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We have calculated the plasmon dispersion relations in a doped double quantum well with and without 

exchange–correlation potential added to the effective potential of the system. The calculations were done 

for high and low doping densities by solving the Schrödinger and Poisson equations self-consistently. Our 

numerical results show that the exchange–correlation potential is quite important at high doping densities 

of donor impurities for plasmon dispersions at large wave vectors. On the other hand, the ratio of subband 

populations n
i
 to donor density N

D
 is more affected at low densities. 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

Double quantum well systems offer a useful model to understand tunneling-time of carriers through the 
barriers, and electron–electron interaction induced carrier relaxation of adjacent atoms in solids and non-
ideal gases which are known to be important processes in field-effect transistors (FET) [1], quantum well 
cascade lasers (QCL), and quantum well infrared photodetectors (QWIP). Intersubband electron–
electron interaction in symmetric and asymmetric double quantum well structures is theoretically studied 
by Marcos et al. [2, 3] using GW approximation with inelastic scattering rate in a two-subband model. In 
QCL and QWIP, while the intersubband inelastic relaxation turns out to be the primary rate-limiting 
scattering process, in the planar hot electron transistors with related two dimensional (2D) high speed 
devices, intra-subband relaxation due to electron–electron interaction is pointed out to be very impor-
tant. 
 In this work, we calculate the plasmon dispersion relations for the in-phase and out-of-phase modes in 
doped symmetrical double quantum wells comparing the effect of exchange–correlation potential. Our 
motivation comes from a number of recent studies addressing the plasmon dispersions in double quan-
tum well systems [4–7] and given the wide device applications [8–10] as mentioned above we would like 
to assess the importance of exchange–correlation effects in these structures. The composition of the 
system is designed from GaAs–GaAlAs structures. Barriers surrounding the wells were doped to inves-
tigate effect of the exchange–correlation potential. 
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 In the next section we briefly describe the theoretical method with which we calculate the plasmon 
dispersions. Sample parameters of the system are also given in the same section. Our numerical results 
are presented and a discussion is followed in Section 3. 

2 Theory 

Quantum wells and barriers used in this work are chosen to be GaAs and Ga0.67Al0.33As, respectively. 
Two different doping (donor) densities were used to compare the effect of exchange–correlation poten-
tial on the plasmon dispersion relations. A small region (spacer) between wells and doped barriers, at the 
barrier side, is not doped to prevent positive (donor) and negative (electron) charge interaction. One-
dimensional Schrödinger equation for carrier localization/growth direction is 
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and the effective potential is 
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where Vconf is the confining potential, V
H
 and Vxc are the Hartree and exchange–correlation potentials, 

respectively, and 
n

φ  are the subband wavefunctions. The Hartree and exchange–correlation potentials are 
obtained from the charge distribution n(z), such that 
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For the exchange–correlation potential we use the local-density approximation introduced by Hedin and 
Lundqvist [11] 

 xc

xc xc xc

d
,

d
V n

n

ε
µ εª = +  (4) 

where 
xc

µ  is the exchange–correlation part of the chemical potential and 
xc

ε  is the exchange–corre-
lation energy of  a uniform electron gas. Hedin and Lundqvist [11] write 

xc
µ  in terms of  the ex- 

change part 
x

µ  and a correlation enhancement factor β, so that 
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=  and A = 21 and B = 0.7734 
are numerical constants chosen to reproduce the correlation energy of the uniform electron gas. Combin-
ing the above we obtain 
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in which 
B

*
a  is the effective Bohr radius for electron effective mass m* and background dielectric con-

stant 
0
ε . The exchange–correlation potential is that given by a perturbative calculation which has been 

parameterized as an analytic expression in the local-density approximation [11]. Although there are a 
number of more recent exchange–correlation potentials being used in the Ref. [12], we found it suffi-
cient to use the above form at the densities considered in this work. 
 To calculate the plasmon dispersions, we need to solve for the poles of the polarization function (in 
matrix form) 

 H xc 0 1 0( , ) [1 ( ( ) ( )) ( , )] ( , ) ,q V q V q q qΠ ω Π ω Π ω
-

= - -  (6) 
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where VH(q) and V xc(q) are the static (q-dependent) Fourier transforms of the bare Coulomb interaction 
and the vertex function, respectively given as [13, 14] 
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The above matrix elements are calculated using the self-consistently determined subband wave functions 
( )

i
zφ . Finally, Π 0(q, ω) in Eq. (6) is the two-dimensional noninteracting polarizability. We follow the 

analyses of previous works [3, 5–7] to calculate the plasmon dispersions by solving for the zeros of the 
dielectric matrix ε(q, ω), with and without the exchange–correlation effects by including and omitting 
Vxc, respectively. Our numerical results are presented in the next section. 

3 Numerical results and discussion 

We consider two coupled symmetric quantum wells of width L = 100 Å and the barrier width is 
Lb = 25 Å. Doping spacers are taken to be 10 Å to prevent ionized donor-confined electron interaction. 
Fermi level is taken as 70 meV below the conduction band of barriers surrounded by the wells while the 
conduction band is flat. This value of Fermi level coincides with the binding energy of the donor atoms 
inside the wells [6]. The system is investigated under two different doping densities to obtain the sub-
band wavefunctions from which the plasmon dispersion (the localized donor charges are assumed to be 
smeared out uniformly in the plane) are calculated. We perform calculations with and without the ex-
change–correlation potential to assess its influence. 
 Conduction band profile of the quantum-well structure was obtained for different both doping concen-
trations solving the Poisson and Schrödinger equations self-consistently developed by the present authors 
[15]. Calculated band profile of the structure and their localized wavefunctions are shown in Fig. 1(a)–
(b) for  doping density  ND = 5 × 1018 cm–3.  While  Fig.  1(a)  does not  include the effect  of  exchange– 
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Fig. 1 Effective potential, Fermi energy (horizontal straight line), and subband profile of GaAs–AlGaAs double 

quantum well system for N
D
 = 5 × 1018 cm–3: (a) exchange–correlation effects are included in the self-consistent 

calculations, (b) no exchange–correlation effects. 
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Fig. 2 a) Potential profile of DQW and exchange–correlation potential for the doping density of donor atoms is 

1017 cm–3. Exchange–correlation potential is seen as doublet pockets in figure. (b) Potential profile of DQW and 

exchange–correlation potential for the doping density of donor atoms is 1018 cm–3. Exchange–correlation potential is 

seen as doublet pockets in the figure but centered at the origin of the coordinate axes. 

 

correlation potential, Fig. 1(b) presents the effect of exchange–correlation potential at the same doping 
density. Figure 2(a) shows the potential profile of double quantum wells  with the exchange correla-
tion potential obtained by the Eq. (5) for the 1017 cm–3 doping density of donor atoms while Fig. 2(b) for 
1018 cm–3. Confinement of the carriers in the wells increase when doping density increases but the ex-
change–correlation potential tends preventing of this effect by degreasing the slope of the triangular 
wells seen in Fig. 2(b). On the other hand, because the localization energy goes away from the Fermi 
energy level when doping density increases (solid line drawn at energy zero in figures) and also two 
dimensional carrier density depends on the 

F
( ),ε ε-  centered exchange–correlation potential increases 

the tunneling probability of carriers and thus increases two dimensional carrier density by going away 
below from the Fermi level. As a result of the explanations given above, exchange–correlation potential 
valleys shift to z = 0 region at the both sides. 
 Similarly, Fig. 3(a)–(b) displays the conduction band profiles of our structure with and without the ex-
change–correlation potential included in the calculations at the lower doping density of ND = 5 × 1017cm–3. 
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Fig. 3 Subband profile of GaAs–GaAlAs double quantum well system for N
D
 = 5 × 1017 cm–3: (a) exchange–

correlation effects are included in the self-consistent calculations, (b) no exchange–correlation effects. 
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Fig. 4 Electron density profiles with (dashed line) and without (solid line) exchange–correlation effects 

for N
D
 = 5 × 1017 cm–3. 
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Fig. 5 Electron density profiles with (dashed line) and without (solid line) exchange–correlation effects 

for N
D
 = 5 × 1018 cm–3. 
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Total carrier distribution in the symmetrical double quantum well is shown in Fig. 4(a)–(b) and 
Fig. 5(a)–(b) for these different doping densities. At high donor concentrations, an increasing charge 
density in the confining potential leads to more band bending and gives rise to the formation of a deeper 
quantum well (see Figs. 1–3 and Ref. [16] for detailed information on symmetric and doped double 
quantum well systems). 
 We present our results for the plasmon dispersions in the examined double quantum well structures  
in Figs. 6 and 7. We observe the usual “optical” branch corresponding to the in-phase oscillations of  
the electrons (upper curves) and “acoustic” branch corresponding to the out-of-phase oscillations (lower  
curves). Because of the finite barrier height and thickness, the acoustic branch actually has a gap at long 
wavelength (q → 0) which is hardly noticeable at the scale we present  them. With decreasing barrier  
height and thickness the tunneling effects become more appreciable and the plasmon gap grows to be-
come more significant. These results are consistent with the long wavelength behavior of plasmons in 
double quantum well systems [4–7]. As we are interested in the effects of exchange–correlation poten-
tial on the plasmon dispersions we concentrate on the large wave vector region. Figures 6 and 7 show 
plasmon dispersion relation for low and high doping densities of donor atoms. In these Figs. calculations 
with (solid lines) and without (dashed lines) the exchange–correlation (xc) potential are presented. As 
depicted in Figs. 5 and 6, xc effects are important for plasmon dispersion at higher doping densities. On 
the other hand, relative change in the subband population depending on the xc potential shows an oppo-
site  behavior.  Since the electron density  in  the i-th  subband 2
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Fig. 6 Plasmon dispersions with (solid line) and 

without (dashed line) exchange–correlation effects 

for N
D
 = 5 × 1017 cm–3. 

 

Fig. 7 Plasmon dispersions with (solid line) and 

without (dashed line) exchange–correlation effects 

for N
D
 = 5 × 1018 cm–3. 
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Fermi energy or equivalently the Fermi wave vector, to quantify this effect we have looked at the Fermi 
vectors for the two doping densities under investigation. For the first or second subband, the difference 
between the Fermi wave vectors with and without the xc potential is 6

F F
(xc) (nxc) 0.06 10k k- = ¥  cm–1 

for the doping density 5 × 1017 cm–3. The same quantity yields about 0.26 × 106 cm-1 for the doping den-
sity 5 × 1018 cm–3. 

4 Conclusions 

We have performed calculations to discern the effect of exchange–correlation potential on the plasmon 
dispersions of doped double quantum well systems and found that it is more significant in higher doping 
concentrations. This should be useful in device applications where plasmon effects are important for 
especially double quantum well field effect transistors at high density doping limits. 
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