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Bipolaronic phase in polar semiconductor quantum dots:
An all-coupling approach
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Abstract

An all-coupling variational calculation has been performed to explore the formation and stability of a bipolaron in a polar semiconductor
quantum dot. It has been shown that quantum confinement in general leads to a broadening of the bipolaron stability region. It has been furthermore
shown for the first time that stable bipolarons can exist in realistic parabolic quantum dots of polar semiconductors like GaAs, CdS, CdTe and
CdSe if they are fabricated in certain range of sizes.
© 2006 Elsevier B.V. All rights reserved.
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Much effort has lately gone into exploring the polaronic ef-
fects in quantum dots (see [1] and references therein). It has
been shown that electron-longitudinal-optical (LO) phonon in-
teraction has pronounced effects on the electronic properties of
quantum dots. Several investigations have also been made to
study the formation and stability of bipolarons in a quantum
dot. A bipolaron is a bound pair of two polarons with a common
cloud of virtual phonons. Bipolarons are known to be impor-
tant in semiconducting glasses in which diamagnetism is a rule
rather than an exception [2]. The discovery of high temperature
superconductivity in CuO2 based layered ceramic materials [3]
and subsequent proposal of bipolaronic mechanism [4] for pair-
ing has made the bipolaron problem most fascinating in recent
years. In the case of quantum dots, the bipolaron problem was
first investigated by Mukhopadhyay and Chatterjee [5] and it
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was shown that in the strong coupling limit the confining po-
tential of the quantum dot reduces the stability of the bipolaron.
Essentially similar results were also observed in [6]. Pokatilov
et al. [7] have investigated the stability of bipolarons in a spher-
ical quantum dot with parabolic confinement by applying Feyn-
man’s variational principle and calculated the bipolaron binding
energy, number of phonons in a bipolaron cloud and the bipo-
laron radius. They have shown that in a quantum dot bipolaron
states are possible even for intermediate values of the electron-
phonon coupling constant, α (α ∼ 2). They have also shown
that the binding energy passes through a maximum for a certain
value of the confinement length. Recently, Senger and Ercelebi
[8] have made a very interesting investigation on the stability
of a bipolaron in spherical quantum dots using a single Hamil-
tonian and a variational method and have obtained a broader
range of stability than shown in [5]. Because of the conflicting
conclusions obtained by different groups, the bipolaron prob-
lem in a quantum dot has of late become a very interesting
problem and has thrown up a new challenge to the theorists. It is
therefore worthwhile to take up this problem and make a thor-
ough investigation. The purpose of the present Letter is to make
an attempt in this direction. Furthermore, to our knowledge, no
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investigation has so far been reported on the bipolaronic stabil-
ity in realistic quantum dots. In the present Letter we shall show
for the first time that stable bipolarons can indeed form in re-
alistic quantum dots of polar semiconductors like GaAs, CdS,
CdSe and CdTe. We shall also show that bipolarons cannot form
in an InSb quantum dot.

In [5] the analysis was based on the assumption that in the
unbound phase there exists no interaction between the two in-
dividual polarons which (though a reasonable approximation in
bulk systems) is certainty not true in quantum dot structures.
In the present Letter we therefore include a Coulomb corre-
lation term in the two-polaron energy in the unbound phase
while defining the bipolaron binding energy. Furthermore, our
present calculation is based on the Lee–Low–Pines–Huybrechts
(LLPH) method [9] and is therefore valid for the entire range of
the coupling constant and arbitrary confinement. We shall show
that inclusion of Coulomb correlation energy in the unbound
phase brings in a dramatic and qualitative change in the results.

The Hamiltonian for a system of two conduction band elec-
trons of mass m, each interacting through the Coulomb in-
teraction in an N -dimensional polar semiconductor quantum
dot and also interacting with the dispersionless LO phonons of
frequency ω0 of the system can be written in Feynman units
(h̄ = m = ω0 = 1) [10] as
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where VN is the volume of the N -dimensional crystal and α is
the dimensionless electron–phonon coupling constant. We seek
a variational solution of Eq. (1) for a singlet bipolaron within
the framework of the LLPH method and choose a trial wave
function of the form
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where a and fq are variational parameters, |0〉 is the zero-
phonon state, |ζ 〉 is the antisymmetric spin function for the two
electrons corresponding to the singlet pairing and |Φ(�r1, �r2)〉 is
a symmetric two-electron state which we choose as
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where λ and b are variational parameters. The variational en-
ergy is given by

(5)EBP = 〈ΨBP|H|ΨBP〉
which on minimization with respect to f ∗

q yields
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where we have assumed
∑

�q �q|fq |2 = 0 for a symmetric dot.

Defining λ2
2 = λ2 − b and t2 = λ2/λ2

2 = λ2/(λ2 − b) as two
new variational parameters in place of λ and b, we finally get
the bipolaron energy
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which has to be minimized numerically with respect to λ2, a

and t . We are interested here in the case N = 3. When a = 0 we
get back the Landau–Pekar bipolaron ground state energy for a
quantum dot [5] and when ω = 0 we have the bulk bipolaron
energy results obtained by Chatterjee and Sil [12].

To determine the bipolaron binding energy we need to ob-
tain the single polaron energy within the same approximation.
The ground state polaron energy for a three-dimensional quan-
tum dot with parabolic confinement calculated using the LLPH
method is given by [13]
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where μ and a′ are the variational parameters to be obtained
numerically.

The bipolaron binding energy for a quantum dot may be de-
fined as

(9)BBP = (2Ep + Ec) − EBP

where Ec is the Coulomb interaction energy between the indi-
vidual polarons in the unbound phase. It is reasonable to assume
that in the unbound phase the Coulomb correlation would keep
the two polarons as much away from each other as possible to
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Fig. 1. BBP (in Feynman units) as a function of the confinement length l for
different values of the electron–phonon coupling constant α and for η = 0.5.

Fig. 2. BBP (in Feynman units) as a function of the confinement length l (in
Feynman units) for different values of α and for η = 0.01. The inset shows the
variation of BBP for α = 10.0.

lower the energy. So we assume Ec = β/l. The bipolaronic sta-
bility criteria are now obtained by demanding BBP > 0. The
binding energy of an all-coupling bipolaron is found to depend
on three parameters η, l and α.

In Fig. 1 we show the variation of the bipolaron binding
energy BBP as a function of l for several values of α and
for η = 0.5. In Fig. 2 we show the behaviour for the case of
η = 0.01. Comparison with the results of [5] shows that inclu-
sion of Coulomb correlation between the individual polarons in
the unbound phase leads to an enormous increase in the bipo-
laron binding energy at smaller values of confinement length
l. As a result, it is clear that even for smaller values of α,
there exist regions in which bipolaronic state may be possible.
Fig. 3. lc (in Feynman units) as a function of the electron–phonon coupling
constant α for different values of η.

It is well known that for weak electron–phonon coupling, stable
bipolarons cannot form in bulk systems. However, we find here
that as the confinement length is reduced below a certain value
(depending on the coupling constant) the bipolaron binding en-
ergy starts increasing, attains a maximum and then decreases
very fast and eventually below a certain confinement length a
bipolaron breaks up into two individual polarons. Similar be-
haviour was also observed by Pokatilov et al. [7]. Thus we can
define two critical confinement lengths in general, lc1 and lc2

for each value of α. lc1 may be called the lower critical confine-
ment length and lc2 the upper critical confinement length. BBP
is positive if the confinement length l is between lc1 and lc2 .
The inset in Fig. 2 indicates that for α = 10, as l increases and
becomes large, the binding energy asymptotically saturates to
a constant value which is essentially the strong-coupling bulk
limit. Thus, when α is very large, lc2 is of the order of the
size of the system. As α decreases, lc2 also decreases, but lc1

increases (although not so rapidly) and consequently the bipola-
ronic phase shrinks and below a certain critical value of α (αc)

the bipolaronic phase vanishes and therefore below this value
of α, stable bipolarons cannot exist. For example, we find that
for η = 0.875, αc = 0.037. This has been shown in Fig. 3 from
which we can also find, given the value of η and α, the range
of the confinement length within which one can expect to ob-
serve stable bipolaronic states in a quantum dot. Below a certain
critical confinement length one cannot have the formation of
bipolarons. One can qualitatively understand this behaviour in
quite a simple way. When electron–electron separation is of the
order of the polaron size or larger, then the bipolaron formation
depends on whether the phonon-mediated attractive interaction
overcomes the Coulomb repulsion or not. However when the
size of the quantum dot is smaller than a certain critical value
(which is close to zero), the electron–electron separation will
also be very small, and in this limit the direct Coulomb repul-
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Fig. 4. BBP (in meV) as a function of the confinement length l (Å) for a few
real polar semiconductor quantum dots.

sion becomes infinitely large, although the phonon-mediated at-
tractive interaction still remains finite and thus bipolaron bind-
ing does not take place howsoever large the value of α may be.
In this limit a bipolaron breaks up into individual polarons.

We have finally applied our theory to realistic quantum dots
of polar semiconductors like GaAs, CdTe, CdSe, CdS and InSb.
We have shown the bipolaron binding energies in these quan-
tum dots in Fig. 4. It is clearly evident that bipolarons can exist
in several semiconductor quantum dots if we prepare them in
appropriate sizes. In CdS the bipolaron seems to be most sta-
ble amongst the materials we studied. In GaAs the bipolaron
is barely stable while we also find that bipolarons cannot exist
in InSb quantum dot. We believe it is a very interesting theo-
retical observation and should be tested experimentally. One of
the possible ways to verify this theoretical prediction would be
to perform a magneto-optical experiment and determine the cy-
clotron mass which will tell us unequivocally the nature of the
quasiparticles in the system, i.e., whether they are individual
polarons or bound bipolarons. One can also perform tunneling
experiments in a quantum dot array wherefrom the charge of
the tunneling particles will shed light on the nature of the quasi-
particles. There could also be a few other experiments as well
to test the veracity of the present theoretical prediction. The
important point is that if the present prediction comes true, it
can have many useful implications, one of the most important
among them being the possibility of superconductivity in quan-
tum dots induced by Bose–Einstein condensation of bipolarons.
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