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We consider an integrated routing and scheduling problem in hazardous materials transportation where
accident rates, population exposure, and link durations on the network vary with time of day. We mini-
mize risk (accident probability multiplied by exposure) subject to a constraint on the total duration of the trip.
We allow for stopping at the nodes of the network. We consider four versions of this problem with increasingly
more realistic constraints on driving and waiting periods, and propose pseudopolynomial dynamic program-
ming algorithms for each version. We use a realistic example network to experiment with our algorithms and
provide examples of the solutions they generate. The computational effort required for the algorithms is rea-
sonable, making them good candidates for implementation in a decision-support system. Many of the routes
generated by our models do not exhibit the circuitous behavior common in risk-minimizing routes. The en route
stops allow us to take full advantage of the time-varying nature of accident probabilities and exposure and
result in the generation of routes that are associated with much lower levels of risk than those where no waiting
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1. Introduction

Transportation of hazardous materials (hazmats) is a
problem that interests shippers, government agencies,
insurance companies, and the public at large, primar-
ily due to the possibility of accidents and the unde-
sirable consequences associated with them. Although
the number of hazmat accidents constitutes a very
small percentage of all traffic accidents, the few acci-
dents that result in a significant consequence (such
as a spill or a fire) attract considerable attention in
the national media. Public perception of risks associ-
ated with hazmats is influenced and amplified by the
involuntary and the potentially catastrophic nature
of hazmat accidents. There are a number of ways
to reduce the risks associated with hazmat transport,
such as improved driver training, frequent vehicle
maintenance, and the building of sturdier and safer
tanks. It is also possible to reduce risks through route
planning, which allows operations research (OR) to
make a contribution in this area. This paper develops
methods that can reduce hazmat transport risks by
combining routing and scheduling decisions for ship-
ments.

Hazmat route planning has been a relatively pop-
ular area of research in OR. Surveys of the area can
be found in List et al. (1991) and Erkut and Verter
(1995). Most of the past research has focused on
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selecting minimum risk paths for hazmat shipments.
While there is no consensus on how the hazmat
transport risk should be modeled, almost all authors
have used either accident probabilities or an estimate
of the consequences, or both. Accident probabilities
are derived from historical truck accident frequen-
cies, and they are usually in the order of 0.1 per
million kilometers (km) of highway travel. Conse-
quences are usually estimated using a count of the
population to be impacted by an accident. Some
authors multiply probabilities and consequences to
model risk, while others pose the routing problem as
a multicriteria problem where probabilities and con-
sequences are treated as separate objectives, usually
along with route length. Using a simplifying assump-
tion on accident probabilities, all these route-selection
problems are converted to shortest path problems,
which facilitates their solution.

Most past research in this area uses static esti-
mates for accident probabilities and consequences.
This choice negates a need to solve a scheduling prob-
lem, because the route attributes do not depend on
the timing of the trip. However, there is some empir-
ical evidence that suggests accident probabilities are
higher at night than during the day. Furthermore, it is
clear that there are cyclic population movements (for
example, from home to work) that are likely to impact
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consequences. If we model probabilities and conse-
quences as functions of time, then the scheduling
problem becomes as important as the routing prob-
lem. In fact, the two are intertwined and must be tack-
led simultaneously. This observation was made first
by Nozick, List, and Turnquist (1997), who proposed
an algorithm to find efficient routing/scheduling
combinations for hazmat trips. This paper improves
on the applicability of integrated routing/scheduling
decisions by generating schedules that allow stops
along the way.

2. Motivating Example
We use a very simple example to motivate our prob-
lem. Consider a shipment on a route that consists of
10 links of equal length and equal traffic density. Sup-
pose each link is 100 km in length and the hazmat
vehicle travels at a constant speed of 100 kilometers
per hour (km/hr). The time-dependent arc attributes
are given in Table 1. For the purposes of this exam-
ple, suppose that the consequence is measured in
the number of vehicles on the road that would be
impacted by a hazmat accident. That number is highly
variable, with peaks during rush hours and a low dur-
ing the early morning hours. In contrast, the accident
probability is higher at night than during the day.
Assume that the accident probability and the conse-
quence on a link are constant for each hour. If the trip

Table 1 Exposure (in Vehicles) and Accident Probability (Per km)
as a Function of Time of Day

Consequence Probability
From To (vehicles/accident) (x107°) per km
0:00 1:00 13 105
1:00 2:00 7 105
2:00 3:00 4 105
3:00 4:00 3 105
4:00 5:00 4 105
5:00 6:00 12 105
6:00 7:00 47 85
7:00 8:00 95 65
8:00 9:00 61 65
9:00 10:00 43 65
10:00 11:00 45 65
11:00 12:00 46 65
12:00 13:00 42 65
13:00 14:00 47 65
14:00 15:00 51 65
15:00 16:00 67 65
16:00 17:00 102 65
17:00 18:00 94 65
18:00 19:00 55 65
19:00 20:00 47 85
20:00 21:00 36 105
21:00 22:00 31 105
22:00 23:00 24 105
23:00 0:00 20 105

Note. We converted all per km values in Tables 1, 2, and 3 to per mile
figures for the tests on the U.S. road network.
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starts at time zero (midnight) and there is no waiting
at the nodes, then the total accident probability and
the average consequence for the path are 91 x 107°
and 28.9 vehicles, respectively.

If stopping en route is allowed, then it is possi-
ble to reduce the consequence significantly. For exam-
ple, starting the trip at midnight and stopping at
Node 7 for 3 hours (to avoid the morning rush hour)
results in an average consequence of 21.9—a 24%
reduction over an uninterrupted trip. This stop also
reduces the accident probability for the trip by a
small amount. Extending the stop at Node 7 to 14
hours (or restarting the trip at 8:00 r.m. and ending
it at 6:00 A.M.) reduces the average consequence by
47% while increasing the accident probability by 15%.
Whether this is desirable or not depends on the way
a user might model risk.

This example demonstrates that stopping en route
may be desirable in some cases. Furthermore, stop-
ping en route would be required if the trip duration
exceeds a certain upper bound on driving time. Mul-
tiple stops may be necessary to complete a long trip.

3. Literature Review

Our problem can be characterized as a constrained
shortest path problem with time-varying parameters
where stopping en route is allowed. We minimize risk
subject to a constraint on path duration where both
arc attributes (risk and duration) are time dependent.
Our model can be considered as a biobjective rout-
ing problem, because we can generate efficient solu-
tions by varying the upper bound on path duration.
Papers relevant to ours can be found in different areas
of the OR literature: multiobjective routing problems
and related constrained shortest path problems, time-
varying shortest path problems, and hazmat-routing
problems. In this section we review the most relevant
papers in these areas.

Current and Marsh (1993) provide a review on
multiple-objective shortest path problems. Warburton
(1987) presents approximation algorithms for multi-
objective shortest path problems, where the algorithm
complexity is polynomial in terms of the approxima-
tion parameter.

Joksch (1966), Aneja and Nair (1978), Handler
and Zang (1980), and Ribeiro and Minoux (1985)
are among the studies that deal with shortest path
problems with constraints. All use time-invariant arc
attributes. Joksch (1966) first presents a linear pro-
gramming (LP) formulation of the problem and then
a dynamic programming algorithm to solve the prob-
lem. Aneja and Nair (1978) also present an LP for-
mulation and offer a labeling algorithm. Handler and
Zang (1980) present a dual algorithm for the con-
strained shortest path problem. Ribeiro and Minoux
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(1985) deal with the shortest path problem with a
double-sided inequality constraint. The authors sug-
gest a pseudopolynomial algorithm for solving the
general parametric shortest path problem.

A basic version of the shortest path problem with
resource constraints is considered by Desrosiers et al.
(1995). Gamache et al. (1999) deal with an air-
line crew-scheduling problem where a subproblem
turns out to be a constrained shortest path problem
with reset variables. Our problem is different from
these because of the time-dependent nature of arc
attributes.

Cooke and Halsey (1966) and Halpern (1977) pro-
vide pioneering studies in shortest path problems
with time-varying arc attributes. They deal with sin-
gle-attribute objective functions. Halpern (1977) also
considers limited waiting possibilities at nodes.

Perhaps the papers that are the most relevant to
ours are Orda and Rom (1991), Cai, Kloks, and Wong
(1997), and Nozick, List, and Turnquist (1997). We
describe these papers at some length and discuss
the similarities and differences between these papers
and ours.

Orda and Rom (1991) consider shortest paths in
time-dependent networks. Their objective is to mini-
mize a single attribute (the length of the path) where
the arc lengths vary with time. They consider three
versions of the problem: (i) unlimited waiting is
allowed at each node; (ii) no waiting is allowed; and
(iii) waiting is only allowed at the origin. They show
that the first and the third versions are relatively easy
to solve (a polynomial algorithm can be devised).
However, if waiting at nodes is not permitted, then
the problem becomes NP-hard. They also point out
that the exclusion of waiting in the problem may
result in strange routing behavior, such as looping. (It
is easy to design an example where a hazmat truck
might loop in a rural area with low exposure to avoid
driving through an urban area during rush hour if
the departure time is fixed and no waiting en route
is allowed.) Our model is more complicated than the
one considered by Orda and Rom (1991), because we
deal with two attributes and we impose constraints
on waiting periods.

Cai, Kloks, and Wong (1997) also solve a time-
varying shortest path problem. Their approach is
similar to ours in the sense that they minimize the
(time-dependent) length of the path subject to an
upper bound on the total path duration. They present
three variants of the model: (i) arbitrary waiting times
at the nodes are possible; (ii) no waiting is allowed;
and (iii) there are upper bounds on the waiting times
at the nodes. The authors present pseudopolynomial
algorithms for these problems. The simplest of the
four problems we consider is similar to one of the
problems described by Cai, Kloks, and Wong (1997),
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and it can be solved by their algorithm. However, the
rest of our problems are more complicated than theirs
because of the constraints imposed on waiting and
driving times, and our study can be considered as an
extension of this paper.

There are a significant number of papers in haz-
mat routing. However, only one is closely related to
our study, which we discuss next. For background on
the hazmat-routing literature we refer the reader to
the references provided in the first section. Nozick,
List, and Turnquist (1997) consider an integrated rout-
ing and scheduling problem for hazmat transporta-
tion where the accident rates and the population
exposed on the road network vary with the time of
day. They propose a multiobjective routing algorithm
based on time-varying parameters, where the objec-
tives are the minimization of the route length, the
total on-the-road population exposed, and the total
accident probability.

This is a heuristic algorithm based on the exact
multiobjective routing algorithm of Cox (1984) that
works with time-invariant parameters. The authors
find nondominated routes for a given departure time
and repeat this for a set of possible departure times
to construct a set of nondominated route/schedule
combinations. They show that the time-invariant anal-
ysis computes the route exposures and probabilities
incorrectly and classifies some routes incorrectly as
dominated or efficient. The case study used provides
a convincing argument that taking time-of-day vari-
ations into account provides a richer and more accu-
rate decision-making environment than using average
attribute values.

While we appreciate the richness gained by using
time-variant attributes for integrated routing and
scheduling, we believe that the methodology out-
lined by Nozick, List, and Turnquist (1997) does not
take full advantage of the time-varying nature of the
data. Although the authors consider different depar-
ture times from the origin, they do not allow for stop-
ping en route. This may prevent the generation of
certain desirable routes and identify dominated routes
as efficient.

Suppose a vehicle approaches a major city before
rush hour. If stopping is allowed, then the driver
could take a break during the rush hour and drive
through the city (or on the ring road around the city)
afterward. However, if stopping is not allowed, then
the driver would either drive through the city dur-
ing rush hour and increase exposure, or take a detour
and increase accident probability as well as route
length. While allowing for stopping at intermediate
nodes is likely to produce better solutions, the result-
ing problem is more complicated, because there is a
new variable associated with every node representing
the duration of the wait.
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Although we add a new dimension to the inte-
grated routing and scheduling problem by allow-
ing for stops, our objective function is somewhat
simpler than the one considered by Nozick, List,
and Turnquist (1997). We minimize one arc attribute
(which can be exposure, probability, or risk), subject
to a constraint on the total time allowed for comple-
tion of the route, whereas Nozick, List, and Turnquist
(1997) consider three objectives: probability, exposure,
and length. Yet limiting the problem to a single objec-
tive allows us to find optimal solutions, while Nozick,
List, and Turnquist (1997) resort to a heuristic to
generate an efficient frontier.

4. Models and Algorithms

Consider a directed graph where nodes represent
population centers and highway intersection points,
and arcs represent highway segments. We consider
a specific hazmat shipment on this network with
a given origin and a destination node. All arc at-
tributes—namely duration, accident probability, and
population exposure—are time dependent. The arc
attributes that apply to the tracing of an arc are deter-
mined by the entry time for the arc.

We consider two objectives: risk and duration.
Although we use the expected consequence definition
of risk, our algorithms would work equally well if
one wanted to minimize the total accident probability
or the total population exposure. Specifically, we com-
pute the risk associated with an arc by multiplying
the accident probability for that arc with the num-
ber of individuals who would be adversely impacted
by an accident on that arc. While all arc attributes
are time dependent, we assume that they are fixed
once the vehicle starts traversing an arc, at values
that are determined by the start time for the arc.
For implementation purposes we assume that time
is discretized into small units (such as five-minute
periods).

We allow for the hazmat truck to stop and wait
at each node. The intent of introducing a delay is to
reduce the transport risk in arcs that will be traversed
in the future. Stops between nodes are not allowed.
(A rest stop along an arc can be modeled as a node in
the network to allow for stopping.) Because waiting
at nodes is permitted, our problem is a path-selection
problem together with the determination of the depar-
ture times from each node on the selected path.

We wish to minimize trip risk and duration. Note
that there is a trivial solution to the risk-minimization
problem: Find a minimum risk route on a time-
invariant network by using the minimum possible
risk for each arc (this can be determined easily given
the time-dependent risk function), and schedule the
trip on this route by injecting sufficient waiting times
at each node so that each arc is traversed when its
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risk is the lowest. However, this route/schedule com-
bination is unlikely to be practical, because the truck
would probably travel for only a small portion of each
day, so a trip may take many days.

Likewise, the minimum time route can be found
easily using a shortest path algorithm. However, this
route may go through major urban centers and may
be associated with high risk. Rerouting the truck
around certain areas or delaying the entrance times
for certain arcs may increase the total path duration
but may decrease the total risk. Hence, it is unlikely
that the optimal solution to either single-objective
problem will present a reasonable solution. We solve
the bicriteria problem by minimizing risk subject to
an upper bound on duration. Setting parameters on
the upper bound allows us to generate a set of effi-
cient solutions, which can be presented to a decision
maker to help with the tradeoff between trip duration
and risk.

It is clear that waiting at nodes may reduce trans-
port risks. If the trip is sufficiently long, then waits
are not only beneficial from a risk-minimization per-
spective, but they also are mandated by the authori-
ties. For example, a trip that takes 20 hours cannot be
completed without stopping (unless multiple drivers
are used). Hence, we consider different scenarios with
restrictions on waiting and driving times. In the sim-
plest scenario, we disregard the needs of the driver
and the regulations and set waiting times to minimize
risk. In the most complex and the most realistic sce-
nario, we consider typical transport department reg-
ulations. For example, according to U.S. Department
of Transportation (DoT) regulations in effect during
1939-2004, the driver must be off duty for a minimum
of 8 hours after driving for 10 hours or being “on
duty” (includes driving and rest stops) for 15 hours
(DoT 2004). In the following subsections we present
our four scenarios and provide formal models and
algorithms to the corresponding problems.

4.1. Unrestricted Waiting and Driving Times

First we consider the case where there are no restric-
tions on the waiting and driving times. The truck is
allowed to wait for an arbitrary period of time at each
node and to be on the road for an arbitrary period of
time between stops. Even though this simplest case is
not a very realistic setting for hazmat transport, we
analyze it because it provides insight for more com-
plicated formulations, and the results may be useful
for benchmarking purposes.

4.1.1. Mixed-Integer Programming Formulation.
We need the following notation for this and the
following sections:

G(V,E): A directed graph where V is the set of
nodes and E is the set of arcs,

N: Number of nodes,

m: Number of arcs,
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P(7): Set of predecessor nodes of node i,

5(i): Set of successor nodes of node i,

d;;(t): Duration of arc (i, j) when the entry time is ¢,

r;i(t): Risk experienced on arc (i, j) when the entry
time is t,

T: Upper bound on the total duration of the path,

X =1, if arc (i, j) is entered at time ¢; 0, otherwise.

Arbitrarily selecting Node 1 as the origin and
Node N as the destination, we formulate the follow-
ing linear binary programming problem.

MP-I:

T

min Y > r(t) - X
t=1(i, j)eE
T

st. 3 X, =1 1)
t=1ieS(1)
T
> 2 X Z > X =0
t=1 jeS(i) t=1 jeP(i)

i=2,...,N-1 (2)

> 2 Xu=1 ®)

t=1ieP(N)

Z Z X]zt(t +d]1(t)) = Z Z Xz;t

t=1jeP(i) t=1 jeS(i)
i=2,...,N—-1 (4

T

22 xn(t+dn() =T ®)

t=1ieP(N)

Xijt:{o, 1} Vi,j, t. (6)

In MP-I, constraints (1)-(3) are flow-conservation
constraints. Constraint (4) ensures that the departure
time from a node is greater than or equal to the depar-
ture time from the preceding node plus the duration
of the arc in between. Constraint (5) satisfies the end-
ing condition of the path at time T. This formulation
has Tm binary variables and 2N — 1 constraints. Note
that even for moderate-size problems, the number
of variables is very large, making the solution using
an off-the-shelf solver impractical. This observation
applies to the formulations of the subsequent models
as well, and we will resort to dynamic programming
for solutions of all four problems.

4.1.2. DP Formulation. Using the following addi-
tional notation, this problem can also be formu-
lated as a dynamic programming (DP) problem. This
formulation is due to Cai, Kloks, and Wong (1997).

Let

fily, t): total risk of the minimum-risk path from
the origin to node y of duration ¢ or less, when there
are no restrictions on waiting and driving times,

u,: departure time from a node.
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DP-I:
£1,0=0, fy,H=c0 ¥Yy=2,..,N;t=1,..,T
fI(]// t) Zmin{fl(y/t_ 1)r

min min X, uy)+r,,(u
{x:<x,y>eE}(ud:ud+dw<ud>=t;{ﬁ( )+ Ty (1))
y=1,2,...,Nand t=2,...,T.

ProrosITION 1. DP-I finds the optimal minimum-risk
path when there exist no restrictions on waiting times and
driving times.

Proor. The proof of this proposition follows from
Lemma 1 and Corollary 1 of Cai, Kloks, and Wong
(1997). Hence, it is omitted here. O

Cai, Kloks, and Wong (1997) suggest a solution
algorithm for this model and show that this formula-
tion can be solved in O(T (N + m)) time. The optimal
path risk is given by fi(N, T), and the optimal path
can be found by backtracking.

4.2. Restricted Waiting and Unrestricted
Driving Times

In the second problem we consider, there are no
restrictions on driving times, but the waiting time at a
node must be either zero or between an upper and a
lower bound. The lower bound is there to make sure
the driver can get a minimum amount of rest, and the
upper bound prevents excessively long stops. Reason-
able lower and upper bounds might be one hour and
eight hours, respectively.

4.2.1. Mixed-Integer Programming Formulation.
We need the following additional notation for the
formulation of this case:

L;: lower bound on waiting at node i, if the waiting
time is positive,

U;: upper bound on waiting at node i, if the waiting
time is positive,

a;: arrival time at node i (if a; =0, then node i is
not visited),

p;: departure time from node i (if p; =0, then node
i is not visited),

w; = 1, if waiting occurs at node i; 0, otherwise.

MP-II:

min Z Z r:](t ijt

t=1(i, j)eE

s.t. (1) (2),(3),(5), (6)

ZZX1]t<1 Z=].,2,,I\]—]_ (7)
t=1 jeS(i)

111‘:2 Y X (t4d(1) Vi (8)

t=1 jeP(i)
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T
pi=2_ 2 Xyt Vi ©)
t=1 jeS(i)
Li-wy<pi—a;<U-w; Vi (10)
w;={0,1} Vi. (11)

Constraint (7) assures construction of elementary
paths. Constraints (8) and (9) directly follow from
constraint (4) in MP-I. Constraint (10) imposes the
upper and lower bounds on the waiting time or forces
it to be equal to zero. Note that constraints (8)—(10)
can be merged into a single constraint set, negating
the need to define a; and p;. However, we choose to
provide this detail for ease of exposition.

4.2.2. DP Formulation. We introduce the follow-
ing additional notation for the DP formulation:

fu(y, t): total risk of the minimum risk path from
origin to node y with a path duration exactly of t
and with waiting time zero at node y, subject to the
constraint that the waiting time at any node x on the
path is either 0 or between L, and U,. If the path is
infeasible for the current value of t then f;; = oco.

fii(y): total risk of the minimum risk path from the
origin to node y,

u,: arrival time at a node.

DP-II:
fir(N) =min fy(N, £) - with
fu(1,t)=0, t=0,...,T (12)
,1)= min min X, u,)+r.,(uy)}, (13
falg, = minomin )+ (), (13)
where

F(x,y,t) = {(u,, ug): ug+d,(u;) =t and
(ud=ua or foud_uafux)}/
y=2,...,Nand t=1,...,T.

Proros1TION 2. DP-II finds the optimal minimum-risk
path when there exist simple restrictions on waiting times
and no restrictions on driving times.

Proor. By the definition of f(y, ), the t value (t =
1,..., T) that results in the minimal f;;(N, t) gives the
total risk of the minimum-risk path from the origin to
the destination. The proof of the conjecture that (12)
and (13) can be used to calculate f;(N, t) follows from
Lemma 6 in Cai, Kloks, and Wong (1997) and is omit-
ted here. O

Our algorithm (Erkut and Alp 2005) for DP-II is
similar to our algorithm for DP-I, and it has compu-
tational complexity of O(T(m + NlogT)).

4.3. Restricted Waiting and Driving Times

In this version of the problem, we impose an upper
bound on the driving times between stops in addition
to the constraints of §4.2. The upper bound on the
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uninterrupted driving time (for example, eight hours)
prevents unreasonably long stretches without a break.

4.3.1. Nonlinear Mixed-Integer Programming
Formulation. We need the following additional
notation:

D: maximum uninterrupted driving time permissi-
ble,

v;: uninterrupted driving time on arrival at node i.

MP-III:
T

min Y Y r(t) - X
1=1 (i, j)<E

s.t. (1)=(3), (5)=(11)

Y {v]- . (éXﬁt (1- w]-)) + éXﬁt . d]-i(t)}

JjeP@)
Vi (14)
0<v,<D Vi. (15)

Constraint (14) calculates the uninterrupted driv-
ing time according to the value of w; and con-
straint (15) imposes the bounds of the consecutive
driving times. Note that constraint (14) is nonlinear,
further complicating the model.

4.3.2. DP Formulation. We need the following
additional notation for the DP formulation:

fm(y, t, v): total risk of the minimum risk path from
the origin to node y with a path duration of ¢, last
uninterrupted driving time of v, and with waiting
time at node y of zero, subject to the constraints that
the waiting time at any vertex x on the path is either 0
or between L, and U,, and the uninterrupted driving
time is no more than D. If the path is infeasible with
the current values of t and v, then f; is set to oo;

fii(y): total risk of the minimum risk path from ori-
gin to node y,

u,: uninterrupted driving time on arrival at a node.

DP-III:
fITI(N) = I}Ep fIH(N/ t/ U) With

v=D
fur(1,£,0)=0 V¢,
fu(l,t,v)=00 Vv=>0;t=1,...,T
fm(y, t,0)

= min min

x,u,,u)+r.,(uy)l,
{x:(x,weEn(ua,ud,u»eF(x,y,r,v)l{ﬁ“( o r) + Ty (1)}

(16)
where
F(x,y,t,0)={(u,, uqg, u,): ug+dy, (u,)=t; u,=u, and
u, =v—d,,(uy) or L, <uy—u, <U,
dy,(1y) =0, and 0 <u, <D}

2<y<N,1<t<T,1<v<D. (17)
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ProrosiTioN 3. DP-III finds the optimal minimum-
risk path in the presence of simple restrictions on waiting
and driving times.

Proor. See Erkut and Alp (2005). O

In DP-III, uninterrupted driving times are tracked
as an additional resource on the minimum-risk path
selected. Note that DP-III uses forward recursion and
requires the computation of fy;(x, u,, u,) for all u, <t,
1<u,<D, and x € V prior to computing fi;(y, t, v).

We treat the break and no-break cases separately.
If there is no break at node x, then we consider
all departure times u; on node x that satisfy u,; +
dy,(u,) = t. Moreover, the arrival time at node x, u,,
must be equal to u,; because break time (u; — u,) is
zero. For the same reason, the accumulated resource
on uninterrupted driving time on reaching node x, u,,
is not reset and therefore must satisfy u, = v —d,, (u,)
to maintain feasibility.

On the other hand, if the driver takes a break at
node x, then we consider all departure times u; on
node x that satisfy u, +d,,(u,) =t and d,, (u,) = v.
Moreover, in this case, any arrival time u, satisfy-
ing u; — L, <u, <u;— U, will yield a feasible break
time. For each of these u, values, the uninterrupted
driving time on arrival at node x, u,, may take on
any value between 1 and D, as this resource is reset
when a break is taken. Set F(x, y, t, v) in (17) stores
all such feasible (u,, u;, u,) vectors for each predeces-
sor node x so that all feasible paths reaching node y
at time t with an uninterrupted driving time v can be
evaluated and compared.

In the appendix we offer an algorithm for DP-III
that utilizes binary heap data structures effectively.

ProrosiTioN 4. Model DP-III can be implemented in
O(TD(m+ N)+ TNlogT) time.

ProoOF. See appendix. O

We make two observations that result in an efficient
implementation of the algorithm.

(1) For given (y, t), the total risk function fi;(y, ¢,
v) has a finite value only for a small subset of all pos-
sible v values. Limiting the function evaluation to the
subset of v values that result in finite function evalua-
tions in the previous iteration of the forward DP algo-
rithm reduces the computational effort considerably.

(2) We observe that if fi;(y,t, v) < f(y, t, v') for
v < v, then fy(y,t,v") is dominated by fi;(y,t, v)
and can be eliminated. (Lower uninterrupted driving
times are preferred to higher ones.) Not storing the
dominated solutions during the implementation of
the algorithm saves considerable memory and speeds
up the algorithm.

4.4. Complex Restrictions on Waiting and

Driving Times
Finally we present the most realistic version of the
problem that imposes the U.S. DoT regulations on
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the trip schedule. In our computational experiment
we used the regulations that were in effect in 2004:
Drivers must be off duty for a minimum of 8 hours
following 15 hours of duty or 10 hours of uninter-
rupted driving. We note that these regulations have
been changed recently. Now the drivers must be off
duty for a minimum of 10 hours following 14 hours
of duty or 11 hours of uninterrupted driving. The new
regulations are under appeal and they may be revised
again in 2005 (DoT 2004). We note that such minor
changes in the regulations would not affect the struc-
ture of our formulations or our algorithms.

We do not formulate this case as a mathematical
programming model because it would be consider-
ably more complicated and less tractable than the
nonlinear model of §4.3.1. However, we present a
tractable dynamic programming formulation for this
problem after presenting the following definitions. We
use the term “short break” to refer to waiting at a
certain node mainly for the purpose of delaying the
entrance to the arcs ahead for risk-minimization pur-
poses. The driver is considered to be on duty during
this break. For example, these breaks could be one or
two hours long—similar to a lunch or dinner break.
In contrast, the waiting at a node for the purpose of a
long rest is called a “long break.” The lower bound on
this type of break is eight hours. A reasonable upper
bound might be 10 or 12 hours. The driver is consid-
ered to be off duty during this break. The term “on
duty period” refers to the total duration of driving
and short break times between two long breaks. The
on-duty period cannot last more than 15 hours.

4.4.1. Dynamic Programming Formulation. The
following additional notation is needed for this case:

W: maximum length of the on duty period,

fiv(y, t, v, w): risk value of the minimum risk path
from the origin to node y, with a path duration of
exactly t, uninterrupted driving time of v, duration
of the current on duty period of w, and with waiting
time at node y of zero, subject to the constraints that
the length of a long break taken at any vertex x on
the path is between L, and U, the length of a short
break taken at any vertex x on the path is at least /,,
the length of uninterrupted driving time is no more
than D, and the length of on duty period does not
exceed W. If the path is infeasible with the current
values of t, v, and w, then fy is set to oo,

fiv(y): total risk of the minimum risk path from the
origin to node y,

u,: length of the on duty period on arrival at a
node,

ugy: duration of a short break taken at a node,

uy: duration of a long break taken at a node,

I lower bound on the short break given at
node i.
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DP-IV:
fv(N) =min fiy(N, £, v, w)  with
v<D
w<W
frv(1,t,0,00=0, V¢,
fv@,t, v, w)=00 Yv>0; w>0
fvy, t, 0, w)
:«x:f?ly?eEn(uwumqugﬂ)eﬂwrt,v,w):{fW(x’u”’ur’uw)Jrr"y(ud)}
(18)
where

F(x,y,t,v,w)
={(u,, uy, u,, u,, Uy, Up):

(g =0; 1y, =0; uy: uy+d, (ug) =t,

=045 1, = 0= dyy (4g); 1, =w—d,y (1)) (19)

or

(up=0; I, <uy <W; uy: uy+d,, (uy) =t and

dyy(ug) =0, u; =1y —uy; 0<u, <D;

by =0 — 1y, — d,y (1) (20)

or

(Ly <up <Uyg; ug=0; uy: uy+d,, (uy) =t and

dy,(ug) =v and d,, (u,) = w; u, = uy —uy;

0<u,<D;0<u, <W)) (21)
2<y<N,1=<t<T,1<v<D,1<w=<W.

ProprosITION 5. DP-IV finds the optimal minimum-
risk path in the presence of complex restrictions on waiting
and driving times.

Proor. The proof of this proposition is omitted, as
it is similar to the proof of Proposition 3. O

In DP-1V, uninterrupted driving and working
times are tracked as resources on the nodes of the
minimum-risk path selected. In contrast to DP-III,
short and long breaks must be defined as decision
variables because different types of breaks have dif-
ferent implications. Prior to computing fi, (v, t, v, w)
for a given state combination (y,t, v, w), subpaths
reaching node y from each predecessor node x must
be evaluated and compared for all feasible values of
arrival time u,, departure time u;, uninterrupted driv-
ing time u,, uninterrupted working time u,, short
break time u, and long break time u; on node x.
Set F(x,y,t,v,w) in (19) stores all such feasible
(u,, uy, u,, u,, g, Uy) vectors.

If there is a short break given at node x, then the
accumulated resource on uninterrupted driving time
is reset on reaching node x, but the one on the uninter-
rupted working time is not. In such a case, a feasible
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subpath reaching node y at a state (y, f, v, w) can be
constructed from subpaths reaching node x with all
(u,, uyg, u,, u,, ugy, uy) vectors satisfying (21).
Similarly, if there is a long break given at node x,
the accumulated resources on uninterrupted driving
and working times are reset. In such a case, a feasible
subpath reaching node y at a state (y, t, v, w) can be
constructed from subpaths reaching node x with all
(u,, uyg, u,, Uy, Uy, uy) vectors satisfying (21). Finally,
if there is no break at node x, then none of the accu-
mulated resources are reset. In this case, a feasible
subpath reaching node y at a state (y, f, v, w) can be
constructed from subpaths reaching node x with all
(u,, uyg, u,, u,, ugy, uy) vectors satisfying (20). In the
appendix we offer a sketch of the algorithm for DP-
IV that utilizes binary heap data structures. The full
algorithm is available in Erkut and Alp (2005).

ProrosITiON 6. Model DP-IV can be implemented in
O(TDW(m+ N)+ TN logT) time.

Proor. See Erkut and Alp (2005). O

In implementing this algorithm, we take advantage
of the two observations made in §4.3.2. Dominance
rules for DP-IV are similar to those for DP-1II: f(y,
t,v,w) is a dominated solution if fy(y,t, v, w) <
fv(y, t, v, w) for v < v, and f(y,t, v, w') is also a
dominated solution if fiy(y,t, v, w) < fiy(y,t, v, W)
for w < w'.

5. Computational Experience

The goal of our computational experiment is three-
fold: to demonstrate the viability of the proposed
algorithms, to produce some realistic numerical exam-
ples, and to compare the solutions produced for the
different versions of the problem. We use the north-
eastern U.S. interstate highway network from Nozick,
List, and Turnquist (1997) and consider a hypothet-
ical shipment between Wilmington, Delaware, and
Portland, Maine. This network has 138 nodes and
368 arcs. Each arc has three attributes: arc length,
time-dependent travel duration, and time-dependent
travel risk. Risk is defined as the time-dependent acci-
dent probability multiplied by the time-dependent
exposure. Exposure is defined as exposure to other
drivers on the road. Hence, the hypothetical shipment
is assumed to be one that may create a small fire or
explosion with consequences limited to the road.

We use five-minute time intervals. The distance
between the origin and the destination in our network
is too short to demonstrate some of the differences
between our models—it is possible to go from the ori-
gin to the destination in one working day. Hence, we
multiply the lengths of all arcs by a factor of two.
Although this reduces the realism in the results some-
what, it provides us with a better comparison of our
models. The parameters used for the time-dependent
arc attributes are summarized in Tables 2 and 3.
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Table 2 Accident Release Rates

Release accidents per
million vehicle km

Highway category Day (7 Am.~6 P.M.)  Night (6 P.M.~7 A.M.)

Urban freeway 0.065 0.104
Rural highway 0.028 0.044

5.1. The Minimum-Risk Path and
the Shortest Path

Figure 1 displays the minimum-risk path found using
average attribute values for each link and ignoring the
time dependency. Note that the minimum-risk path is
rather circuitous; it avoids the more direct route that
goes through the eastern part of the network, where
population exposures are higher. The minimum-risk
path is 61% longer than the shortest path, which is
very undesirable from a shipper’s perspective. Later
we demonstrate that it is possible to find low-risk
paths that are much shorter if waiting is allowed
en route.

Figure 2 displays the shortest path between
Wilmington and Portland. Using the methodology
developed by Nozick, List, and Turnquist (1997), we
find that a departure time of 10:00 r.m. results in a
minimum risk value of 397.6 x 107® on the shortest
path. The duration of this trip with no waiting is 15.75
hours. Figure 3 displays the solution of DP-I for an
upper bound on the trip duration of 30 hours. The
resulting risk is 226.0 x 107°—a 43% reduction over

Downloaded from informs.org by [139.179.72.198] on 02 October 2017, at 23:21 . For personal use only, all rights reserved.

Table3  Exposure Values (Per km)

Hour of day Urban highway Rural highway
0 12.04 2.51
1 6.52 1.46
2 3.51 1.04
3 2.51 1.04
4 3.51 1.46
5 11.04 3.76
6 4515 10.75
7 138.45 14.30
8 62.70 12.73
9 40.13 13.05

10 42.64 14.30

1 43.64 15.03

12 39.13 15.03

13 44.65 15.45

14 49.66 17.54

15 70.73 19.62

16 252.32 21.40

17 133.94 18.79

18 54.68 13.99

19 44.65 10.75

20 33.11 8.45

21 28.59 7.52

22 22.07 6.26

23 18.56 4.49
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- "Portland, Maine

~Wilmington, Delaware

Figure 1 The Risk-Minimizing Path with Average Attribute Values
Notes. Path length = 1,462 miles; path duration = 1,468 minutes; path
risk =523.3 x 1075,

the no-wait solution. Although the solution to DP-I
results in a large decrease in the path risk, this is
not a desirable solution, because it contains too many
stops—some very short (five minutes). Figure 4 dis-
plays the solution to DP-II, where a minimum wait
of 30 minutes (a reasonable coffee break) has been
imposed on the solution. The risk associated with this
solution is virtually identical to the risk associated
with the solution of DP-I. The resulting schedule is
reasonably realistic, with only three stops along the
way. In fact, this schedule satisfies the restrictions of
our Models III and IV.

5.2. Experience with the Four Models

5.2.1. Unrestricted Waiting and Driving Times.
We solve DP-I for a maximum trip duration of three
days (4,320 minutes consisting of T =864 five-minute

. Portland, Maine

" Wilmington, Delaware

Figure 2 The Shortest Path (Path Length = 892 Miles)
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o

=¥ Portland, Maine
Arrive at 5:55

;
Arrive/at 23:35
Depa[t at 00:00 -
ﬂf__%“"“ - ‘/y
y Arrive at 8:35 ‘?‘\5
L Depart at 12:00 W z
AN T WY
AN VoA
AN y rrive at 7:00
LA

Arrive at 2:55
—_Depart at 3:00

4 _~"" Wilmington, Delaware
L Start at 0:00

Depart at 8:00

Figure 3 Solution of DP-I on Shortest Path Between Wilmington and Portland for Maximum Trip Duration of 30 Hours

Notes. The stops are indicated by flags. The solution corresponds to the following drive-wait sequence: (2:55, 0:05), (4:00, 1:00), (0:30, 3:30), (0:45, 9:15),
(1:35, 0:25), (5:25,—), with a midnight departure. The total driving time is 15:10, and the total waiting time is 14:15. The risk associated with this schedule is
only 57% of the risk associated with the minimum-risk, no-wait schedule on this path.

intervals). The objective is to find minimum-risk paths
subject to the constraint that the path duration is no
more than ¢, for all t <4,320. Then, we extract the
efficient paths from this solution pool. We find a total
of 171 efficient solutions, with durations varying from
945-4,320 minutes. These solutions occur on 19 differ-
ent paths with path lengths varying from 894 miles to
1,284 miles.

Figure 5 displays the efficient frontier with respect
to risk and duration. Note that the risk reduction is
very dramatic as the trip duration increases from 945
minutes to 980 minutes, gradual between 1,000 and
1,800 minutes, and very little after 1,800 minutes. Fig-
ure 6 provides four of the efficient solutions with
total durations of 980, 1,470, 1,680, and 3,225 minutes.
As more time is allowed for the trip, the algorithm
takes advantage of the slack to avoid high-risk travel
periods, and reduces risk.

In contrast, Figure 7 provides an efficient solution
for the no-wait model, with trip duration of 1,690
minutes. Note that one of the four efficient solutions
displayed in Figure 6 has comparable trip duration,
yet it is 37% shorter and 26% less risky—further evi-
dence that a schedule incorporating waiting can be
superior to a no-wait schedule on both criteria: length
and risk.

5.2.2. Restricted Waiting Times. The only differ-
ence between DP-I and DP-II is the bounds imposed
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on the waiting times. In the interest of space, we dis-
play no solutions to DP-II in addition to the one dis-
played in Figure 4. While the models are very similar,
the imposition of the bounds increases the computa-
tional effort significantly. The average computational
time for a given departure time goes from three sec-
onds to eight seconds on a 750-MHz Sun Blade 1000
computer as we go from DP-I to DP-II.

5.2.3. Restricted Driving Times. We solve DP-III
for maximum trip duration of 4,320 minutes. We set
the maximum uninterrupted driving time as 10 hours.
We find a total of 116 efficient solutions with dura-
tions varying from 950 minutes to 4,320 minutes.
These solutions occur on 11 different paths, with path
lengths varying from 894 miles to 1,208 miles. Figure 8
displays the efficient frontier with respect to risk and
duration, and Figure 9 provides four of the efficient
solutions generated for T values of 1,780, 2,185, 2,770,
and 3,070 minutes. The average computational effort
for DP-III is 3.3 seconds for a given departure time.

5.2.4. Complex Restrictions on Waiting and Driv-
ing Times. We solve DP-IV for a maximum trip
duration of 4,320 minutes. We set the maximum
uninterrupted driving and working times to 10 and
15 hours, respectively. We find a total of 92 efficient
solutions with durations ranging from 1,430 minutes
to 4,320 minutes. These solutions occur on 10 differ-
ent paths, with path lengths varying from 894 miles
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Depart at 12:00

‘ " Wilmington, Delaware
N Start at 00:05

ArriVe at 8:35 W

Portland, Maine
Arrive at 5:25

r

Arrive/at 12:45—
Depalt at 22:25
Arrive at 7:00
~ Departat 7:55

Figure 4 Solution of DP-II on Shortest Path Between Wilmington and Portland for Maximum Trip Duration of 30 Hours
Notes. The stops are indicated by flags. The solution corresponds to the following drive-wait sequence: (6:55, 0:55), (0:40, 3:25), (0:45, 9:35), (7:00, —). The
total driving time is 15:20, and the total waiting time is 13:55. The risk associated with this schedule is virtually identical to the risk associated with the solution

of DP-I displayed in Figure 3.

to 1,208 miles. Figure 10 displays the efficient fron-
tier with respect to risk and duration, and Figure 11
provides four of the efficient solutions generated: for
T values of 1,430, 1,555, 2,845, and 4,165 minutes.
The average computational effort for DP-IV is 12.1
minutes per departure time.

We note that all efficient solutions displayed in
Figures 6, 7, 9, and 11 have departure times of 12:00
AM. to facilitate comparison. However, the efficient
solution sets contain many other departure times.

500
400
300+

200

Path risk (107)

6. Concluding Remarks

In this paper we consider the hazmat routing
and scheduling problems simultaneously and extend
existing methodology by allowing for stops along
the route. We consider time-varying link attributes
(accident, exposure, and duration) and solve a risk-
minimization problem subject to a constraint on the
path duration. We study four different versions of
the problem with increased restrictions on driving
and stopping times, which increases the realism, as

100

0

~—

T T T T T T T T T T T 1
900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300 3,600 3,900 4,200 4,500

Path duration (min.)

Figure 5 Efficient Frontier for DP-1 with Respect to Two of Three Objectives: Path Duration and Path Risk
Notes. The apparent increase in the path risk between path durations of 900 and 1,400 miles is due to paths that are efficient with respect to the third objective:

path length.
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(a) Duration = 980 minutes, risk = 382.3x107%, length = 930 miles,
waiting time = 0 minutes

(b) Duration = 1,470 minutes, risk = 317.5x1078, length = 1,284 miles,
waiting time = 135 minutes

(c) Duration = 1,680 minutes, risk = 218.4x1078, length = 1,284 miles,
waiting time = 350 minutes

™ -

JoA 015
47145 (d)

"~ Wilmington, Delaware

~~" Wilmington, Delaware

(d) Duration = 3,235 minutes, risk = 109.3x1078, length = 984 miles,
waiting time = 2,200 minutes

\“’/Wilmington, Delaware

Figure 6 Four Efficient Solutions to DP-I for Increasing Values of Trip Duration (and Decreasing Risk)
Notes. Driving times are indicated with “(d).” Stop times are indicated by circles along the path, and waiting times are indicated next to the circles.

well as the complexity, of the problem. We develop
pseudopolynomial implicit enumeration algorithms
to generate a subset of the efficient frontier by vary-
ing the path duration. Our computational experience
indicates that our dynamic programming algorithms
can solve all four problems considered with rea-
sonable computational effort for a realistic network.
However, developing heuristic algorithms may make
sense in case of significantly larger networks.
Nozick, List, and Turnquist (1997) study the same
problem with no stops and report that some efficient
routes are as much as 66% longer than the shortest
path. We believe that their algorithm is forced into
such solutions, as waiting is not allowed en route.
To avoid entering a high-exposure area of the net-
work during rush hour, the hazmat truck is sent on
circuitous alternate routes. In contrast, in our model
the truck simply stops and waits for the rush hour to
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pass. Consequently, most of our routes are relatively
close in length to the shortest path.

We assume that the probability of an accident is
zero when the vehicle is not moving. This may not
be true. For example, another vehicle may strike a
parked hazmat truck and cause a release of the con-
tents. Consideration of nonzero accident probabilities
during stops would reduce the incentive for the vehi-
cle to stop. However, we believe that accident proba-
bilities, as well as consequences during a stop, would
be considerably lower than their counterparts while
the vehicle is moving. Hence, it would still be possible
to reduce the overall risk by stopping en route. The
data structures we use can easily accommodate a dis-
crete set of nonzero accident probabilities for stops—
for example, a smaller probability for short stops and
a larger probability for longer stops. Furthermore, our
algorithms can readily accommodate node-dependent
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\\,-/’/ Wilmington, Delaware

Figure 7 Efficient Solution to the No-Wait Model for Trip Duration of
1,690 Minutes

Notes. Though efficient among no-wait solutions, this solution is dominated

by solutions to DP-I. The total risk on this path is 263.2 x 10-5.

accident probabilities for stops. However, the incorpo-
ration of accident probabilities that are proportional
to the duration of the stop would result in slightly
increased complexity for the algorithms.

We observed that many solutions to DP-I1 have very
short stops (5-10 minutes). This is merely because we
use discrete link data. If a truck arrives at a Node 5
minutes before 8:00 A.M., it can stop for five minutes
and enjoy a steep drop in the exposure for the start of
its trip on the next link. If continuous data are used,
such unreasonable waits are much less likely to occur.
If it is not possible to get continuous data, one could
fit a curve to the existing discrete data. Another way
to eliminate such unreasonably short stops is to use
a higher lower bound on the duration of a stop (i.e.,
15 minutes instead of 5 minutes). This would reduce
the computational effort.

In our computational implementation we assumed
that it was possible to stop at every node. If stopping
is allowed only at a subset of the nodes (for example
only at full-service truck stops), then the number of
efficient solutions, as well as the computational effort,

400
350
300
250

200

Path risk

150
100

50 T T T T T T 1
900 1,400 1,900 2,400 2,900 3,400 3,900 4,400

Path duration

Figure 8 Efficient Frontier with Respect to Two of the Three Objectives:
Path Duration and Path Risk for DP-II
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would go down. Hence, the computational times we
report can be considered worst-case times for the
given network size.

All of our models rely on the driver traveling con-
sistently at a certain speed. If the driver goes faster
or slower than anticipated, he or she will not cross
the links at the planned time intervals and may incur
risks that are quite different from those computed.
Although we can expect a professional hazmat truck
driver to follow a trip plan fairly closely, late or early
arrivals at network nodes do not invalidate the mod-
els. Given the location of the truck along the route, the
problem can be resolved in real time to provide the
driver with a trip plan update. In fact, this can be very
useful in cases where estimated accident or exposure
figures deviate significantly from the expected—for
example, in the case of inclement weather or heavy
traffic due to a sports event. Provided it is possible to
link different weather and road conditions to accident
probabilities, the problem can be resolved every time
there is a change in a link attribute.

We finish the paper by discussing some enhance-
ments of varying complexity. While we imposed a
limit on path duration, it is just as easy to impose a
limit on the path length. This may be more relevant
for a shipper that is interested, for example, in a risk-
minimizing path as long as it is no more than five per-
cent longer than the shortest path. Likewise, although
we considered on-road population to estimate expo-
sure, it is possible to use off-road population as well.
Time-dependent population data for all geographical
areas may be difficult to obtain. However, it may be
possible to model the most obvious population shifts
(such as increased population in a downtown during
the day).

Other possible enhancements deal with accident
probabilities. We assumed that the accident proba-
bility is only a function of the time of day. How-
ever, it is arguable that the accident probability of
a given truck driver increases as he or she becomes
fatigued (say after 6 hours of uninterrupted driving).
It is possible to incorporate into our DP algorithms
accident probabilities that depend on the driving his-
tory since the last long rest. Likewise, it is possi-
ble to model the accident probability as a function
of traffic density on the road, where the probability
might increase with density up to a certain point and
then decrease again as the road becomes so congested
that travel speeds go down dramatically. We believe
such improvements in the modeling of accident prob-
ability make the models more realistic; yet the prob-
lems are no more complicated to solve than those we
considered.
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Four Efficient Solutions to DP-III for Increasing Values of Trip Duration (and Decreasing Risk)

Notes. Driving times are indicated with “(d).” Stops are indicated by circles along the path, and waiting times are indicated next to the circles.
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Figure 10 Efficient Frontier with Respect to Two of the Three Objec-

tives: Path Duration and Path Risk for DP-IV
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Appendix

ALGORITHM TO SOLVE DP-IIL

The following algorithm can be used to solve DP-III effi-
ciently by utilizing a binary heap data structure to keep
the necessary information of feasible minimum risk paths
reaching each node at every state combination.

For each arc (x,y)€E, 1<t<Tand 1<v <D, let

'ny(t/ v)= )}{fIII(x/ Uy, Uy) + rxy(ud)}

min
{(ug, ug,u,)eF(x,y,t,v
with the convention that yxy(t, v) = oo whenever F(x, y, t, v)
(as defined in (16)) is empty. Then

fm(y,t,v)=(

Let,

Heap, = a binary heap maintained for each node y,

M(y, t) = minimum risk of departing from node y at
time f with a feasible break time at node y.

Each element of Heap, consists of two pieces of informa-
tion, tHeap, and vHeap,, in addition to its key (the sorting

min yw(t,v) for1<t<T,and 1<v<D.
(x:(x, y)eE)} ™
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a) Duration = 1,430 minutes, risk = 544.4x 1078, length = 894 miles
g

Portland, Maine

L~ Wilmington, Delaware

(c) Duration = 2,845 minutes, risk = 140.4x107, length = 1,030 miles
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Figure 11 Four Efficient Solutions to DP-IV for Increasing Values of Trip Duration (and Decreasing Risk)
Notes. Driving times are indicated with “(d).” Stops are indicated by circles along the path, and waiting times are indicated next to the circles.

criterion). Key of each element at time t corresponds to the
risk value of a minimum-risk path that starts at origin and

arrives at node y at time tHeap, so that
Ly <t-— tHeapy < Uy,
with an uninterrupted driving time of vHeap, where

vHeap, = arg min{ fi; (y, tHeap, , v)}.
1

<v<D

M(y, t) corresponds to the root element of this heap at any

time.
The algorithm now can be stated as follows.

Let M(1,t)=0 for all ¢.

Let M(y,t)=o00 forall y#1, t.

Let fiy(1,t,v)=0 forall t, v.

Let fiy(y,t,v)=00 forall y#1,t, v.

Sort all values of u; +d,, (u,) forall u;=1,..., T
and for all arcs (x, y) € E.

Fort=1,...,T
Forv=1,...,D

RIGHTSE LI MN iy

For all arcs (x, y) and all u, such that
ud + dxy(ud) == t. (L].)
If v=d,, (u,), then
yxy(t/ 'U) = min{oo/ M(X, ud) + 7’J(y(ud)}'
If v>d,,(u,), then
ny(t/ 'U) = min{oo, fIII(x/ Ug, U= dxy(ud)) + rxy(ud)}'
Next
For every vertex y let

fHI(yl £, U) = min[x: (x, y)€E} YXy(t/ U) (LZ)
‘1)(% t) = mmlgng fm(% £, U) (L3)
Next
For every vertex y #1 (L4)
Ift>L,

Insert ®(y, t —L,) into Heap,.
Ift> u, then delete the element with
tHeap, =t — U, — 1 from Heap,.
u, = tHeap, of the root element of Heap,.
u, = vHeap, of the root element of Heap,.
M(y, t) = fu(y, u,, u,)-
End if
Next
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Next
For every vertex y, fi;(y) =ming_,.r o<o<p fm(y, t, v)  (L5)

For a given (x,y,t), u,; can easily be found if we have
a sorted list of values u, +d,, (u,). In loop (L1) v =d,, (u,)
indicates that stopping has occurred at node x; therefore,
M(x, u,) is used to update v, (f, v). On the other hand, v >
dy, (1) indicates that no stopping has occurred at node x;
therefore, fiy(x, uy, v —d,, (u,)) is used to update v,, (¢, v).

Proor ofF ProrosiTioN 4. Initialization takes O(TDN)
time. The u,+d,, (1,) values can be sorted by bucket sorting
in O(Tm) time. Loop (L1) can be implemented in O(m) time
because the 1, values satisfying (17) can be found in O(1)
time from the output of the bucket sort. Loops (L2) and (L3)
can be implemented without any additional effort inside
loop (L1). Loop (L4) can be completed in O(NlogT) time
because the insertion and deletion operator on the binary
heap takes O(log T) time, retrieving the root element takes
O(1) time, and the size of the heap is at most T. Finally, (L5)
can be completed in O(TDN) time. Therefore, DP-III can be
solved by using this algorithm in O(TmD+TND+ TN log T)
time. O

Sketch of Algorithm for DP-IV

Because the algorithm for DP-IV is similar to the algorithm
for DP-III, we only summarize the main differences here.
We treat long-break, short-break, and no-break situations
separately. For long breaks, a binary heap structure similar
to that of DP-III is maintained with an additional piece of
information on uninterrupted working times. For the short
breaks, we define an additional function for state variables
y, t, and w to calculate the minimum risk of departing from
node y at time f with an uninterrupted working time of w
at the departure time and a feasible short break at node y.
This function is calculated in the algorithm iteratively while
maintaining the binary heap. No break case is handled as
in DP-III. Erkut and Alp (2005) provide the full algorithm
and further detail.
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