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Abstract. We show that entire transcendental functions f satisfying

log M(r, f) = o(log2 r), r → ∞ (M(r, f) := max
|z|=r

|f(z)|)

necessarily have growth irregularity, which increases as the growth diminishes. In particular, if
1 < p < 2, then the asymptotics

log M(r, f) = logp r + o(log2−p r), r → ∞,

is impossible. It becomes possible if “o” is replaced by “O.”

Key words: Clunie–Kövari theorem, Erdös–Kövari theorem, Hayman convexity theorem, maxi-
mum term, Levin’s strong proximate order.

1. Introduction and Statement of Results

Let A be the set of all increasing functions V defined for r > 0, convex in log r, and satisfying
the condition

lim
r→∞

V (r)
log r

= ∞. (1)

Let f be a transcendental entire function, and let

M(r, f) = max
|z|�r

|f(z)|.

The maximum modulus principle and the Hadamard three circles theorem imply that log M(r, f)
∈ A . It is well known that A is wider than the set of all functions of the form log M(r, f). The
following specific property of the latter can be mentioned: log M(r, f) must be piecewise analytic
(e.g., see [11, p. 14] or [6, p. 11]). The problem of the asymptotic approximation of a function
V ∈ A at ∞ by functions of form log M(r, f) can be viewed as the problem of existence of an
entire function with prescribed growth. From this point of view, the problem had been studied by
Edrei and Fuchs, Clunie, and Clunie and Kövari (see [4] and references therein). The most complete
results are contained in [4].

The following theorem describes the best rate of asymptotic approximation to an arbitrary
V ∈ A :

Theorem A (Clunie–Kövari [4]). (i) For each V ∈ A , there exists an entire function f such
that

| log M(r, f) − V (r)| � 1
2

log r + O(1), r → ∞. (2)

(ii) The previous assertion ceases to be true if one replaces 1/2 by any smaller constant.
In the theory of entire functions, the growth of an entire function is measured with the help of

regularly growing functions V of A . The most important of these are

V (r) = rρ, rρ(log r)ρ1(log log r)ρ2 , . . . ,

and, more generally, V (r) = rρ(r) , where ρ(r) is a proximate order (e.g., see [11, Sec. 6], [3, Sec. 4.22],
and [9, Ch. 1, Sec. 12]). For regularly growing V , the rate of asymptotic approximation to V by
log M(r, f) can be viewed as a measure of possible growth regularity of an entire function.
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For the case in which V does not increase too slowly, a solution to the problem is given by the
following theorem:

Theorem B (Clunie–Kövari [4]). Under the additional assumption that the function ψ(r) :=
(d/d log r)V (r) satisfies the condition

ψ(cr) − ψ(r) � 1, r � 1, (3)

for some c > 1, there exists an entire function f such that

log M(r, f) − V (r) = O(1), r → ∞. (4)

Condition (3) implies that
lim inf
r→∞ V (r)(log r)−2 > 0.

Therefore Theorem B does not apply to functions V ∈ A such that

V (r) = o(log2 r), r → ∞. (5)

The present paper deals exactly with this case. The main result shows, in particular, that (4)
is impossible here. Moreover, the slower the growth of a regularly growing V , the worse is the rate
of its asymptotic approximation by functions of the form log M(r, f). In other words, if

log M(r, f) = o(log2 r), r → ∞, (6)

then the slower the growth of the transcendental entire function f , the more irregular it is. For
example, our main theorem readily implies the impossibility of Eqs. (10)–(12) below.

Note that in the theory of entire functions there are many facts of opposite character: the
slower the growth of log M(r, f), the more the asymptotic behavior of f at ∞ resembles that
of a polynomial. Let us mention, say, Wiman’s theorem on functions of order less than 1/2 and
theorems on functions of order zero ([11, Secs. 9, 15, 16, 26]). Therefore, one might expect that as
the growth of log M(r, f) diminishes, its regularity increases. The results of our paper show that
this is not the case for entire functions satisfying (6).

Before stating our main theorem, we need to define a subset Areg of A whose elements will be
considered as regularly growing functions.

It is more convenient to change the scale by setting log r = x. If f is an entire transcendental
function satisfying (6), then log M(ex, f) has growth (as a function of x) not less than of order 1
and maximal type and not greater than of order 2 and minimal type. By Levin’s theorem ([9,
p. 39]), there exists a function λ(x) (called a strong proximate order) of the form

λ(x) = λ +
ϑ1(log x) − ϑ2(log x)

log x
,

where 1 � λ � 2 and ϑj ∈ C2(R+) (j = 1, 2) is a concave function that satisfies the conditions
(a) limx→∞ ϑj(x) = ∞,
(b) limx→∞ ϑj(x)/x = 0, and
(c) limx→∞ ϑ′′

j (x)/ϑ′
j(x) = 0,

such that

lim sup
x→∞

log M(ex, f)
xλ(x)

= 1.

Note that Levin’s construction shows that in the case of maximal (minimal) type of order λ one
can take ϑ2 ≡ 0 (ϑ1 ≡ 0), and we shall do this.

Definition. We denote by Areg the set of all functions V representable in the form

V (r) = w(log r), (7)

where w is defined by
w(x) := xλeϑ1(log x)−ϑ2(log x), (8)

1 � λ � 2, ϑ1 and ϑ2 have properties (a)–(c), and moreover, ϑ2 ≡ 0 for λ = 1 and ϑ1 ≡ 0 for
λ = 2.
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Note that conditions (a)–(c) do not depend on the behavior of ϑj on any interval bounded from
the right. Therefore, any pair of increasing concave functions ϑ1 , ϑ2 defined only for sufficiently
large x and satisfying these conditions can be extended to R+ in such a way that Eqs. (7) and (8)
give a function V ∈ Areg . Hence it suffices to define a function V ∈ Areg only for sufficiently large
r ∈ R+ .

The simplest examples of V ∈ Areg are functions defined for sufficiently large r in the following
way:

V (r) = (log r)p1(log2 r)p2 . . . (logm r)pm ,

where logk denotes the kth iteration of log and p1, . . . , pm ∈ R are chosen in such a way that (1)
and (5) are satisfied.

The main result of this paper is the following.
Theorem 1. (i) For any function V ∈ Areg , let w(x) = V (ex). There does not exist an entire

function f such that

log M(ex, f) − w(x) = o(min(1/w′′(x), x)), x → ∞. (9)

(ii) The previous assertion ceases to be true if one replaces “o” by “O .”
Since limx→∞ w′′(x) = 0 (see Lemma 2.1 below), assertion (i) (see Eq. (9)) implies that (4) is

impossible for any V ∈ Areg . The following theorem is an immediate corollary of Theorem 1 with

w(x) = xp(log x)α, 1 < p < 2, α ∈ R,

w(x) = x(log x)α, α > 0, w(x) = x2(log x)α, α < 0.

Theorem 2. (i) No entire function f can satisfy any of the following conditions (as r → ∞):

log M(r, f) − (log r)p(log2 r)α = o((log r)2−p(log2 r)−α), 1 < p < 2, α ∈ R, (10)

log M(r, f) − (log r)(log2 r)α = o((log r)(log2 r)min(1−α,0)), α > 0, (11)

log M(r, f) − (log r)2(log2 r)α = o((log2 r)|α|), α < 0. (12)

(ii) Assertion (i) ceases to be true if one replaces “o” by “O .”
The proof of Theorem 1 is based on the following phenomenon, discovered by Hayman in 1966.
Theorem C (Hayman, [7]). For any transcendental entire function f ,

lim sup
r→∞

(
d

d log r

)2

log M(r, f) � C0,

where C0 > 0 is an absolute constant.
In 1974, Boichuk and Goldberg [2] proved that for functions f with nonnegative coefficients

the best possible value of C0 is 1/4. (For other developments related to Hayman’s phenomenon,
see Kjellberg [8] and Abi-Khuzam [1].) Ostrovskii found another proof based on a formula due to
Rosenbloom [10]. This proof was included in [2]. Now we use the idea of that proof for getting a
description of the set where(

d

d log r

)2

log M(r, f) � ε2, 0 < ε <
1
2
.

The corresponding Lemma 2.5 below is a crucial point in the proof of Theorem 1.

2. Auxiliary Results

Lemma 2.1. If w(log r) ∈ Areg , then

lim
x→∞w′′(x) = 0.
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Proof. Since

w′′(x) =
w(x)
x2

(λ2 − λ + (2λ − 1)(ϑ1 − ϑ2)′(log x) + (ϑ1 − ϑ2)
′2(log x) + (ϑ1 − ϑ2)′′(log x)), (13)

we have, by properties (a)–(c),

w′′(x) = xλ−2e(ϑ1−ϑ2)(log x)(λ2 − λ + (2λ − 1)(ϑ1 − ϑ2)′(log x) + o((ϑ1 + ϑ2)′(log x))). (14)

Therefore, the result is obvious for 1 � λ < 2. For λ = 2, we take into account the fact that ϑ1 ≡ 0
and ϑ2 satisfies (a).

Lemma 2.2. One has

lim
x→∞

w′′(kx)
w′′(x)

= kλ−2, (15)

uniformly on each interval 0 < a � k � b < ∞.
Proof. By (8) and (14), we have

w′′(kx)
w′′(x)

= kλ−2 exp((ϑ1 − ϑ2)(log kx) − (ϑ1 − ϑ2)(log x))

× λ2 − λ + (2λ − 1)(ϑ1 − ϑ2)′(log kx) + o((ϑ1 + ϑ2)′(log kx))
λ2 − λ + (2λ − 1)(ϑ1 − ϑ2)′(log x) + o((ϑ1 + ϑ2)′(log x))

.

Using properties (a)–(c) (and, for λ = 1, the fact that ϑ2 ≡ 0), we obtain the assertion of the
lemma.

Lemma 2.3. One has

lim
x→∞

(
x − w(x)

w′(x)

)
= ∞.

Proof. It follows from (8) that

x − w(x)
w′(x)

=
(λ − 1)x + x(ϑ1 − ϑ2)′(log x)

λ + (ϑ1 − ϑ2)′(log x)
.

For λ > 1, the assertion of the lemma follows from (b). For λ = 1, we take into account the fact
that ϑ2 ≡ 0 and note that it suffices to show that limx→∞ x ϑ′

1(log x) = ∞, or, equivalently,

lim
t→∞ etϑ′

1(t) = ∞. (16)

Obviously, (c) implies that etϑ′
1(t) is nondecreasing. Therefore, if (16) does not hold, then ϑ′

1(t) =
O(e−t), t → ∞. This contradicts (a).

Lemma 2.4. It suffices to prove Theorem 1 under the additional assumption that f has non-
negative Taylor coefficients.

Proof. We derive the lemma from the following theorem.
Theorem D (Erdös–Kövari [5]). Let f be an entire function. There exists an entire function

f̂ with nonnegative coefficients such that
1
6

� M(r, f)

M(r, f̂)
� 3, r � 0.

By this theorem, log M(r, f) = log M(r, f̂)+O(1). Therefore, f satisfies (9) (with “o” or “O”)
if and only if so does f̂ .

Let f be an entire transcendental function with nonnegative coefficients,

f(z) =
∞∑

k=0

dkz
k, dk � 0, k = 0, 1, 2, . . . . (17)

Then M(r, f) = f(r). We set

ϕ(x) = f(ex), α(x) = (log ϕ(x))′, β(x) = (log ϕ(x))′′.
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The function α(x) is nonnegative and increasing and tends to +∞ as x → +∞. Therefore, the
equations

α(ak) = k + ε, α(bk) = k + 1 − ε, k = k0, k0 + 1, k0 + 2, . . . , (18)

where ε ∈ (0, 1
2), k0 = [α(0)] + 1, uniquely determine positive numbers

ak0 < bk0 < ak0+1 < bk0+1 < · · · < ak < bk <→ ∞ as k → ∞.

The next lemma plays a crucial role in the proof of Theorem 1.
Lemma 2.5. Let f be a transcendental entire function with nonnegative coefficients. In the

notation introduced above,

β(x) � ε2 for x ∈ Aε :=
∞⋃

k=k0

[ak, bk].

Proof. We have

ϕ(x) = f(ex) =
∞∑

k=0

dke
kx, dk � 0, k = 0, 1, 2, . . . .

The following formula is due to Rosenbloom [10]:

β(x) =
∞∑

k=0

(k − α(x))2
dke

kx

ϕ(x)
. (19)

Its proof is a direct calculation:

α(x) =
ϕ′(x)
ϕ(x)

=
∞∑

k=0

kdke
kx

ϕ(x)
,

β(x) =
ϕ′′(x)
ϕ(x)

−
(

ϕ′(x)
ϕ(x)

)2

=
∞∑

k=0

k2dke
kx

ϕ(x)
− α(x)

∞∑
k=0

kdke
kx

ϕ(x)
=

∞∑
k=0

(k − α(x))2
dke

kx

ϕ(x)
.

Since

min
k=0,1,2,...

|k − α(x)| � ε

for x ∈ Aε , the assertion of the lemma follows.
Lemma 2.6. For any w(log r) ∈ Areg , there does not exist an entire function with positive

Taylor coefficients such that

α(x) − w′(x) = o(1), x → ∞. (20)

Proof. Since w′′(x) → 0, we have

β(x) − w′′(x) = (α(x) − w′(x))′ � ε2

2
, x ∈ (ak, bk), k � k1. (21)

Using (18) and (20), we obtain

1 − 2ε = α(ak) − α(bk) = w′(ak) − w′(bk) + o(1) = w′′(ck)(bk − ak) + o(1),

for some ck ∈ (ak, bk). This implies that

bk − ak → ∞ as k → ∞.

The integration of (21) over (ak, bk) gives a contradiction to (20).
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3. Proof of Theorem 1

In what follows, we agree to denote positive constants by the letter C (with or without sub-
scripts).

Proof of (i). We assume that there exists an entire function f with nonnegative Taylor coef-
ficients which satisfies (9). Let

log ϕ(x) − w(x) = τ(x),
where

|τ(x)| � ε(x) min(1/w′′(x), x), ε(x) ↓ 0.

We claim that
α(x) − w′(x) = o(1), x → ∞,

which contradicts Lemma 2.6.
By the convexity of log ϕ, we have the inequality

α(x)(z − x) − [log ϕ(z) − log ϕ(x)] � 0 for any z and x.

Therefore, subtracting w′(x)(z − x) − [w(z) − w(x)] from both sides, we obtain

[α(x) − w′(x)](z − x) − [(log ϕ(z) − w(z)) − (log ϕ(x) − w(x))] � w(z) − w(x) − w′(x)(z − x)

=
1
2

w′′(c)(z − x)2

with some c between x and z . We restrict ourselves to z lying in the interval |z − x| � x/2. Then
by Lemma 2.2 there exists a positive constant C such that

[α(x) − w′(x)](z − x) � 2 max
|t−x|�x/2

|τ(t)| + Cw′′(x)(z − x)2

� Cε(x/2) min(1/w′′(x), x) + Cw′′(x)(z − x)2. (22)

If x � z � 3x/2, then it follows that

α(x) − w′(x) � Cε(x/2) min(1/w′′(x), x)
z − x

+ Cw′′(x)(z − x).

We set
z − x =

√
ε(x/2) min(1/w′′(x), x) � x/2.

Then we obtain

α(x) − w′(x) � C
√

ε(x/2) + Cw′′(x)
√

ε(x/2) min(1/w′′(x), x)

= C
√

ε(x/2) + C
√

ε(x/2) min(1, xw′′(x)) � C
√

ε(x/2) + C
√

ε(x/2) = o(1).

If x/2 � z � x, then it follows from (22) that

α(x) − w′(x) � Cε(x/2) min(1/w′′(x), x)
z − x

+ Cw′′(x)(z − x).

By setting
x − z =

√
ε(x/2) min(1/w′′(x), x),

we obtain
α(x) − w′(x) � −(C

√
ε(x/2) + C

√
ε(x/2)) = o(1). �

Proof of (ii). It is straightforward to check that w′(x) monotonically increases to ∞ for
sufficiently large x. Therefore, there exists a unique xn such that w′(xn) = n, n = n0 , n0 + 1, . . . .
Define positive numbers cn , n � n0 , by the equation

log cn + nxn = w(xn).

Each of the lines
yn(x) := log cn + nx, n � n0,
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is the tangent to y = w(x) at the respective point xn . We set

f(z) =
∞∑

k=n0

ckz
k.

Since
log cn

n
= −xn +

w(xn)
w′(xn)

,

it follows from Lemma 2.3 that limn→∞ |cn|1/n = 0, and hence f is an entire function.
We denote by µ(r, f) the maximum term of f ; that is,

log µ(ex, f) = sup
n0�n<∞

(log cn + nx).

The graph of log µ(ex, f) is a polygonal line lying below the graph of w(x) and touching the latter
only for x = xn . Thus there exists a σn , xn < σn < xn+1 , n � n0 , such that

log µ(ex, f) = log cn + nx, σn−1 � x � σn.

We shall prove the following:

w(x) − log µ(ex, f) = O(min(1/w′′(x), x)), x → ∞, (23)

log M(ex, f) − log µ(ex, f) = O(1), x → ∞, (24)

from which Theorem 1(ii) readily follows.
First, we prove (23). Note that∣∣∣∣ d

dx
(w(x) − log µ(ex, f))

∣∣∣∣ � 1.

The integration from xn0 to x gives

0 � w(x) − log µ(ex, f) � x. (25)

By Lemma 2.2, there exists a constant C∗ > 1 such that
1
C∗

� w′′(x1)
w′′(x2)

� C∗ for
1
e

� x1

x2
� e, x1, x2 � x0.

If (23) is violated, then, in view of (25), there exists a y > ex0 and a constant C such that

C > max(2C∗e, C3
∗/2) (26)

and
w(y) − log µ(ey, f) � C

w′′(y)
. (27)

Using (25), we obtain w′′(y) � C/y. Then

w′′(t) � w′′(y)
C∗

� C

C∗y
� C

C∗et
(28)

for all t, y/e � t � ey.
Suppose that xn � y < xn+1 . It follows from (28) and (26) that

w′(ey) − w′(y) =
∫ ey

y
w′′(t) dt � C

C∗e
> 2.

This implies ey � xn+2 . Likewise, we find that w′(y) − w′(y/e) > 2 and therefore y/e � xn−1 .
Hence we have

y

e
< σn−1 < xn < σn < xn+1 < σn+1 < ey.

If xn � y � σn , then

w(y) − log µ(ey, f) = w(y) − w(xn) − n(y − xn) =
1
2

w′′(c)(y − xn)2 � C∗
2

w′′(y)(y − xn)2, (29)
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where c ∈ (xn, σn). In addition,

1 � w′(y) − w′(xn) =
∫ y

xn

w′′(t) dt �
∫ y

xn

w′′(y)
C∗

dt = (y − xn)
w′′(y)

C∗
. (30)

Combining (29) and (30), we find that

w(y) − log µ(ey, f) � C3∗
2w′′(y)

. (31)

If σn � y < xn+1, then similar reasoning shows that (31) still holds. But this contradicts (26) and
(27).

To show (24), first note that since w′′(x) → 0 and w′(xn+1) − w′(xn) = 1, it follows that
xn+1 − xn → ∞ as n → ∞. Therefore, there exists an n1 � n0 such that

xn+1 − xn � 1, n � n1.

Suppose that xn � x < xn+1 . Then

log
cke

kx

cnenx
= w(xk) − w(xn) − k(xk − xn) + (n − k)(xn − x)

� −
∫ xn

xk

(w′(t) − k) dt � −
∫ xn

xk+1

(w′(t) − k) dt � −
∫ xn

xk+1

1 dt � −(n − k − 1)

for n1 � k � n − 1. Likewise,

log
cke

kx

cn+1e(n+1)x
�

∫ xk

xn+1

(w′(t) − k) dt �
∫ xk−1

xn+1

(w′(t) − k) dt �
∫ xk−1

xn+1

(−1) dt � −(k − n − 2)

for k � n + 2. Thus

M(ex, f) =
∞∑

k=n0

cke
kx =

n1∑
k=n0

cke
kx +

n−1∑
k=n1+1

cke
kx + cnenx + cn+1e

(n+1)x +
∞∑

k=n+2

cke
kx

� µ(ex, f)
( n1∑

k=n0

cke
kx

cnenx
+

n−1∑
k=n1+1

cke
kx

cnenx
+ 2 +

∞∑
k=n+2

cke
kx

cn+1e(n+1)x

)

� µ(ex, f)
(

O(1) +
n−1∑

k=n1+1

e−(n−k−1) +
∞∑

k=n+2

e−(k−n−2)

)
� Cµ(ex, f)

for xn � x < xn+1 .
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