of a non-uniform potential. It will also be pointed

out that the availability of such nonlinear quantum operations allow the efficient

search for an optimal solution through pairwise elimination of possibilities making

up an extended solution set.

2. Nonlinear Quantum Computation An Application

A typical quantum computation algorithm utilizes the creation of a superposition

of parallel states, usually a complete set of enumerable states:

|Ψ1〉 =
1√
N

N−1∑

k=0

|k〉 . (1)

If the qubits forming the pure state |k〉 is formed by n quantum states with

two possible eigenstates each, then N = 2n, and k may be taken as the number

corresponding to the binary representation generated by the n qubits.
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The space is then enlarged to include a function of k in the representation:

|Ψ1〉 → |Ψ2〉 =
1√
N

N−1∑

k=0

|k〉|f(k)〉 . (2)

The extended space containing |f(k)〉 itself is made up of additional qubits. A

measurement carried out on this state will yield a superposition of a smaller subset:

|Ψ2〉 → |Ψ3〉 =
1√
N ′

∑

k

′ |k〉|f(k)〉 , (3)

where the prime on the summation indicates a sum over a subset of the states

|k〉 consistent with the results of the measurement, a total number of N ′. Simi-

lar operations involving enlargements of the space, unitary transformations on the

superposed states, and measurements may be carried out until a final set of mea-

surements will yield results relevant to the solution of the problem at hand. This

may be in the form of a direct result yielding a numerical value,16 or one may have

a statistical result, in which a sufficient number of measurements must be repeated

to obtain an average quantity with sufficient accuracy.17

To motivate the utility of nonlinear transformations in quantum computing,

consider the problem of searching through all possible ways of completing a task,

to find an optimal one. The number k will represent one of the possible pathways,

and we will assume that the binary representation of this number (i.e. values of the

qubits) can be grouped into successive “moves” or “choices” which must be carried

out to follow this pathway. For example, consider the following qubit decomposition

of the state |k〉:

|k〉 =

∣
∣
∣
∣
∣
q1q2 · · · qm
︸ ︷︷ ︸

move 1

qm+1 · · · q2m
︸ ︷︷ ︸

move 2

q2m+1 · · · q3m
︸ ︷︷ ︸

move 3

· · ·
〉

. (4)

This would correspond to labeling all possible pathways which could be reached

by a finite number of discrete moves to be chosen from a finite number of possibil-

ities. For example, for the traveling salesman problem18 with 256 cities, one could

assign consecutive m = 8 qubits to represent the city to be visited at that stage,

and one would need 256 such 8-qubits to represent the complete trip. (Obviously,

this procedure would also produce some pathways which are “illegal” in the way

this problem is defined, but these will be discarded in the solution.) Alternatively,

if the remaining consecutive steps in an ongoing chess game were to be described

by |k〉, then one could use 12 consecutive qubits to describe motion of a piece from

a general point on the 8 × 8 square to another point on the square. All possible

games with a total of 100 moves could be represented by a total of 12× 100 qubits.

(Again, this type of coding generates an overwhelming ratio of illegal moves, which

need to be discarded.) The function |f(k)〉 is arranged to hold information about

the end result of the decision process, for example, whether the completed moves

correspond to a “legal” sequence, and if so, what the result is. The “result” here
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would be whether the game has been “won” or, what the total distance traveled is

within the context of the traveling salesman problem mentioned above.

Note that the superposed state may be factored so that it can be expressed as

a sum over the more significant qubits representing the number k, multiplying the

two terms corresponding to the least significant qubit:

1√
N

N/2−1
∑

j=0

|j〉(|0〉|f(j|0)〉 + |1〉|f(j|1)〉) , (5)

where the notation (j|0) = 2j and (j|1) = 2j + 1 has been used. Note that for

each j, there is a “preferred” choice between the cases (j|0) and (j|1) (based on

the values of f(j|0) and f(j|1)), which we will label as j ′. One could then obtain

a superposed state with a reduced number of terms if the following transformation

could be made:

1√
2
(|0〉|f(j|0)〉 + |1〉|f(j|1)〉) → |f(j ′)〉 , (6)

so that the new state is

1
√

N/2

N/2−1
∑

j=0

|j〉|f(j′)〉 . (7)

This process could then be iterated until a single qubit remains, yielding its optimal

value. Once this value is determined, the problem is reduced to the determination of

the remaining N −1 qubits, for which the above process must be repeated, starting

with these N −1 qubits. The number of operations necessary for the determination

of all of the qubits then can be seen to be proportional to N 2, one factor of N

coming from the repetition of the operation for each qubit to be determined, and

another factor from the number of transformations of the type shown in Eq. (6).

For many problems of interest however, including the ones mentioned above as

examples, this transformation cannot be achieved with unitary operations. Nonlin-

earity allows for “communication” between pairs of superposed states in carrying

out the operation in Eq. (6). For example, the simple logical NOR operation (which

is related to how the “legality” operation of the moves would transform) would need

to have

1√
2
(|0〉|0〉 + |1〉|0〉) → |1〉 , (8)

1√
2
(|0〉|0〉 + |1〉|1〉) → |0〉 , (9)

1√
2
(|0〉|1〉 + |1〉|0〉) → |0〉 , (10)

1√
2
(|0〉|1〉 + |1〉|1〉) → |0〉 . (11)
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The operation is clearly nonlinear, as Eqs. (8)–(11) above demonstrate: The

sum of the left sides of Eqs. (8) and (11) of the transformation equals the sums of

the left hand sides of Eqs. (9) and (10), but the same obviously is not true for the

right hand sides.

A similar discussion may be carried out for optimization problems of the travel-

ing salesman type, obtaining an optimal set of “moves” by the pairwise elimination

of non-preferred choices. Details cannot be provided here, but it has to be remem-

bered that the standard tools of classical logical computation (such as the logical

AND and OR operations) may be utilized if nonlinear transformations are to be

allowed. This feature then (at least in principle) makes accessible to quantum com-

putation all classical problems which can benefit from parallelism.

3. Nonlinear Schrödinger Equation

The transformation in Eqs. (8)–(11) may be implemented as the result of time-

development through a nonlinear Hamiltonian. As an example, we will consider

a Hamiltonian of the Gross–Pitaevskii type19–21 in which an extra potential term

proportional to the square magnitude of the wavefunction appears. The two-qubit

state |q0q1〉 with q0 and q1 equal to 0 or 1 will be taken to be related to the

occupation of four sites at r(q0, q1) = (q0 ı̂ + q1 ̂)∆x where ı̂ and ̂ are the unit

vectors in the x and y directions respectively. The system then corresponds to a set

of four quantum sites arranged as a square with side ∆x. The Schrödinger equation

describing the system will then be

i~
∂

∂t
ψ(q0, q1) = − ~

2

2m(∆x)2
[ψ(q̄0, q1) + ψ(q0, q̄1) − 2ψ(q0, q1)]

+ [V (q0, q1) + α|ψ(q0, q1)|2]ψ(q0, q1) , (12)

where α is a measure of the nonlinearity in the system, and we have used the

shorthand notations q̄ = 1 − q and ψ(q0, q1) = ψ(r(q0, q1)). The first term on the

right hand side is the kinetic energy term of the square geometry. It may also result

through a tight-binding interpretation of the interaction among four quantum wells.

The coefficient of this term ε = ~
2/2m(∆x)2 with energy units, sets the physical

scales of the system. The external potential V is the quantity to be “engineered”

so that the time-development of ψ has the required form.

Figure 1 shows the occupation probabilities of the four sites in the system as

a function of time, for the initial conditions indicated in Eqs. (8)–(11). Note that

for the choice of the potential values corresponding to this figure, the value of the

ψ(1, 1) component of the state vector yields deterministically (i.e. with magnitude

either zero or one) the corresponding states at the right hand side of Eqs. (8)–(11).

The numerical computation was performed for values of the unitless time pa-

rameter τ = tε/~ between 0 and 7.665, α/ε = 2.350, and the four values of the

potential V (0, 0) = −0.003554ε, V (0, 1) = 2.124ε, V (1, 0) = 2.352ε, and V (1, 1) =

0. The numerical integration of the Schrödinger equation was carried out by
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Fig. 1. The squared magnitudes of ψ(0, 0) (dashed lines), ψ(0, 1) (dotted lines), ψ(1, 0) (dot-
dashed lines), and ψ(1, 1) (thick continuous lines) for four different initial conditions. The initial
conditions correspond to the left hand terms of expressions 8 through 11 from top to down respec-
tively. Parameters of the numerical computation are given in the text. Note that the final value
of square magnitude of ψ(1, 1) correlates with the right hand terms of expressions 8 through 11.

factorizing the kinetic and potential energy terms in the exponential and treating

each part exactly.22 This procedure is correct to the second order in the integration

timestep, which was taken to be ∆τ = 7.665×10−4. The four final values of ψ(1, 1)

are within 0.06, 0.01, 0.04, and 0.04 of their ideal values. Other solutions to the

problem could be found. One needs to adjust the values of α, τ , and the three finite

values of the potential until the final value of ψ(1, 1) is within acceptable error.

(The fourth value of the potential is the arbitrary reference of the potential energy

and was chosen as zero.) The aim at this stage was not to obtain a solution with

overwhelming accuracy to an idealized model but to show that nonlinear quan-

tum transformations are available. A physical realization of such a functional block

would necessarily be more complicated and would require a more careful analysis.

The implementation of the nonlinear qubit transformation then involves the

teleportation of the two initial qubits into the wavefunction ψ, and the teleportation

of a single qubit of information out of ψ(1, 1) after a fixed period of time.
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4. Conclusions

In conclusion, we have shown that evolution of a quantum system with dynamics

controlled by a nonlinear Schrödinger equation enables nonlinear transformations to

be carried out on qubits, which may be used to implement quantum computational

algorithms with less restrictions. It may also be possible to use the nonlinearity

to “saturate” the qubits to some ideal values close to their initial states, thereby

implementing some error correction. (Quantum state purification through the use

of nonlinear transformations has been discussed in Ref. 23.)

It is also evident the development of the quantum system and its measurements

yield continuous values, and that the discussion in this paper may also be relevant

to introducing nonlinearities to continuous-variable quantum computation.24–26

A question that needs to be considered at this point is whether the nonlinear

time development is that of a true quantum system, as microscopic interactions

always lead to unitary development. The assumptions that go into the develop-

ment of the approximations that lead to the nonlinear Schrödinger equation may

limit the applicability of the corresponding dynamics to the description of wave

phenomena without the quantum features (such as the second sound effect in su-

perfluid helium). It needs to be confirmed that the degrees of freedom described

by this equation still maintains the indispensable quantum properties of interfer-

ence, entanglement, and the probability interpretation, and is not just a collective

macroscopic wave phenomena. Experimental work studying the interference effects

in BEC systems27, 28 and the detailed theoretical analysis of their entanglement12

seem to indicate that the Gross–Pitaevskii equation may indeed be valid in repre-

senting genuine quantum effects in these systems.29 Perhaps another way of looking

at this validity is to interpret these transformations as high fidelity representations

of nonlinearities through the use of the large number of quantum background de-

grees of freedom (individually obeying unitary time development) contained in the

“mean field” of the system.
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27. A. Röhrl, M. Naraschevski, A. Schenzle and H. Wallis, Phys. Rev. Lett. 78 (1997)

4143.
28. M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye

and W. Ketterle, Phys. Rev. Lett. 79 (1997) 553.
29. Disturbing features such as (but apparently not limited to) superluminocity and

violation of the second law of thermodynamics appear when the concept of nonlinear
quantum mechanics is extended to a more fundamental description of the physical
world. The reader is referred to the following references, and the work cited in them
for more details: J. Polchinski, Phys. Rev. Lett. 66 (1991) 397; P. B. Slater, J. Phys. A

25 (1991) L359, B. Mielnik, Phys. Lett. A 289 (2001) 1.

M
od

. P
hy

s.
 L

et
t. 

B
 2

00
6.

20
:1

09
9-

11
06

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
IL

K
E

N
T

 U
N

IV
E

R
SI

T
Y

 o
n 

09
/2

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.


