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We consider a dynamic lot sizing problem with finite capacity for a process that can be kept warm until the next production period
at a unit variable cost ωt only if more than a threshold value has been produced and is cold, otherwise. That is, the setup cost in
period t is Kt if xt−1 < Qt−1 and kt , otherwise (0 ≤ kt ≤ Kt ). We develop a dynamic programming formulation of the problem,
establish theoretical results on the structure of the optimal production plan and discuss its computational complexity in the presence
of Wagner-Whitin-type cost structures. Based on our stuctural results, we present an optimal polynomial-time solution algorithm
for kt = 0, and also show that an optimal linear-time solution algorithm exists for a special case. Our numerical study indicates that
utilizing the undertime option (i.e., keeping the process warm via reduced production rates) results in significant cost savings, which
has managerial implications for capacity planning and selection.

1. Introduction

Inventory replenishment processes, whether they consist of
direct production or purchasing in a supply chain, typi-
cally involve setups. In a manufacturing setting, a setup is
a set of operations to prepare for production that can in-
clude activities such as cleaning, warming up and calibrat-
ing equipment, and readying the shop floor and workforce.
In a purchasing setting, the fixed set of activities performed
to expedite an order can include the identification of suppli-
ers, legal and clerical documentation, customs clearance of
imports, shipment of goods, inspection of incoming goods,
unloading etc. Associated with each of these activities, an
out-of-pocket setup cost may be incurred. The dynamic lot
sizing problem is the management of such a replenishment
process by determining the production (purchasing) plan
which minimizes the total setup, production (purchasing)
and holding costs for an inventorable item, facing known
demands over a finite number of time periods.

In some cases, it may be possible to avoid some of the
activities typically included in a setup by keeping the pro-
cess “warm” until the start of the next time period. Then,
a smaller portion of the set of setup activities (such as only
cleaning), if any, are performed at the beginning of the next
period. Thus, one can speak of a major setup, which in-
volves the original set of preparative activities, for a cold
process and a minor setup, which involves a smaller subset
of preparative activities, for a warm process. For example
Agra and Constantino (1999) consider a single-item setting
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in which a minor setup cost is incurred if the process is ready
(i.e., if it was set up for production in the previous period)
and a major setup cost, otherwise. In their formulation, it is
assumed that if a setup is performed for the item in a period,
the process will be ready for use in the following period re-
gardless of the quantity produced. However, as we discuss
below, this may not be feasible and/or desirable in certain
production/replenishment environments. In this paper, we
consider a dynamic lot sizing problem with finite capacity
in which the process can be kept warm for the next period
only if a minimum amount has been produced and is cold,
otherwise. The lot sizing problem setting that we investigate
is encountered in a number of environments. Process indus-
tries such as glass, steel and ceramic production provide the
leading examples of cases in which the physical nature of
the production processes dictates that the processes be lit-
erally kept warm in certain periods to avoid expensive shut-
down/startups. A particularly striking example with which
the authors are familiar comes from the glass industry; in
some periods, the glass production is continued in order to
avoid substantial shutdown/startup costs but the produced
glass is deliberately broken on the production line and fed
back into the furnace! In this case, the process is being kept
warm at the additional cost of breakage (plus some costs
for non-reusable materials consumed). Similar practices are
used in foundries; ceramic and brick ovens are also kept
warm sometimes even though no further production is done
in the current period to avoid costly cooling and reheating
procedures. Aside from such literal manifestations, a pro-
cess can also be kept warm in an abstract sense. Robinson
and Sahin (2001) cite specific examples from the food
and petrochemical industries where certain clean up and
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1028 Toy and Berk

inspection operations can be avoided in the next period if
the quantity produced in the current period exceeds a cer-
tain threshold (that is, the current production continues
until the next period). This may be done through either
overtime or undertime. The treatment of the overtime op-
tion is outside the scope of our analysis; however, deliber-
ate undertime practices can be studied within our context
of warm/cold processes. With undertime, processes can be
kept warm by reducing the “nominal” or “calibrated” pro-
duction rate within a prespecified range (e.g., Silver (1990),
Moon et al. (1991) and Gallego (1993)). As an illustration,
suppose that the process is capable of producing at most R
units at a nominal production rate in a certain time period.
Furthermore, suppose that its production rate can be re-
duced so that, within the same time period, the process can
produce Q (<R) units at the slowest rate. Thus, it is possi-
ble to keep this process warm by having it operate at rates
lower than nominal so long as the quantity to be produced
is between Q and R.

Such variable production rates are quite common in both
process and discrete-item manufacturing industries since
they both allow feeder mechanisms to be adjusted so as to
set almost any pace to a line. For example, some chemical
operations such as electroplating and fermentation can be
decelerated deliberately (within certain bounds), and, man-
ual operations can be slowed down by inserting idle times
between units. Depending on the nature of the operations
involved, the reduction in production rate can be obtained
at either zero or positive additional cost. This additional
variable cost is then the variable cost of keeping the pro-
cess warm until the next period. Furthermore, if one can
use the process for multiple purposes (e.g., different prod-
ucts) there may be additional variable costs due to keeping
the process idle for the remainder of the current period
(e.g., lost profit on other product(s) not produced). Then,
the cost of keeping the process warm would also include
idleness costs. Aside from direct economic calculations, a
managerial decision on a warm process threshold may also
be influenced by non-economic considerations such as: (i)
the safety of mounted tools and fixtures left idle on the
machinery; (ii) the impact on worker morale of engaging
them in non-productive activities; and (iii) the impact learn-
ing/forgetting about phenomena on subsequent runs, etc.
Hence, there may be managerially imposed policies in place
that dictate the process be kept warm until the next period
only if the production quantity in the current period exceeds
a certain level, say, Q.

Another example of the setting we consider can be found
in a replenishment environment where the supplier and/or
shipper offers rebates that can be exercised in the next pe-
riod if the amount ordered in the current period exceeds a
certain quantity. In this procurement setting, the replenish-
ment process is kept warm by ordering in quantities larger
than a prespecified amount, say, Q, in a certain period.
The additional cost of keeping the replenishment process
warm until the next period is then zero for periods with
ordering quantities larger than Q. Although such rebate

structures would have a significant impact on the opera-
tional performance of supply chains via coordination and
smoothing of orders between echelons, they have not re-
ceived any attention in the literature. We believe that our
proposed model provides a building block for the analy-
sis and design of such two-party contracts. Note that the
production processes cited above need to be modeled as
capacitated, whereas, the replenishment processes may be
uncapacitated.

As the above examples illustrate, the dynamic lot sizing
problem in the presence of production-quantity-dependent
warm/cold processes is a rather common problem. How-
ever, to the best of our knowledge, this problem has not
been previously studied. Below, we briefly review related
works in the vast literature on dynamic lot sizing.

The first formulation of the dynamic lot sizing problem
was by Wagner and Whitin (1958) who assumed uncapaci-
tated production and no shortages; this situation is gener-
ally labeled as the Wagner-Whitin problem. We shall hence-
forth refer to this problem and its setting as the “classical
problem”. Wagner and Whitin (1958) provided a dynamic
programming solution algorithm and structural results on
the optimal solution of the classical problem. Their fun-
damental contribution lies in the identification of planning
horizons, which made forward solution algorithms possi-
ble. From the numerous other studies on the extension of
the classical problem, we highlight these works that examine
backordering and general cost structures (Zangwill, 1966;
Blackburn and Kunreuther, 1974) and the Capacitated Lot
Sizing Problem (CLSP) (Manne, 1958; Florian and Klein,
1971; Jagannathan and Rao, 1973; Love, 1973; Baker et al.,
1978; Bitran and Matsuo, 1986; Bitran and Yanasse, 1982;
Hindi; 1995a). For comprehensive reviews of the existing lit-
erature with more detailed taxonomies, we refer the reader
to Aggarwal and Park (1993) and Wolsey (1995). Excellent
surveys on reformulations and algorithms for the CLSP and
uncapacitated lot sizing problems are provided in Pochet
and Wolsey (1995) and Karimi (2003).

The works that are most closely related to ours are those
that consider reserving a period for production with the
option of not producing anything in that period. This set-
ting also occurs as a subproblem of the multi-item CLSP
with Lagrangean multipliers used as the reservation costs
for each of the periods which has been studied by Eppen
and Martin (1987), Karmarkar et al. (1987) Hindi (1995a,
1995b), and Agra and Constantino (1999). Although the
models on lot sizing with reservation options apply the
concept of a warm process, they do not consider a lower
bound on the quantity produced for keeping the process
warm until the next period. Thus, their results are not read-
ily applicable to the setting with positive warm process
thresholds that we consider. Similarly, we cannot rely on
the results in the vast literature on multi-item CLSPs with
sequence-dependent setups that consider warm processes
but assume only warm process thresholds of zero produc-
tion. (See Allahverdi et al. (1999) for an extensive review on
this subject.)
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Dynamic lot sizing problem for a warm/cold process 1029

Another body of work that applies the concept of warm
processes is contained in the literature on the Discrete Lot
sizing and Scheduling Problem (DLSP) (e.g., Fleischmann
(1990), Bruggemann and Jahnke (2000), and Loparic et al.
(2003)). This body of work differs from ours in the use of
a small-bucket approach (i.e., R = 1 in every period) and,
more importantly, in that the process can be kept warm
only if there has been capacitated production in the current
period (i.e., Q = R in every period). Thus, the results in the
DLSP literature are not readily applicable to our general
setting.

Finally, we mention studies performed on lot sizing with
undertime options. Silver (1990), Moon et al. (1991), and
Gallego (1993) have examined the impact of using under-
time via reduced production rates within the framework of
a multiple-item lot scheduling problem with common cy-
cles. Eiamkanchanalai and Banerjee (1999) also allow for
bidirectional changes in the production rate. In all of the
aforementioned studies, the analyses consider a constant
demand rate with the objective of cost rate minimization un-
der continuous review. Our model differs from these works
in that our setting uses a periodic review over a finite hori-
zon and has a single product with deterministic but variable
demands. Due to the variable nature of demand, we do not
obtain a single, stationary solution as in other works but
rather establish the structure of the optimal production plan
and conditions on the existence of forward solutions.

In this paper, we: (i) develop a dynamic programming for-
mulation of the dynamic lot sizing problem for a warm/cold
process; (ii) establish the structure of the optimal policy;
(iii) show that polynomial-time and linear-time solution al-
gorithms exist; and (iv) examine, via a numerical study, the
sensitivity of the optimal production schedule and total cost
to various system parameters and illustrate that restricting
or ignoring the use of the undertime (warming) option re-
sults in substantial savings. To the best of our knowledge,
this is the first work that considers warm/cold processes
in the presence of warm process thresholds that depend
on the production quantities in the previous period. We
believe that our main contribution lies in establishing the
structure of the optimal solution and proving a number
of other properties of the dynamic lot sizing problem with
warm process thresholds. Our numerical results also pro-
vide managerial insights into capacity selection decisions
for warm/cold processes.

The rest of the paper is organized as follows: In Section
2, we present the basic assumptions of our model and for-
mulate the optimization problem. In Section 3, we provide
theoretical results on the structure of the optimal solution.
Finally, in Section 4, we discuss computational complexity
issues and provide the findings of our numerical study. We
also present, in the Appendix, an illustrative numerical ex-
ample to highlight some key theoretical results, a forward
dynamic programming solution algorithm and proofs of
two of our major results.

2. Model: Assumptions and Formulation

We assume that the length of the problem horizon, N is finite
and known. The amount of demand in period t is denoted
by Dt (t = 1, 2, . . . , N). All demands are non-negative and
known, but may be different over the problem horizon. No
shortages are allowed; that is, the amount demanded in
a period has to be produced in or before its period. The
amount of production in period t is denoted by xt . For
every item produced in period t , a unit production cost ct
is incurred. The inventory on hand at the end of period t is
denoted by yt ; an inventory holding cost ht is incurred for
every unit of ending inventory in the period. Without loss
of generality, we assume that the initial inventory level is
zero.

The production in a period is non-negative with a max-
imum capacity, Rt . We assume that physical capacities
are non-decreasing, i.e., Rt−1 ≤ Rt for all t and make
no assumption on the demand structure other than that∑j

i=t Di ≤ ∑j
i=t Ri for 1 ≤ t ≤ j ≤ N for feasibility. We

consider both warm and cold production processes. The
production process may be kept warm until the beginning
of period t if xt−1 ≥ Qt−1; otherwise, the process cannot be
kept warm and is cold. In order to keep the process warm un-
til period t , ωt−1 is charged for every unit of unused capacity
in period t − 1. That is, the warming cost incurred in period
t − 1 would be ωt−1(Rt−1 − xt−1) monetary units. Note that
even if the quantity produced in period t − 1 is at least Qt−1,
it may not be optimal to keep the process warm until the
next period if during the next period, there would be no pro-
duction activity; in such instances, there will be no warming
costs incurred although xt−1 ≥ Qt−1(since xt = 0). A warm
process requires a warm setup with an incurred cost kt ,
and a cold process requires a cold setup with an incurred
cost Kt , if production is to be done in period t ; Kt ≥ kt
for all t . We assume that all setup costs are non-negative,
with Kt+1 ≤ Kt and kt+1 ≤ kt for all t . Furthermore, in
the following, we assume max(0, Q̂t ) < Qt ≤ Rt where Q̂t
denotes the point of indifference for a cold setup and is de-
fined as Rt − ((Kt+1 − kt+1)/ωt ) for all t . (We discuss the
consequences of relaxing this assumption in Section 3.1.)

Clearly, for Qt > Rt and kt = Kt , we have the CLSP set-
ting; and, as Qt (= Rt ) → ∞, we get the classical problem
setting.

The single-item CLSP with complex setup structures is
known to be NP-hard (Bitran and Yanasse, 1982). There-
fore, it is very difficult to optimally solve large instances of
the problem. In fact, the solution time grows exponentially
as the number of planning periods increase. However, for
certain cost structures, it is possible to obtain analytical re-
sults on the structural and computational properties of the
optimal production plan. Hence, we consider only the so-
called Wagner-Whitin-type cost structures over the horizon
of the problem. Specifically, we assume that ct + ht > ct+1,
ct + ht − ωt > ct+1, ct + ht − ωt > ct+1 − ωt+1 for all t .
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1030 Toy and Berk

This cost structure ensures that Wagner-Whitin-type costs
are incurred for production levels that: (i) do not exceed
the warm thresholds in either of the consecutive periods;
(ii) exceed the threshold level in one period but not in the
other period; and (iii) exceed the threshold level in both pe-
riods. Therefore, the above cost structure is essential for the
results obtained in this paper.

The objective is to find a production schedule xt ≥ 0 (t =
1, 2, . . . , N) (timing and amount of production), such that
all demands are met at minimum total cost. We develop a
Dynamic Programming (DP) formulation of the problem
(P). Let f N

t (xt−1,yt−1) denote the minimum total cost under
an optimal production schedule for periods t through N,
where xt is the production quantity and yt−1 is the starting
inventory for period t . Then

(P) :
f N
t (xt−1, yt−1)

= min
0≤xt ≤Rt

xt +yt−1≥Dt




Kt × δt × zt

+ [kt + ωt−1(Rt−1 − xt−1)] × δt × (1 − zt )

+ ct × xt + ht × yt + f N
t+1(xt , yt )


 , (1)

where

yt = yt−1 + xt − Dt for t = 1, 2, . . . , N, (2)

δt =
{

0 if xt = 0

1 if xt > 0
for t = 1, 2, . . . , N, (3)

and

zt+1 =
{

0 if xt ≥ Qt

1 if xt < Qt
for t = 1, 2, . . . , N − 1, (4)

with the boundary condition in period N being:

f N
N (xN−1, yN−1)

= min
0≤xN ≤RN

xN +yN−1≥DN




KN × δN × zN

+ [kN+ωN−1(RN−1−xN−1)] × δN × (1 − zN)

+cN × xN + hN × yN


 .

(5)

The optimal solution is found using the above recurrence
and f N

1 (0,0) denotes the minimum cost of supplying the de-
mand for periods 1 through N (where we arbitrarily set
xt−1 = 0). We are now ready to examine some of the struc-
tural properties of the optimal solution to the above formu-
lation. (Without loss of generality we assume throughout
that y0 = yN = 0 and, for convenience, R0 = ω0 = 0.)

3. Structural results

In this section, we present structural results on the op-
timal production plan for the lot sizing problem with a
warm/cold process. In particular, we establish the condi-
tions under which production is to be done and the amount

of production in a period. Furthermore, we show that cer-
tain production plans enable one to partition the original
problem into independently solvable subproblems.

First, we provide an equivalence property which will sim-
plify our development of further structural results.

Proposition 1. If problem (P) is feasible, it can be written as
an equivalent CLSP where in each period the demand is not
greater than the capacity.

Proof. A proof is provided in the Appendix. �
Therefore, without loss of generality, we shall assume

in the following that Dt ≤ Rt for all t ; this, naturally, en-
sures the feasibility condition. An important property that
plays a key role in developing algorithms to solve lot siz-
ing problems is the one that states when to do a setup and
to produce. In the absence of warm/cold processes, Bitran
and Yanasse (1982) provide a property of the optimal solu-
tion which states that, for capacitated settings where, over
the horizon, no prespecified pattern exists for setup costs,
unit holding costs and capacities, and unit production costs
are non-increasing (G/G/NI/G setting in their notation):
production is done in a period only if there is insufficient
inventory to satisfy the demand for that period (Proposi-
tion 2.4 in Bitran and Yanasse (1982)). In the presence of
warm/cold processes, this property no longer holds. Below,
we present an extension of their result to the instance where
there are quantity-dependent warm processes.

Theorem 1. An optimal production plan has the property zt ×
xt × [yt−1 − Dt ]+ = 0 for t = 1, 2, . . . , N where zt , xt and
yt−1 are as given in Equations (2)–(4).

Proof. A proof is provided in the Appendix. �
As expected, Theorem 1 reduces to Proposition 2.4 in

Bitran and Yanasse (1982) when kt = Kt (i.e., zt = 1) for
all t . In the presence of warm/cold processes, however, we
see that it may be optimal to produce even in a period of
zero demand, which is not the case for the classical setting
(see Corollary 2.1 in Bitran and Yanasse (1982)).

In the classical problem setting, it is established that, in
an optimal production plan, the values that the produc-
tion quantities can take on in any period are either zero
or exactly equal to a sum of demands for a finite number
of periods into the future. In the CLSP, however, the op-
timal production plan is composed of subplans in which
the production quantities in any period are either zero or
at capacity, except for at most one period in which it is
less than capacity. In the presence of quantity-dependent
warm/cold processes, these fundamental results no longer
hold in general for all periods. In the following, we estab-
lish certain structural properties of the optimal plans and
gradually develop the structure of the optimal solution for
the CLSP with quantity-dependent warm/cold processes.

We introduce the following definitions. Let X =
{x1, . . . , xN} denote a feasible production plan constructed
over periods 1 through N and, let period t be called a
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Dynamic lot sizing problem for a warm/cold process 1031

regeneration point if yt−1 = 0, zt = 1 and xt > 0. Also, let
�uv|Iu−1,Iv−1 represent a subset of X between two consecu-
tive cold setups u and v with given starting and ending
inventories given such that yu−1 = Iu−1 and yv−1 = Iv−1.
We have �uv|Iu−1,Iv−1 = {xi|xi > 0, i = u, . . . , m; xi = 0 for
i = m + 1, . . . , v − 1; zu = 1 = zv; zi = 0 for u + 1 ≤ i ≤ m;
zm+1 ≥ 0 and zi = 1 for m + 2 ≤ i ≤ v − 1}where m denotes
the latest period in which production is done between u and
v − 1 for 0 ≤ u ≤ m < v ≤ N + 1.

We will call �uv|Iu−1,Iv−1 a production series, and a pe-
riod t for u + 1 ≤ t ≤ m − 1 will be called an intermediate
production period. Note that, a production series may be-
gin and end with positive inventory, i.e., Iu−1 ≥ 0, Iv−1 ≥ 0.
Therefore, the first period of a production series is not nec-
essarily a regeneration point as defined above. However,
from Theorem 1, for cold setups to exist in periods u and v,
we must have It < Dt+1 for t = u − 1, v − 1. (It is possible
to form feasible series which violate this condition, but they
may safely be ignored due to their suboptimality.) By using
the following result, we will further simplify our develop-
ment and, henceforth, consider only production series that
have zero starting and ending inventories.

Proposition 2. If �uv|Iu−1,Iv−1 (with Iu−1 < Du and Iv−1 < Dv)
is a subset of an optimal plan for problem (P) with demands Dt
over periods u through v − 1, then �

′
uv|0,0, which has the same

production schedule, is a subset of an optimal plan for problem
(P′) with demands D

′
u = Du − Iu−1 and D

′
v−1 = Dv−1 + Iv−1

ceteris paribus.

Proof. A proof is provided in the Appendix. �

It follows from above that a series denoted by �uv|Iu−1,Iv−1

can be substituted by �uv|0,0, which we shorten to �uv. Fea-
sibility of a production series implies that the physical ca-
pacity constraint and no backordering assumption are not
violated. Hence, in the optimal plan [Di − yi−1]+ ≤ xi ≤ Ri
for u ≤ i ≤ m. Furthermore, from the definition of a warm
setup one intuitively obtains xi ≥ Qi for u ≤ i ≤ m − 1.
Thus, for any optimal series, max(Qi, [Di − yi−1]+) ≤ xi ≤
Ri for u ≤ i ≤ m − 1.

For exposition purposes, we make a distinction between
two instances of production at capacity. We shall refer to the
production instance xi = Ri as capacitated production only
if [Di − yi−1]+ < Ri. Hence, xi = [Di − yi−1]+ = Ri will not
be referred to as capacitated production but will simply be
called production at capacity. (As it will become clear, we
make this distinction to identify the successive capacitated
periods which emerge from/are found in the end of a pro-
duction series.)

As we establish in the following lemma, in addition to
the physical capacity in period t , there is also an economic
bound, Et on the production quantity in the presence of
warm/cold processes. That is, Et is such a quantity that,
producing more than this quantity in period t for a future
period, is more costly than producing the excess quantity
in period t + 1.

Lemma 1. In an optimal production plan:

(i) xt ≤ Et where,

Et = max(Qt , [Dt − yt−1]+)(ct + ht − ct+1 − ωt ) + kt+1 + Rtωt

ct + ht − ct+1

× for ∀t. (6)

(ii) xt = Rt only if Et ≥ Rt .

Proof. A proof is provided in the Appendix. �

Lemma 2. A production series �uv, in which there is at least
one period t such that xt = Rt (> Qt ), 0 < xt+1 < Rt+1, and
yt > 0, cannot be optimal.

Proof. A proof is provided in the Appendix. �

From Lemmas 1 and 2, we get the following corollary.

Corollary 1. In a production series (of an optimal production
plan) in which m denotes the last period of production in the
series:

(i) If xt = Rt (> Qt ) and 0 < xt+1 < Rt+1 then yt = 0 for
u ≤ t ≤ m − 1.

(ii) If xt = Rt (> Qt ) and yt > 0 then xt+1 = Rt+1 for u ≤
t ≤ m − 1.

(iii) Let m − r + 1 denote the first period in which capaci-
tated production is done in a production series of an op-
timal plan. Then, m − r + 1 ≥ max(j|Ej < Rj for u ≤
j ≤ m) and xt = Rt for m − r + 1 ≤ t ≤ m.

The above corollary provides the basis of the subtle dis-
tinction we like to make between “production at capacity”
and “capacitated production”. The first refers to the case
where production at capacity is done solely to satisfy the net
demand of the period (i.e., yt = 0) in part (i), whereas the
latter refers to production again at capacity but to satisfy
more than the net demand in that period (i.e., yt > 0) in
part (ii). Corollary 1 also implies that, if there is a succes-
sion of capacitated production periods, the last capacitated
production period coincides with the last production pe-
riod in the series of an optimal production plan! This result
is important in that it gives us the structure in which an
optimal production series ends.

Lemma 3. In an optimal production series �uv, (for u ≤ t ≤
m − 1), xt > max(Qt , [Dt − yt−1]+) only if xt+1 = Rt+1 and
yt+1 > 0.

Proof. A proof is provided in the Appendix. �

Corollary 2. In a production series �uv (of an optimal pro-
duction plan) in which production is done last in period m,

if xm < Rm then xt = Rt (> Qt ) only if yt = 0 for u ≤ t ≤
m − 1.

We are now in a position to provide the structure of a
production series in an optimal production plan.

Theorem 2. (The optimal production quantity theorem.) In a
production series �uv of an optimal production plan, in which
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1032 Toy and Berk

m is the last period in which production is done and r (≥ 0) is
the number of successive periods with capacitated production:

(i) xt = max(Qt , [Dt − yt−1]+), for u ≤ t ≤ m − r − 1
and m − u > r ≥ 0.

(ii) xm−r = [
∑v−1

i=m−r Di − ym−r−1 − ∑m
i=m−r+1 Ri]+ <

min(Em−r , Rm−r ) and m − u ≥ r ≥ 0.

(iii) xt = Rt (≤ Et ) for m − r + 1 ≤ t ≤ m and r ≥ 1.

Proof. A proof is provided in the Appendix. �

Theorem 2 gives the values that production quantities in
any period may assume in an optimal production plan in the
presence of quantity-dependent warm/cold processes. The
above theorem gives, as special cases, the results in Wagner
and Whitin (1958, Theorem 2, p. 91) when Qt (= Rt ) → ∞,
and those in Florian and Klein (1971, Corollary, p. 16) when
Qt = Rt = R and kt = Kt , for all t . Thus, it enables one to
identify the forms of the production series to be considered
in solving problem (P) and forms the basis of the solution
algorithms we develop in a later section. To that end, we
provide the following corollary.

Corollary 3. In an optimal production plan, the series �uv

can only have the following forms:

(i) xu = ∑v−1
i=u Di, xi = 0 for u + 1 ≤ i ≤ v − 1.

(ii) xi = max(Qt , [Dt − yt−1]+) for u ≤ i ≤ m − 1
xm = ∑v−1

i=m Di − ym−1, xi = 0 for m + 1 ≤ i ≤ v − 1.
(iii) xi = Ri for u ≤ i ≤ m , xi = 0 for m + 1 ≤ i ≤ v − 1.
(iv) xu = [

∑v−1
i=m−r Di − ym−r−1 − ∑m

i=m−r+1 Ri]+, xi = Ri
for u + 1 ≤ i ≤ m, xi = 0 for m + 1 ≤ i ≤ v − 1.

(v) xi = max(Qt , [Dt − yt−1]+) for u ≤ i ≤ m − r − 1,
xm−r = [

∑v−1
i=m−r Di − ym−r−1 − ∑m

i=m−r+1 Ri]+, xi =
Ri for m − r + 1 ≤ i ≤ m, xi = 0 for m + 1 ≤ i ≤
v − 1.

Maintaining the definition of a regeneration point given
above, let Suv denote a subset of a feasible production plan X
such that Suv includes the components of X for all periods
between the two consecutive regeneration points u and v;
that is, Suv = {xi, i = u, . . . , v − 1|zu = 1 = zv and yu−1 =
0 = yv−1; yi ≥ 0 for u < i < v} where 1 ≤ u < v ≤ N + 1.
We will refer to Suv as a production sequence. Clearly, any
feasible production plan is composed of one or more pro-
duction sequences and since y0 = yN = 0, at least one pro-
duction sequence exists in an N-period problem. Moreover,
any production sequence is composed of at least one pro-
duction series.

In the CLSP setting, a capacity constrained production
sequence is defined in Florian and Klein (1971) as a produc-
tion sequence in which the production level of at most one
period is positive but less than capacity, and all other pro-
ductions are either zero or at their capacity. In the presence
of warm/cold processes, we define a capacity-constrained
production series as a production series in which all produc-
tions are either zero or at their capacity. That is, we accept

only the series of the form given in Corollary 3 part (iii) as
a capacity-constrained series.

Theorem 3. (Capacity-constrained series theorem.)

(i) In the presence of warm/cold processes, an optimal pro-
duction plan consists of production sequences in which at
most one series is not a capacity-constrained production
series.

(ii) Moreover, if there exists a series which is not capacity
constrained, then, it is the first series of that sequence.

Proof. A proof is provided in the Appendix. �

Corollary 4. An optimal production plan has the property
zt × yt−1 × xt × (Rt − xt ) = 0 for t = 1, 2, . . . , N where zt ,

xt and yt−1 are as given in Equations (2)–(4).

Proof. A proof is provided in the Appendix. �

Note that the above result is another extension of the re-
sult on G/G/NI/G (in the notation of the Bitran-Yanasse)
CLSP with warm/cold processes.

A case of theoretical interest and practical significance
is when kt = 0. This corresponds to a production setting
where setup carry-over is possible at no cost. For example, in
glass manufacturing, keeping the furnaces warm essentially
ensures that production in the next period starts with no
setup. Other practical applications include a production line
whose physical layout or a machine whose calibration is
maintained for the next period at no or almost no additional
fixed cost.

Theorem 4. (Single-series theorem.) When kt = 0 ∀t =
1, 2, . . . , N, than:

(i) Each sequence Suv comprises only one production series
�uv. This series is of the form:

(a) xt = max(Qt , [Dt − yt−1]+), for u ≤ t ≤ m − 1 and
m − u > 0,

(b) xm = ε, where ε = [
∑v−1

i=m Di − ym−1]+ < Rm and m −
u ≥ 0.

(ii) An optimal production plan has the property zt × xt ×
yt−1 = 0 where zt , xt , yt−1 are as given in Equations (2)–
(4).

Proof. A proof is provided in the Appendix. �

Another useful property in solving lot sizing problems is
that of partition. In the absence of warm/cold processes,
it is possible to optimally partition a longer problem if the
constraint yt = 0 is imposed in a period within the hori-
zon for both the classical problem and the CLSP while en-
suring capacity feasibility for the remainder of the decom-
posed problem (Florian and Klein, 1971). In the presence
of quantity-dependent warm/cold processes, however, the
state of the system is no longer fully represented by the cur-
rent inventory level in a period and further conditions are
needed for a partition.
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Dynamic lot sizing problem for a warm/cold process 1033

In the following theorem, we state such conditions.

Theorem 5. (Partition theorem.) Suppose that kj = 0 for ∀j.
then:

(i) If yt−1 = 0 and xt−1 < Qt−1 in a t−period problem then
it is optimal to consider periods 1 through t − 1 by them-
selves in any feasible t∗−period problem (t∗ ≥ t); that is,
a cold partition occurs in period t.

(ii) If xt−1 ≥ Qt−1, yt−1 = 0, xt > 0 and Et < Rt in a t−
period problem, then it is optimal to consider periods 1
through t − 1 by themselves in any feasible t∗−period
problem (t∗ ≥ t); that is, a warm partition occurs in
period t.

Proof. A proof is provided in the Appendix. �

Note that a partition condition exists only for the case for
which the warm setup cost is zero. Otherwise, as the hori-
zon of the problem is extended, it is possible to encounter
optimal solutions that modify the production schedules in
periods 1 through t even if the above stated conditions hold.
The existence of a partition implied in Theorem 5 is very
important in that it also implies the existence of a forward
solution algorithm. In Section 4.1, we elaborate more on
such algorithms.

3.1. A digression: If Qt < Q̂t

The structural results presented so far are based on the
assumption that Qt ≥ Q̂t , ∀t , where Q̂t , defined as Rt −
(Kt+1 − kt+1)/ωt , represents the point of indifference be-
tween the costs of keeping the process warm until the next
period and of incurring a cold setup in the next period. As
the discussion below reveals, this is the most realistic setting.
However, for completeness, we discuss the consequences of
relaxing this assumption. When Qt < Q̂t , for production
quantities such that Qt ≤ xt < Q̂t , the cost of keeping the
process warm until the next period is (Rt − xt )ωt . Since
xt < Q̂t , we have (Rt − xt )ωt > Kt+1 − kt+1, which implies
that keeping the system warm in this period yields a cost
higher than that incurred by having a cold setup in the next
period. Hence, when the managerially selected value of the
warm process threshold is below Q̂t , the DP formulation
(P) provided by Equation (1) subject to Equations (2)–(4)
does not reveal the optimal schedule and the cost. This is
mainly due to Equation (4) which is constructed under the
assumption that Qt ≥ Q̂t . In the case where Qt < Q̂t , a new
DP formulation must include the warm process indicator zt
as a binary decision variable, and, as such, the state of the
system must be redefined to also include zt . Even though it
would be possible to reconstruct the DP formulation, it is
easy to see that, in an optimal solution, no warming would
be done if the production quantity is less than Q̂t regardless
of the value of the managerially set warm process threshold.
Therefore, Q̂t acts as a bound on the warm process decision.
Therefore, it is possible to slightly modify the formulation

provided in Equation (1) subject to Equations (2)–(4) to al-
low for arbitrarily set warm process thresholds by redefin-
ing Qt used in our formulation such that Qt = max(Q̄t , Q̂t ),
where Q̄t denotes the warm process threshold arbitrarily set
by the management. The DP formulation (P) can then be
used as it stands.

From the above arguments, it also follows that Q̂t is the
threshold value which gives the lowest possible cost for a
given problem setting. Hence, if the management is free to
choose the warm process threshold, it would always set it
at the point of indifference. This observation is validated in
our numerical studies.

An illustrative numerical example highlighting the key
features of the optimal solution series and some other key
results presented above are provided in the Appendix.

4. Computational results

4.1. Solution algorithms

The optimal solution to problem (P) can, theoretically, be
obtained by a backward solution algorithm. However, in a
backward solution algorithm, the state of the system needs
to be described by the number of periods in the horizon, the
ending inventory and production quantity in the previous
period, and the maximum of the capacity and the total
demand for the remainder of the horizon for each period.
Even for discrete demand or largely discretized continuous
demand scenarios, the size of the state space for reasonable
problem settings becomes prohibitively high. Therefore, it
is essential to develop forward solution algorithms when
available.

For zero warm setup costs, (kt = 0 ∀t), by invoking The-
orems 3 and 4, one can obtain a forward DP solution al-
gorithm which provides an optimal solution in polynomial
time. In the Appendix, we provide such an algorithm. (Prior
to using the suggested solution algorithm, we assume that
the individual demands are smoothed to ensure feasibil-
ity of the problem, which can be done in O(N).) For the
computational complexity of the proposed algorithm, we
provide the following brief discussion. For any given hori-
zon length T , one generates T subproblems such that the
problem over the periods 1 through T with yT = 0, (P1,T ),
can be solved by decomposing as P1,T = P1,t + Pt+1,T with
the imposed constraint that yt = 0 for 1 ≤ t < T . Thus, for
problem (P), one needs to solve a total of N(N + 1)/2 sub-
problems. Each of these subproblems can be solved in O(N)
time. Hence, the algorithm provides an optimal solution in
O(N3) time. The numerical study was conducted via this
algorithm.

With additional conditions, it may also be possible to ob-
tain solution algorithms with less complexity. In the follow-
ing theorem, we state that an improved O(N)-time solution
algorithm exists for one such special case.
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1034 Toy and Berk

Theorem 6. (Improved O(N) solution algorithm theorem.)
Given an N-period instance of the dynamic lot sizing prob-
lem with warm/cold processes such that: Dt < Qt , kt =
0 (thereby, Rt ≥ Et = max(Qt , [Dt − yt−1]+) = Qt ) and
ωt = 0 for 1 ≤ t ≤ N, an optimal production schedule can
be found in O(N) time.

Proof. Following Aggarwal and Park (1993), let V (j)
denote the minimum cost of supplying the demands
of periods 1 through j − 1 such that yj−1 is zero for
1 < j ≤ N + 1 and V (1) = 0. This definition implies
that V (N + 1) is the cost of the optimal production
plan for periods 1 through N. Now, consider a produc-
tion sequence Sij = {xi = Qi, xi+1 = Qi+1, . . . , xm−1 =
Qm−1, xm = (

∑j
t=i Dt − ∑m−1

t=i Qt ), xm+1 = 0, . . . , xj = 0}.
Note that the optimality of such a sequence follows
from Theorem 2. For Dt < Qt (t = 1, . . . , N), define the
N × (N + 1) array A = {a[i, j]}, where a[i, j] = V (i) + Ki +∑j

t=i+1 ηt kt + ∑j
t=i ct xt + ∑j

t=i ht (
∑t

j=1 xj − ∑t
j=1 Dj) if

i < j and +∞, otherwise. Following Theorem 2, we have
xt = ηt max{(Dt − yt−1), min{Qt ,

∑j
u=t Du − yt−1}} with

ηt = 1 if
∑j

u=t Du − yt−1 > 0 and 0, otherwise. Then, for
1 < j ≤ N + 1, V (j) = min1≤i≤n a[i, j] if Dj−1 > 0 and,
V (j − 1) otherwise. �

Definition 1. After Aggarwal and Park (1993) (p. 556), an
p × q two-dimensional array A = {a[i, j]} is Monge if for
1 ≤ i < p and 1 ≤ j < q:

a[i + 1, j + 1] − a[i + 1, j] ≤ a[i, j + 1] − a[i, j]. (7)

Consider the production sequence Sij = {xi = Qi, xi+1 =
Qi+1, . . . , xm−1 = Qm−1, xm = (

∑j
t=iDt−

∑m−1
t=i Qt ),xm+1 =

0, . . . , xj = 0}. The given production sequence will result in
a total cost of a[i, j] as defined in Equation (6). Clearly, if a
new period (j + 1) is added to the horizon, the quantity to
satisfy some or all of its demand Dj+1 can at the earliest be
produced in period m; and, the portion of the production
sequence up to m − 1 remains unchanged. Then, a[i, j + 1]
is the sum of a[i, j] and the costs of producing Dj+1 units
starting from period m and carrying them in inventory until
period j + 1. That is, the cost difference as a new period
is added is only due to the production and holding costs
incurred for the quantity to satisfy Dj+1. Now, consider
the same demand pattern from period i + 1 to period j.
The production sequence in this case will be the same for
periods i + 1 through m − 1, and the quantity Qi − Di,
which was produced in period i previously will now be
produced in period m (and in later periods if necessary).
Let m′ (≥ m) denote the latest period in which production
is done for the production sequence starting in period i + 1.
Then, if a new period (j + 1) is added to the horizon, some
or all of its demand Dj+1 can at the earliest be produced
in period m′; and, the portion of the production sequence
up to period m′ − 1 remains unchanged. The total cost of
production a[i + 1, j + 1] is the sum of a[i + 1, j] and the

costs of producing Dj+1 units starting from period m′ and
carrying them in inventory until period j + 1. Again, the
cost difference as a new period is added is only due to the
production and holding costs incurred for the quantity
to satisfy Dj+1. We see that the increase in the total costs
for a production sequence to satisfy demands over a given
horizon as a new period j + 1 is added to the horizon is
equal to the production and holding costs of the quantity
to satisfy the demand in period j + 1. Due to the marginal
production cost structure imposed, the production cost of
any quantity to satisfy a demand in the future decreases as
the quantity is produced in periods closer to the demand
period. The holding cost decreases as well, since the num-
ber of periods over which inventory is held decreases.
Therefore, a[i, j + 1] − a[i, j] ≥ a[i + 1, j + 1] − a[i + 1, j].
Hence, we establish the Mongité of A given below:

Lemma 4. A is Monge if Dt ≤ Qt , kt = 0 and ωt = 0 for
t = 1, 2, . . . , N.

Proof. Given the Mongité of A and linear preprocessing
time, we can apply Eppstein’s on-line array-searching algo-
rithm (Eppstein, 1990). Hence, we have Theorem 6. �

Following the arguments presented in the proof, note
that for positive kt values, there may be additional cost re-
ductions when period j + 1 is added if xm > Qm and/or
xm′ > Qm′ which implies that some of the production may
be pushed forward. Hence, the Monge condition for A may
no longer hold. Likewise, if Dt ≥ Qt for some t , then we
no longer have a two-dimensional array to define the costs
since it is not guaranteed that a[i, j] will always involve a
cold setup as assumed in the above formulation. It may
be interesting for future work to investigate similar lin-
ear search algorithms for this case using the properties of
higher-dimensional Monge arrays (see Aggarwal and Park,
1989, 1993).

4.2. Numerical study

We conducted our numerical study to investigate three as-
pects: (i) the sensitivity of the optimal production schedule
to various system parameters; (ii) the impact of managerial
policies to keep processes warm; and (iii) optimal capacity
determination in the presence of warm/cold processes.

For our numerical study, we considered a problem hori-
zon of 100 periods. A base demand series was developed
such that the base demand in period t , Dbase

t , is either
equal to zero with a probability of 0.20 or it is gener-
ated from the distribution U(1, 40) with a probability of
0.80. We considered only integer demands in our anal-
ysis; hence, we truncated the generated random demand
values to ensure integer values. Different tightness lev-
els of the capacity were achieved by using six demand
patterns as multiples of the base series (i.e., Dt = M ×
Dbase

t ). We considered constant parameters over the hori-
zon of the problem; for all t , we set ht = h = 1, kt = 0,
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Dynamic lot sizing problem for a warm/cold process 1035

Table 1. First 25 periods of the optimal production schedules (medium demand, R = 100)

Production level

w = 0.05 w = 0.55 w = 0.95 Q = R

K = 75 50 25 K = 75 50 25 K = 75 50 25 K = 75 50 25
t Dt Q = 0 0 0 Q = 0 9.09 54.54 Q = 21.05 47.36 73.68 Q = 100 100 100

1 25 25 25 25 25 52 25 52 52 25 52 52 25
2 27 27 27 27 27 27 27 27
3 57 57 57 57 57 57 57 57 57 57 100 100 57
4 92 92 92 92 92 94 94 94 94 94 51 51 94
5 2 2 2 2 2
6 80 80 80 80 80 80 80 80 80 80 100 100 80
7 0 0 0 0 0 27 27 27 7 7
8 27 27 27 27 27 27 27 27
9 40 40 40 40 40 40 40 75 75 40 75 75 40

10 20 20 20 20 20 35 35 35 35
11 15 15 15 15 15
12 42 42 42 42 42 42 42 42 42 42 100 42 42
13 45 45 45 45 45 45 65 87 65 65 7 65 65
14 20 20 20 20 20 42
15 22 22 22 22 22 22 64 22 64 64 22
16 42 42 42 42 42 42 42 42 42 42
17 92 92 92 92 92 92 92 92 92 92 100 100 100
18 42 42 42 42 42 42 42 42 84 42 76 76 34
19 42 42 42 42 42 42 42 42 42 42
20 77 77 77 77 77 77 77 77 77 77 100 100 100
21 25 25 25 25 25 27 27 27 27 27 4 4 4
22 2 2 2 2 2
23 52 52 52 52 52 52 52 89 52 52 89 52 52
24 0 0 0 0 0
25 27 27 27 27 27 37 37 37 37 0 37 37

Kt = K, Rt = R, Qt = Q, ωi = ω and ct = c. Since no
shortages are allowed, we ignored the unit production cost
(i.e., c = 0). The rest of the parameters of the experimen-
tal set were: K ∈ {75, 50, 25}, R ∈ {154, 152, . . . , 54, 52},
M ∈ {1, 1.75, 2.5, 3.5, 4.5, 5.5}. For warming costs, we used
ω ∈ {0, 0.05, 0.1, 0.15, . . . , 0.85, 0.9, 0.95} and ω > 1 as a
special case (Q = R). Note that, since h = 1, one can inter-
pret the values of ω as the ratio of unit warming cost to unit
holding cost per period. As discussed above, the minimum
cost is achieved when the warm process threshold is set at
the point of indifference; therefore, in our numerical study,
we used Q = Q̂, unless stated explicitly otherwise.

All instances were solved on an IBM Pentium III using
the forward DP algorithm provided in the Appendix with
a complexity O(N3) after smoothing the given individual
demands to ensure feasibility, which is done in O(N) time.

4.2.1. Sensitivity
As a representative sample of our results, consider the
medium-demand case (M = 2.5) tabulated in Table 1; for
brevity only the first 25 periods of the optimal solution are
presented. In this table, periods in which there is no produc-
tion and no warming are left blank, italics indicate periods

in which the process is kept warm at the end of the previous
period.

We notice that for some values of ω, the optimal solution
is a lot-for-lot policy; this is actually the case for all pa-
rameter combinations for which the point of indifference Q̂
is found to be less than or equal to zero (⇒ Q = 0). This
is to be expected since keeping the process warm until the
next period is more beneficial than incurring the cost of a
cold setup in the next period even if there is no production
done in the current period (indicated by a 0). Incidentally,
in such cases, the process is always kept warm. For positive
Q̂, batching occurs as expected. As ω increases, batching
becomes more beneficial and run sizes increase.

The impact of the cold setup cost, K, is similar to that of
ω in inducing batching albeit in the opposite direction, and
it is more pronounced. As K decreases, the point of indif-
ference Q̂ increases; thus, the option of keeping the process
warm loses its appeal since it would imply excessively large
run sizes resulting in higher carrying costs. Hence, for small
K, the optimal production schedule is closer to a lot-for-lot
policy with a few big batches inserted. Hence, when K de-
creases, the number of periods in which there is production
increases; however, there are more cold setups done than
warm setups.
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1036 Toy and Berk

For the unreported cases of low and high demands, we
observed less sensitivity of the optimal schedule to the
system parameters. We also observed that the impact of
capacity R is primarily through Q̂ except for cases with
very-tight capacity levels.

Our results indicate that the warm process threshold, Q̂,
plays a more critical role in warm/cold process decisions
than the individual values of system parameters. This ob-
servation motivated us to investigate the special case of
the “warm-only-if-at-capacity” policy, where Qt = Rt for
all t . This policy would give the optimal solution when
ωt ≥ ht since Q̂t ≤ 0 for all t . In other instances, it is a
heuristic corresponding to a constrained solution of the
problem. This policy is important because it also corre-
sponds to the cases where undertime options are delib-
erately not used by management even though they are
available. It may also be viewed as a “big-bucket ver-
sion” of the DLSP. The best schedule obtained under the
warm-only-if-at-capacity policy for our base problem is
also given in Table 1. Since it corresponds to the optimal
solution when ω > 1, we see most batching in this case.
Furthermore, the imposed policy encourages batching in
the best solution for large K values; but, for small K, it
gives a schedule similar to that obtained for moderate unit
warming costs. This tendency was also validated for low
and high-demand scenarios with other values of the cost
parameters.

Similarly, we observe that the deviation of the total cost
from the optimal value under the Q = R policy decreases
as ω increases, for all demand levels and setup cost values.
(For an instance of R, we refer the reader to Fig. 1). For
smaller demand levels and smaller cold setup costs, the de-

Fig. 1. Total cost against capacity (medium demand, K = 75).

viation becomes zero at smaller values of ω. The speed of
convergence is more sensitive to the changes in K.

4.2.2. Managerial implications: capacity selection
Next, we study capacity issues for warm/cold processes.
We report our findings on the medium-demand case with
K = 75 for a broad range of capacity values, R = [52, 154],
where R = 52 corresponds to the minimum capacity level
for which a feasible solution exists under the given demand
pattern. Throughout, we assume that Q = Q̂, which pro-
vides the lowest attainable cost. (Note that as R changes,
so does Q̂.) We focus on the behavior of the total-cost and
its components as the capacity of the process changes and
report them in Fig. 1–4. The reported costs are for the entire
problem horizon (N = 100).

We observe a non-monotonic behavior in the total cost
with respect to capacity. As capacity decreases, the total cost
initially decreases; then, there is an increase for all values of
ω. For large values of ω (and for the imposed warm-only-
if-at-capacity policy), the total-cost curve fluctuates and,
in some instances, exhibits sudden jumps (see Fig. 2). This
erratic behavior is best explained through individual cost
components.

First consider the setup costs depicted in Fig. 4. As R
decreases, the incurred setup cost decreases almost mono-
tonically followed by a sudden downward jump to the value
of K = 75 after which it remains flat. That the setup cost
equals a value of K implies that there is a single cold setup
over the entire horizon of the problem in the optimal so-
lution. This instance corresponds to the capacity level at
which Q̂ ceases to attain a positive value as R decreases;
hence, the process can be kept warm throughout the horizon
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Dynamic lot sizing problem for a warm/cold process 1037

Fig. 2. Inventory holding cost against capacity (medium demand, K = 75).

even if no production is done. Note that this happens at
higher capacity levels for smaller ω.

For the warming cost depicted in Fig. 3, we observe an
opposite behavior. As R decreases, the warming cost in-
creases albeit non-monotonically until a sudden upward

Fig. 3. Warming cost against capacity (medium demand, K = 75).

jump, followed by an almost steady decrease. The jump
coincides with the same capacity level observed in the be-
havior of setup costs. Similarly, the jump in warming costs
occurs at higher capacity levels for smaller ω. The behavior
of the two cost components vis a vis each other illustrates the
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1038 Toy and Berk

Fig. 4. Setup cost against capacity (medium demand, K = 75).

fundamental trade-off in the presence of warm/cold pro-
cesses. In fact, a closer examination of the numerical results
reveals that the two cost components go in tandem. This is
intuitive but still important to observe.

The main component that causes the total-cost curve to
exhibit a bumpy behavior is the inventory holding cost de-
picted in Fig. 2. As R decreases, the holding cost tends to de-
crease, as expected, since with lower R values, less inventory
is carried. At the capacity level where Q̂ ≤ 0, the produc-
tion schedule is the lot-for-lot policy; hence, no inventory
is carried in those cases and we observe zero holding costs
after this point, as R decreases. However, if R decreases fur-
ther, we begin to see the effects of prior demand smoothing
to ensure feasibility. That is, to ensure feasibility, the solu-
tion is forced a priori to carry more and more inventory in
advance as the capacity tightness increases. This increasing
portion of the inventory cost is what causes the increase in
the total cost as R gets smaller.

Although non-monotonic, we observe that there is an
overall “convex” trend in the total cost with respect to the
capacity limit. That is, there is an “optimal” capacity level
which minimizes the total costs over the horizon. The op-
timal capacity level appears to increase as ω decreases. The
analysis of the total cost provides further managerial impli-
cations regarding capacity selection and use of undertime
options. Next, we discuss such issues.

The model and the solution procedures discussed herein
provide a manager with the tools to determine the opti-
mal capacity level in the presence of warm/cold processes,
as well. For example, from Fig. 1, it is easy to see that an

economically rational manager would choose R = 72 as
the optimal capacity level when ω = 0.35 for the numeri-
cal setting considered. (However, we should point out that
this conclusion is based on a single known sample path of
demands and cannot be generalized to a more realistic sce-
nario of stochastic demands. For brevity, in our discussion
herein, we consider such robustness issues to be outside the
scope of our analysis, which can be addressed in a sim-
ulation context.) Yet, the question remains: what are the
implications of suboptimal capacity decisions? In particu-
lar, what happens if the manager ignores the availability of
the undertime option?

We consider two such scenarios. In the first case, the man-
ager restricts warm process decisions solely to instances in
which the production quantity in a period is equal to the
capacity limit; that is, the manager sets Q = R and chooses
the best capacity level accordingly. Note that the manager is
aware of the advantages of keeping a process warm but be-
haves as if ω is prohibitively high (⇒ Q̂ ≥ R). In the second
case, the manager totally ignores the possibility of keeping
the process warm and bases the capacity selection decision
on the solution of the classical (uncapacitated) problem.
Specifically, in this case, the best capacity is selected to equal
the maximum production quantity obtained in the Wagner-
Whitin solution. In Table 2, we present a representative
sample of our findings where R∗

opt, R∗
1 and R∗

2 are, respec-
tively, the optimal and the best capacity levels selected for
the first and second cases. We let �i% (for i = 1, 2) denote
the respective percentage deviations in total costs with re-
spect to the total cost under the optimal capacity decision,
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Dynamic lot sizing problem for a warm/cold process 1039

Table 2. Impact of capacity selection policies on total costs (medium demand, K = 75)

ω

0 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

�1 1389.6 287.5 90 40.8 19.5 9.3 5.6 3.3 2 1.1 0.3
�2 0 82.8 116.8 135.5 151.4 169.2 127 113.5 101.5 90.1 78.5

and compute it as follows:

�i% =
(
TCR=R∗

i
− TCR=R∗

opt

)
TCR=R∗

opt

× 100 (8)

We find that R∗
1 < R∗

opt < R∗
2 for all ω. This implies that

ignoring potential benefits of warm processes results in se-
lecting a capacity level higher than the optimal schedule ne-
cessitates, yielding a lower equipment utilization rate and
possibly lower rates of Return On Investment (ROI). On the
other hand, imposing the warm-only-if-at-capacity policy
results in selecting a capacity level lower than the optimal.
Thus, it yields a higher equipment utilization rate and possi-
bly higher ROI. This apparent efficiency may be the reason
behind the popularity of this policy among practitioners.
However, the ensuing tightness of capacity, in fact, increases
the total operating costs incurred. Operating with R∗

1 re-
sults in an excessively large cost differential for low unit
warming costs; as ω increases, the differential vanishes in
the limit, as expected. The cost differential monotonically
decreases over ω. When R∗

2 is used instead of R∗
opt, interest-

ingly, the cost differential exhibits a concave behavior over
ω. It increases very steeply for low ω, is concave over a large
range of unit warming cost, and decreases slowly for large
ω. Thus, total ignorance of the undertime option results in
the worst performance (more than 100% deviation from the
optimal) over a broad range of parameter values. Its con-
cave behavior also implies that management would most
benefit from the use of the undertime option in capacity se-
lection decisions for moderate values of the unit warming
cost.

In conclusion, the presence of warm/cold processes im-
pacts total operating costs not only by yielding differently
structured production schedules compared to the classical
settings, but also through optimal capacity selection deci-
sions taking into account the undertime option.

5. Conclusions and future work

In this work, we have considered lot sizing decisions for a
process which can be kept warm for the next period at an ad-
ditional linear cost if the production quantity in the current
period is at least a positive threshold amount. We have es-
tablished the structure of the optimal production schedule
and the conditions under which a forward polynomial-time
solution is possible. As a special case, we also presented a
linear time solution. Through a numerical study, we have

also investigated the impact of a warm process option on the
required capacity for a given stream. Although our focus
has been to obtain the optimal solution, the related issue of
heuristic solutions remains an open research area.

We can conjecture that forward heuristics, in general,
would perform relatively better for the case where kt = 0,
since, in this case, a forward optimal solution is possible. In
an unreported simulation study, we examined the perfor-
mance of two forward heuristics (suggested by one of the
anonymous referees) based on the principle of spreading
over periods via the warm process threshold of the uncon-
strained Wagner-Whitin solution. In both heuristics, the
warm process option is ignored. In one of the heuristics,
the Wagner-Whitin solution is obtained by using the warm
setup cost value as the setup cost throughout the horizon.
In the other, the heuristic solution is obtained by assum-
ing the setup cost as the cold setup cost originally given in
the problem. As such, both heuristics are simple heuristics
and performed very poorly. However, more sophisticated
heuristics may be developed which generate solutions in a
forward manner using the structure of optimal schedules
(Corollary 3) and a stopping rule in the same spirit of the
heuristics available for the (un)capacitated dynamic lot siz-
ing problem. Development of such approximate solutions
for a warm/cold process constitutes an interesting research
area. In addition, metaheuristics such as tabu search and
simulated annealing are also interesting venues of research.

Furthermore, most real-world problems exhibit demand
uncertainty Hence, the robustness of the solutions to such
changes in demands is also important. Our structural re-
sults indicate that the option of keeping the process warm
enables longer production series vis a vis the CLSP setting.
One can conjecture that a warm/cold process would be
less susceptible to the “nervousness” phenomenon, since
production is kept going over a number successive periods.
However, it is not possible to say a priori which type of
heuristic would be the best and it is another fertile research
topic.

We intend to visit these issues in our future work.
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Appendices

Appendix A: An illustrative example

We consider the following example setting: ct = c, ht =
h, ωt = ω, Kt = K, kt = k, Rt = R and Qt = Q for t =
1, · · · , N. We set N = 25, c = 0, h = 1, ω = 0.85, K = 15,
k = 0, R = 10 and Q = 7. The demand over the problem
horizon is given by D = {4, 2, 4, 4, 3, 7, 9, 1, 6, 4, 10, 2, 1,
5, 8, 2, 9, 2, 5, 2, 7, 3, 4, 5, 8}.

Below, we present every step of a forward solution. At
every step, we consider a T-period problem (i.e., a problem
with the horizon length of T starting from the very first pe-
riod), and generate a set of possible production schedules of
this T-period problem by imposing the condition yt−1 = 0
for a period t (1 ≤ t ≤ T). In Fig. A1, each row corresponds
to such a schedule. We compute the cost of each suggested
schedule such that the cost of the periods 1 through t − 1 is
the optimal cost obtained from the (t − 1)-period problem,
and the cost of the periods t through T computed afresh.
The notation (∗) denotes the schedule that yields the lowest
cost as the optimal schedule for the T-period problem.

Note that, since k = 0, we only need to consider the pro-
duction sequences that consist of a single production series.
Further note that, we directly use Theorem 4 in construct-
ing the alternative schedules that need to be considered in
an optimal solution.

Note that in this illustrative example, in period 7, the par-
tition condition in Theorem 5 part (ii) is satisfied; hence, a
partition occurs in period 7. The production schedule ob-
tained up to period 6 in the seven-period problem remains
the same for any problem with a longer horizon length.
In this example, in the optimal solution, there are eight
production series. The solution is as follows: X ={[6, 0];
[7, 4, 0]; [7, 9, 7, 4, 0]; [10, 3, 0]; [7, 8, 0]; [9, 9, 0, 0]; [7, 7, 0];
[7, 6]}. The optimal solution to the full problem is also de-
picted in Fig. A2 along with the demands indicated by a
diamond mark.

Appendix B: Forward solution DP algorithm

We retain the labels for the corresponding system param-
eters in the model but switch to a vector notation, such
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Dynamic lot sizing problem for a warm/cold process 1041

Fig. A1. The production schedules.

as D[·], etc. Furthermore, we introduce the following new
notation: s[·] is the setup cost actually incurred, Z[i][j]
is defined as f j−1

1 (1, 0) + f i
1(1, 0) and is an intermediate

variable, Z[i][best [i]] is defined as f i
1(1, 0) and denotes

the cost of an optimal production policy for the i-period
problem, and π[i][j][t ] is the production quantity in period
t when a cold setup is forced in period j for an i-period
problem. The algorithm is as follows:

Z[·][·] = 0
π[·][·][·] = 0
best[·] = 1
for i ← 1 to n {
for j ← 1 to i {
for t ← 1 to j − 1 {

π[i][j][t ] = π[j − 1][best[j − 1]][t ] }
if (π[i][j][j − 1] < Q[j − 1]) then setup = K[j];
else setup = ω [j − 1] × (R[j − 1] − π[i][j][j − 1])

s[j] = 0
for m ← j to i {
F = ∑i

r=j D[r ]− ∑m−1
r=j π[i][j][r ]

H = ∑m
r=j D[r ]− ∑m−1

r=j π[i][j][r ]
E[m] = ( max (Q[m], H)∗(c[m] + h[m] − c[m + 1]

− ω[m])+ω[m]∗R[m])/(c[m] + h[m] − c[m + 1])
if (F ≤ E[m]) then π[i][j][m] = F
else {if (H < Q[m]) then π[i][j][m] = Q[m]

else π[i][j][m] = H }
if (π[i][j][m] ≥ Q[m]) then s[m + 1] = ω[m] ∗ (R[m] −

π[i][j][m])
else if (π[i][j][m] > 0) then s[m + 1] = K [m + 1]
else s[m + 1] = 0

}
Z[i][j] = Z[j − 1][best[j − 1]] + setup+ ∑i

r=j(s[r ]+(c[r ] ·
π[i][j][r ])+ h[r ] · ∑r

w=j(π[i][j][w] − D[j]))
}
best[i] = i
for l ← 1 to i {

if Z[i][j] < Z[i][best[i]] then best[i] = l }
}

Appendix C: Proofs

Proof of Proposition 1. The proof is similar to that in Bi-
tran and Yanasse (1982) and consists in defining a new in-
ventory variable It−1 = yt−1 − maxτ=0,...,N−t{0,

∑t+τ
j=t (Dj −

Rj)} and rewriting the objective function in terms of the
new inventory variable. The new objective function dif-
fers from the original one only by a constant, hence the
result. �

Proof of Theorem 1. Suppose the contrary (i.e., zt ×
xt × [yt−1 − Dt ]+ > 0). That is, suppose a proposed pro-
duction plan suggests xt−1 < Qt−1, [yt−1 − Dt ]+ > 0, and
xt > 0. Since the production in period t − 1 is less
than the warm process threshold, the process will be
cold in period t . As in the classical lot sizing problem,
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1042 Toy and Berk

Fig. A2. Illustrative example: demand pattern and optimal production schedule.

the solution can be improved; hence, it cannot be op-
timal. Therefore, whenever zt = 1 production is done
if and only if the starting inventory is strictly less
than the demand for that period. With zt = 0, how-
ever, there is no such restriction on the production plan;
hence, the optimal production plan satisfies the stated
condition. �

Proof of Proposition 2. With respect to problem (P),
we only change the demands in periods u and v − 1 in
(P′). From Proposition 1, feasibility is ensured for problem
(P′). In both problems, under the same production sched-
ule, the net demands in periods u through v − 1 are the
same. Therefore, the costs are also the same. Hence, the
result. �

Proof of Lemma 1. (i) Consider the production series
�uv and let m be the last period with production within
this series. First, suppose u ≤ t = m = v − 1. In this case,
xt = [Dt − yt−1]+ and, by definition, Et > [Dt − yt−1]+;
therefore, xt /> Et . Hence, the result. Next, suppose
u ≤ t ≤ m < v − 1 or u ≤ t < m = v − 1. We will prove by
contradiction. In particular, we will show that any produc-
tion series that violates the above result can be improved
and, hence cannot be optimal. Suppose that series�uv is fea-
sible but violates the above lemma, such that Rt ≥ xt > Et
for some t (u ≤ t ≤ m) where t = max{i : xi > Ei}. Con-
sider another production series � ′

uv such that � ′
uv =

{x′
u = xu, . . . , x′

t−1 = xt−1, x′
t = Et + e0, x′

t+1 = xt+1 + e1,

x′
t+2 = xt+2 + e2, . . . , x′

v−1 = xv−1 + ev−1−t} where x′
t <

xt , 0 ≤ ei := x′
t+i − xt+i ≤ si := [min(Rt+i, E′

t+i) − xt+i]+

for 1 ≤ i ≤ v − 1 − t and
∑v−1−t

i=1 ei = (xt − x′
t ). (Through-

out in our proofs, all entities with notation (′) retain their

original definition and indicate recomputation for a new
sequence.)

Note that in this new production series, for t + 1 ≤
i ≤ v − 1, y ′

i = yi − (xt − x′
t ) + ∑i

j=t+1(x′
j − xj), hence, y ′

i
≤ yi; therefore, [Di − y ′

i−1]+ ≥ [Di − yi−1]+ implying E′
i ≥

Ei. Furthermore, due to the construction of the new series,
x′

i ≤ E′
i . Let � denote the cost difference between produc-

tion series � ′
uv and �uv. Then, � = −(xt − x′

t ) (ct + ht −
ωt ) + ∑v−1

i=t+1 ci (x′
i − xi) + ∑v−1

i=t+1 hi (y ′
i − yi) − ∑m

i=t+1 ωi

(x′
i − xi) + ∑v−1

i=m+1(ki + ωi (Ri − x′
i )δ

′
i+1) δ

′
i where δ

′
i is a

binary variable indicating whether or not production is
done in period i. Noting that (xt − x′

t ) = ∑v−1
i=t+1(x′

i −xi)
and y ′

i = yi − (xt − x′
t ) + ∑i

j=t+1(x′
j − xj), and arranging

the terms, we get � = − ∑v−1
i=t+1 [(x′

i − xi) (ct + ht − ωt +∑i−1
j=t+1 hj)] − ∑v−1

i=t+1 (x′
i − xi)

∑v−1
j=i hj+

∑v−1
i=t+1 ci (x′

i −
xi) − ∑m−1

i=t+1 ωi (x′
i −xi) −ωm (x′

m − xm) δ
′
m+1 + ∑v−1

i=t+1 hi∑i
j=t+1 (x′

j − xj) + ∑v−1
i=m+1 (ki + ωi (Ri − x′

i ) δ
′
i+1) δ

′
i . Us-

ing the equivalence between
∑v−1

i=t+1 (x′
i − xi)

∑v−1
j=i hj and∑v−1

i=t+1 hi
∑i

j=t+1 (x′
j − xj), we finally obtain:

� =
v−1∑

i=t+1

[
(x′

i − xi)

(
ci −

(
ct + ht − ωt +

i−1∑
j=t+1

hj

))]

−
m∑

i=t+1

ωi
(
x′

i − xi
)
δ

′
i+1 +

v−1∑
i=m+1

(ki + ωi(Ri − x′
i )δ

′
i+1)δ

′
i .

(9)

If
∑m−t

i=1 si ≥ xt − Et , then one can construct a feasible
series � ′

uv such that m′ = m (where m′ is defined as is m for
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Dynamic lot sizing problem for a warm/cold process 1043

the series � ′
uv), ei = 0 for m − t + 1 ≤ i ≤ v − 1 − t and∑m−t

i=1 ei ≥ xt − Et with e0 ≤ 0. Then, � = ∑m
i=t+1[(x′

i −
xi)(ci − ωiδ

′
i+1 − (ct + ht − ωt + ∑i−1

j=t+1 hj))]. Since ci −
ωiδ

′
i+1 < (ct + ht + ∑i−1

j=t+1 hj) due to the assumed mar-
ginal production cost structure and (x′

i − xi) ≥ 0 for
all i ≥ t + 1, we have � < 0. Thus, � ′

uv with x′
t ≤ Et

yields a lower cost than �uv; therefore, �uv cannot be
optimal. If, however,

∑m−t
i=1 si < xt − Et , one can construct

another � ′
uv such that m′ = m + 1, e0 = max(Qt , [Dt −

yt−1]+) − Et , ei = si for 1 ≤ i ≤ m − t , and em+1−t =
[((kt+1+Rtωt − max(Qt , [Dt − yt−1]+)ωt )/(ct + ht − ct+1))
+q] where q = xt − Et − ∑m−t

i=1 ei, and ei = 0 for
m − t + 2 ≤ i ≤ v − 1 − t . Note that this series is feasible
since em+1−t ≤ Rm+1 due to non-decreasing capacities.
(Also, note that we construct a series such that e0 ≤ 0 in
this case as well.) Then,

� =
m−1∑

i=t+1

[
(x′

i − xi)
(
ci − ωi −

(
ct + ht − ωt +

i−1∑
j=t+1

hj

))]

+ (x′
m − xm)

(
cm −

(
ct + ht − ωt +

m−1∑
j=t+1

hj

))

+ km+1 + (Rm − x′
m)ωm

+
([

kt+1 + Rtωt − max(Qt , [Dt − yt−1]+)ωt

ct + ht − ct+1
+ q

]

×
[

cm+1 − ct + ωt −
m∑

j=t

hj

])
.

We need to consider the two possible values that s ′
m−t may

take on. First, suppose that s ′
m−t = Rm − x′

m, which implies
that x′

m = Rm. Then, due to the assumed cost structure,
� < 0. Next, suppose that s ′

m−t = E′
m − x′

m. Then, x′
m =

E′
m; using the defining expression for E′

m, it is again easy to
show that � < 0. Hence, � ′

uv yields a lower cost than �uv;
therefore, �uv cannot be optimal. If the newly constructed
� ′

uv has x′
m+1 ≤ E′

m+1, we conclude our proof. Otherwise,
we carry the same argumentation over periods m + 1 and
onward successively. Hence, the result.

(ii) Follows immediately from part (i). �
Proof of Lemma 2. We will prove by contradiction. Sup-

pose a feasible production series �uv where for some t , xt =
Rt (> Qt ), 0 < xt+1 < Rt and yt > 0. Since yt > 0, produc-
tion in period t covers some of the demands in periods later
than t ; therefore, one can construct another feasible produc-
tion series, � ′

um′v,r ′ = {x′
u = xu, · · ·, x′

t−1 = xt−1, x′
t = Rt −

e, x′
t+1 = xt+1 + e, x′

t+2 = xt+2, · · ·, x′
v−1 = xv−1} with e >

0. (In all of our proofs, all entities with notation (′) re-
tain their original definition and indicate recomputation
for a new sequence.) Clearly, � ′

uv yields a lower cost due to
the assumed marginal production cost structure. Hence, the
result. �

Proof of Lemma 3. We will prove by contradic-
tion. First, suppose a feasible production series � ′

uv

such that x′
t > max(Qt , [Dt − y ′

t−1]+), 0 < x′
t+1 < Rt+1 and

y ′
t+1 ≥ 0. Let qt = min([Rt+1 − x′

t+1], [x′
t − max(Qt , [Dt −

y ′
t−1]+)]). Then, there is a feasible series �uv such that

xt = x′
t − qt , xt+1 = x′

t+1 + qt , yt+1 = y ′
t+1 and x′

i = xi for
all other i. If [Rt+1 − x′

t+1] < [x′
t − max(Qt , [Dt − yt−1]+)],

we have xt+1 = Rt+1 and xt > max(Qt , [Dt − yt−1]+); oth-
erwise, xt = max(Qt , [Dt − yt−1]+) and xt+1 < Rt+1. In ei-
ther case, �uv yields a lower cost due to the assumed
marginal production cost structure; therefore, � ′

uv can-
not be optimal. Next, suppose a feasible production se-
ries � ′

uv such that x′
t > max(Qt , [Dt − y ′

t−1]+), x′
t+1 = Rt+1

and y ′
t+1 = 0. This implies that x′

t+1 = [Dt+1 − y ′
t ]

+ = Dt+1
from the demand structure that Dt+1 ≤ Rt+1. If so, y ′

t = 0
and, thereby, x′

t = [Dt − y ′
t−1]+ which, jointly, contradict

x′
t > max(Qt , [Dt − y ′

t−1]+). Hence, the result. �
Proof Theorem 2. For convenience, we will prove in re-

verse order.
(iii) Follows from Lemma 1 and Corollary 1 part (ii).
(ii) Note t = m − r . Due to the no shortages assump-
tion,

∑m
i=m−r xi + ym−r−1 = ∑v−1

i=m−r Di. From part (iii)
we have xi = Ri for m − r + 1 ≤ i ≤ m. Hence, xm−r =∑v−1

i=m−r Di − ym−k−1 − ∑m
i=m−r+1 Ri. Invoking Lemma 1,

we have the result.
(i) u ≤ t ≤ m − r − 1. By definition t is an intermediate
period; therefore, xt </ max(Qt , [Dt − yt−1]+). First con-
sider t = m − r − 1. From part (ii), xt+1 = ε < Rt+1. Since
xt+1 �= Rt+1, from Lemma 3 xt /> max(Qt , [Dt − yt−1]+).
Hence, the result. Next consider t = m − r − 2. If xt+1 <

Rt+1, the arguments for period m − r − 1 also hold. If, how-
ever, xt+1 = Rt+1, from Corollary 1 part (i) yt+1 = 0, since
xt+2 = ε (from Theorem 2 part (ii) with t + 2 = m − r ).
Since xt+1 = Rt+1 and yt+1 = 0, from Lemma 3, xt />

max(Qt , [Dt − yt−1]+). Inductively, the argumentation can
be carried out for every period until t = u. Hence, the
result. �

Proof Theorem 3. (i) First consider a feasible produc-
tion sequence Suv, in an optimal plan, consisting of two se-
ries such that Suv = �uτ−1|0,yτ−1 ∪ �τv|yτ−1,0. By definition,
yτ−1 > 0. Furthermore, let m1 and m1 − r1 + 1 denote, re-
spectively, the latest period in which production is done
and the earliest period in which capacitated production is
done in series �uτ−1|0,yτ−1 , and let m2 and m2 − r2 + 1 de-
note, respectively, the latest period in which production is
done and the earliest period in which capacitated produc-
tion is done in series �τv|yτ−1,0. Suppose that �τv|yτ−1,0 is an
uncapacitated production series, i.e.,

∑m2
i=τ (Ri − xi) > 0. It

is easy to show that a new series � ′
τ t2|y′τ−1,0

constructed such
that x′

m2−r2
= xm2−r2 + ε and y ′

τ−1 = yτ−1 − ε while keeping
everything the same improves the cost; hence, Suv cannot
be optimal. One can carry on this construction until either∑m2

i=τ (Ri − x′
i ) = 0 or y ′

τ−1 = 0.
If with the new series � ′

τv|y ′
τ−1,0

, we end up with y ′
τ−1 > 0

under
∑m2

i=τ (Ri − x′
i ) = 0, then, the sequence consists of one

non-capacitated and one capacitated series. If we end up
with y ′

τ−1 = 0 under
∑m2

i=τ (Ri − x′
i ) = 0, then period τ is a
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regeneration period which implies that there are two pro-
duction sequences such as S′

uτ and S′
τv, and each of these

sequences consists of one series where � ′
uτ−1|0,0 is uncapac-

itated production series and � ′
τv|0,0 is capacity-constrained

production series. A similar conclusion is drawn if y ′
τ−1 = 0

but
∑m2

i=τ (Ri − x′
i ) �= 0 under the new construction of series,

as well, in which both of the series are uncapacitated. Hence,
a production sequence which comprises of two uncapaci-
tated series cannot be optimal.

For the production sequences that comprises more than
two series, we can apply the above argument to the last unca-
pacitated production series and the immediate preceeding
series.

Hence, the result.
(ii) Proof follows immediately from the new series construc-
tion described in part (i). �

Proof of Corollary 4. Follows from Proposition 2.1 in
Bitran and Yanasse (1982) when zt = 1. �

Proof of Theorem 4. (i) We will prove by contradiction.
Consider the series �uv|yu−1,yv−1 with yu−1 > 0 and yv−1 = 0.
By choosing yv−1 = 0, we start our analysis with the last
series in a production sequence by definition. From Theo-
rem 3 this series is a capacitated production series due to
the positive beginning inventory, yu−1. Let m be the latest
period in which production is performed in the series and,
let j be the latest production period (in an earlier series) be-
fore u. Consider constructing another series � ′

uv|yu−1−ε,yv−1
,

i.e., producing ε(> 0) units in period m + 1 and decreasing
the initial inventory in period u by the same amount. The
newly constructed series results in a cost difference (old cost
minus new cost) of at least ([cj + ∑m

i=t hi − cm+1]ε − km+1).
(Note that this difference is only a conservative lower bound
because producing ε units less in period j may also result
in further cost reductions due to changes within that pro-
duction series.) Since kt = 0 for all t , due to the assumed
cost structure, the difference is positive implying that the
change in the series structure yields a lower cost. Hence,
the original series cannot be optimal. In a similar fash-
ion, one can continue the cost reduction until one gets
yu−1 = 0. If there are production series prior to the one
under consideration in the sequence in which the initial in-
ventory level is positive, starting with the last one of such
series, we apply the same argument to them, until we end
up with all series in the original sequence with zero begin-
ning and ending inventories. Hence, in an optimal plan, if
there is a cold setup in period t , i.e., (zt × xt > 0), then
yt−1 = 0; thus, every period in which a cold setup is done

is a regeneration point. Thus, every series is a sequence.
Moreover, when km+1 = 0, Em in Lemma 1 reduces to ((max
(Qm, [Dm−yt−1]+)(cm +hm− cm+1− ωm) + Rm · ωm)/ (cm +
hm − cm+1)) which implies that Em ≤ Rm. From Corollary
1 part (iii) there is no capacitated production in the given
series, and the production schedule is the one given in Corol-
lary 3 part (ii). Hence, the remainder of the result.
(ii) Follows immediately from Theorem 1 since we have es-
tablished above that at a cold setup period, yt−1 = 0. �

Proof of Theorem 5. (i) If the demand in period t is pos-
itive, the solution to the t-period problem implies that a
setup be done in that period to satisfy the demand. Since
xt−1 < Qt−1, the setup will be a cold one. If the demand in
period t is zero, then there will be no production due to the
marginal production cost structure over the horizon. In ei-
ther case, the production decision is independent of the deci-
sions in periods 1 through t − 1. Hence, the proposed result.

(ii) The solution to the t-period problem implies that
production in period t be done with a warm setup. From
yt−1 = 0, we have that the demand in period t must be
supplied by the production in period t . Furthermore, from
Corollary 1 part (iii), Et < Rt implies that demands in the
future for longer horizons can, at the earliest, be supplied by
the production in period t . Hence, a longer problem can be
partitioned at period t as proposed. (Note that if the warm
setup condition is eliminated, it is easy to design problems
where the production plan in periods prior to t may change
as the horizon of the problem is extended, and, thereby,
part (ii) no longer holds.) �
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