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In this study, we consider flexible manufacturing system loading, scheduling
and tool management problems simultaneously. Our aim is to determine relevant
tool management decisions, which are machining conditions selection and tool
allocation, and to load and schedule parts on non-identical parallel CNC
machines. The dual objectives are minimization of the manufacturing cost and
total weighted tardiness. The manufacturing cost is comprised of machining and
tooling costs (which are affected by machining conditions) and non-machining
cost (which is affected by tool replacement decisions). We used both sequential
and simultaneous approaches to solve our problem to show the superiority of
the simultaneous approach. The proposed heuristics are used in a problem space
genetic algorithm in order to generate a series of approximately efficient solutions.

Keywords: Tool management; Scheduling; Flexible manufacturing systems;
Loading

1. Introduction

The nature of demand is changing in today’s industrial world in that customers
are looking for a large variety of products. In order to meet varying customer
demands, firms should be flexible enough to produce parts in an efficient way.
Flexible manufacturing systems have emerged with progress in manufacturing tech-
nology. A flexible manufacturing system (FMS) is a computer-controlled production
system consisting of numerically controlled machines and an automated material
handling system. Since the investment and operating costs of FMSs are very high,
operation planning, scheduling and control activities should be performed efficiently.

In this study, we will consider FMS loading, scheduling and tool
management problems, which form different levels of the production management
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hierarchy, simultaneously. The tool management problem at the tool level is the
determination of the tool types to perform the operations and selection of machining
conditions such as cutting speed and feed rate. In most existing studies, the tool
management problem at the tool level is considered as an FMS design problem that
should be solved before the planning and scheduling decisions are made. The next
level in the hierarchy is the FMS loading problem. Stecke (1985) defined the FMS
loading problem as the allocation of operations and the required tools for the parts
among the machines subject to the technological and capacity constraints of the
FMS. FMS scheduling determines the optimal input sequence of parts and the
schedule of parts and tools on each machine. At the machine level, tool allocation
and replacement decisions are the key tool management issues. Grieco et al. (2001)
provide an extensive survey of the FMS loading problem and emphasize the impor-
tance of the interaction between different levels of the production management
hierarchy in the applicability of the loading models to real-case situations.

Most of the existing studies in the literature solve the FMS loading, scheduling
and tool management problems independently or sequentially due to the complexity
of the overall problem (Rachamadugu and Stecke 1994). The FMS loading problem
has received considerable attention from researchers. The survey paper by Grieco
et al. (2001) provides insights into the areas that are not completely covered by the
existing FMS loading methods at each component and gives directions for future
research. An important factor that affects the loading problem is the characteristics
of the FMS (machines, control system, tools and handling system, and parts, pallets
and fixtures) (Grieco et al. 2001). In earlier FMSs, tool delivery and loading were
not automatic, and the time spent on tool loading and replacement was significantly
high. In order to reduce the time spent on tool loading and replacement, a batching
approach was used as the tool management strategy. According to this approach,
a batch of parts is determined, the required tools are loaded on the tool magazines,
and the parts that are allocated to the machines are processed without replacing
any tools. After all the parts in the batch have been processed, the tool magazine
is loaded with the new tools required for the next batch. The scheduling problem is
solved for each batch, after the parts have been grouped and loaded to the machines.

Recent advances in technology, such as automated material handling and tool
loading, reduce the tool magazine size limitations and reduce the need for making
loading decisions in advance of scheduling decisions (Rachamadugu and Stecke
1994). Because the material handling and tool loading operations are done auto-
matically, the time spent on loading and replacing tools is reduced significantly.
The machines with high capabilities decrease the machining times and hence increase
the need for more frequent tool changes. The batching approach, which is the
most commonly used tool management strategy, is inefficient for most systems
with the current technology, especially when one considers due date and completion
time related performance measures (Amoako-Gyampah 1994). The flexible
approach, in which tools are replaced when necessary, is better for overall system
performance. There are a few studies considering flexible tool management
approaches (Amoako-Gyampah 1994, Roh and Kim 1997). These studies solve
the FMS loading and scheduling problems simultaneously and use dispatching
rules to solve these problems. However, the tool replacement decisions are made
after the parts have been loaded and sequenced on each machine. The lack

1184 A. Turkcan et al.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
2:

41
 1

3 
N

ov
em

be
r 

20
17

 



of appropriate scheduling algorithms to manage the flow of the tools limits the
exploitation of automatic tool transport systems.

The tool replacement decisions are very critical in determining non-machining
times in flexible tool management approaches. The non-machining times, which
are required to load, change and replace the tools, are ignored in most of the existing
studies. Some studies consider the non-machining times as sequence-dependent
setup times. However, one cannot realistically assume that the non-machining
times are predetermined sequence-dependent setup times. The non-machining
times depend on the current status of the tool magazine, which is in turn deter-
mined by the limited tool lives, the limited capacity of the tool magazine and all
scheduling and tool allocation decisions made up to the current time. Some
studies use average non-machining times while giving loading and scheduling
decisions (Roh and Kim 1997, Akturk and Ozkan 2001, Fathi and Barnette 2002).
The contribution of non-machining time could be significant for the multiple
operation case. Therefore, the exact determination of the non-machining times
is important. The over- or underestimation of the non-machining times will lead
to suboptimal solutions for the overall problem. For a further discussion on tool
magazine arrangement, we refer to Baykasoglu and Dereli (2004).

In most of the existing studies, tools are changed due to part mix. The limited
lives of the tools, which depend on the workpiece material and cutting conditions,
are not considered. However, as stated by Gray et al. (1993), tools are changed
ten times more often due to wear than due to part mix. When the tool wears out,
it needs replacement or reconditioning. The reconditioning operation is performed
in the tool room, which does not normally work during an unpersonned shift.
Since an FMS can work throughout all shifts, the availability of the tools during
the unpersonned shifts is important. Therefore, the problem of tool life management
is important to fully exploit the potential production capacity of the FMS (Grieco
et al. 2001). In the existing literature, there are few studies that consider limited
tool lives and tool change due to wear. Sarin and Chen (1987) solve machine loading
and tool allocation problems in order to minimize machining cost comprised of
tooling cost due to wear and machine usage cost. Akturk and Avci (1996) proposed
a new method for determining the optimal machining conditions and tool allocation
decisions with the objective of minimizing the sum of machining, non-machining,
tooling and tool waste costs in a single machine environment. In this study,
we consider the limited lives of the tools, which are affected by the machining
conditions selected for each operation.

According to Grieco et al. (2001), most of the articles use an objective function
that is not directly associated with the goals of the firm such as workload balancing
among the machining centres, or minimization of the number of tool movements
and changes. Although due date based objectives are very important for internal
and external customer satisfaction, they are used only in a few studies. Roh and
Kim (1997) consider the minimization of the total tardiness objective for solving
loading and scheduling problems. Akturk and Ozkan (2001) proposed a multistage
algorithm for solving the identical parallel machine scheduling problem with the
objective of minimizing the sum of tooling, operational and tardiness costs.
Bernardo and Lin (1994) consider the non-identical parallel machine schedul-
ing problem with the objectives of minimizing total tardiness and setup costs.
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In this study, we have two objectives: minimizing manufacturing cost (which
is important for the manufacturer) and minimizing total weighted tardiness incor-
porating both part priorities and due dates (which is important for the customer).

This study considers most of the issues that are addressed as future research
areas by Grieco et al. (2001). The proposed algorithm considers the interaction
between the levels of the planning hierarchy by considering the loading problem
simultaneously with the scheduling and tool allocation and replacement problems,
which are lower level problems. The requests of the higher levels are considered
by incorporating the due dates of the parts. Also, the machining conditions selection
problem, which is solved at higher levels without considering the scheduling
objectives, considers both the manufacturing cost and total weighted tardiness
objectives in this study. The proposed algorithm considers alternative tools for the
operations in order to increase the flexibility of the FMSs. The consideration of the
limited tool lives is important to fully exploit the capacity of the FMSs, especially
during the unpersonned shifts. The algorithm can easily incorporate tool
sharing when a limited number of expensive tools exist. When the proposed simul-
taneous approach is incorporated into a control system, highly flexible FMSs
can be achieved. In order to solve the problem, we propose a problem space
genetic algorithm (PSGA) to find approximately efficient solutions, which provide
alternative solutions to the decision maker (DM).

In section 2 the problem is defined with its underlying assumptions, and
the mathematical formulation of the problem is given. The proposed PSGA is
explained in section 3. The simultaneous algorithm which is used within PSGA
is explained in section 4. In section 5, we propose a sequential algorithm in order
to compare its performance with the proposed PSGA on a set of randomly generated
problems as discussed in section 6. In the last section, some concluding remarks
are provided.

2. Problem definition

A diagram of the production environment we consider in this study can be seen in
figure 1. Since most of the new FMSs consist of parallel machines (Grieco et al.
2001), we consider a non-identical parallel CNC machine environment. The CNC
turning machines are non-identical, because each CNC machine can have different
tool magazine capacities, horsepowers and tool change times and, hence, different
operating costs. However, the machines are interchangeable. Thus, they can
perform the given set of cutting operations when the required tools are loaded
on their tool magazine. A machine can process one part at a time. Each part has
a priority, which shows the importance of the part relative to the other parts.
The individual parts have distinct due dates, because they are assumed to be
produced for internal customers. The due dates do not include time windows.
Since the parts that are processed on the CNC turning machines might go to
other work centres for other operations such as milling, drilling and/or assembly,
the production schedules of the succeeding work centres might impose distinct
due dates for each part type. Also, when a master production plan, which is
determined according to the customer demand, capacity of the work centres and
due dates of the orders, is exploded through the bill of the materials, each part
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of the same type might require a distinct due date. The parts have multiple opera-
tions that should be performed on CNC turning machines. An ‘operation’ is
defined as any cutting activity requiring a different type of tool or different proces-
sing requirements such as different diameter, depth or length of cut. There is a
precedence relationship between the operations of each part. Each operation
should be processed in a certain order. Changes in the operation sequence or
integration of two or more operations are not possible. In this study, we assume
that all the operations of a part should be performed on the same machine,
since (in the existing CNC technology) the tool change times are significantly
shorter than part loading and unloading times. This strategy, which is denoted
as the tool movement policy, avoids the repositioning and re-setup of the parts,
and, hence, decreases the total processing times and the processing costs
(Mukhopadhyay and Sahu 1996).

In theory, there are many alternative ways to machine a part. The
operations can be performed with different machining times or alternative tools.
In most of the existing studies, only a single tool alternative giving the minimum
manufacturing cost is selected to perform the corresponding operation.
Consideration of alternative ways for performing the operations could allow a
better exploitation of resources, as will be shown in this study. Since the processing
of an operation cannot be interrupted for a tool change due to surface finish require-
ments, each operation should be processed with a single tool that has enough
remaining life. Only one tool can be replaced at a time. This implies that tool
changing times are additive. Since the tool magazines are integrated parts of
the machines, the tools cannot be replaced while the machine is processing a part.
The unassigned tools are kept in a central tool storage location. The tools are
transferred between the tool storage area and the tool magazines of the machines
by a robotic manipulator. Under these assumptions, we will determine the relevant
tool management decisions (which are machining conditions selection and tool
allocation), and loading and scheduling decisions, with the objectives of minimizing

operation 4

tool 6 tool 7

Tool magazine

CNC MACHINE CNC MACHINE

TOOL STORAGE AREA

robot robot

CONVEYOR

Tools Tools

Tool magazine

parts
operation 1 operation 2 operation 3

tool 1 tool 2 tool 3 tool 4 tool 3 tool 5

Figure 1. Production environment.
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the manufacturing cost and minimizing total weighted tardiness. The notation used
is given in tables 1 and 2.

We first propose a mathematical programming (MP) model of the problem.
The bi-criteria objectives of the minimization of the manufacturing cost, f m,
and the total weighted tardiness, f t, can be written as follows:

min fm ¼
X
p

X
i

X
j

X
m

Comt
m
pijm þ CtjUpijm þ Comt

nm
pijm

� �
Zpijm,

min f t ¼
X
p

X
s

X
m

wpTpsm

¼
X
p

X
s

X
m

wp max 0,
X
r

Xs�1

s0¼1

ðt prmXrs0m þ t ppm �DDpÞXpsm

( ) !
,

where

tmpijm ¼
�DpiLpi

12vpijm fpijm
, Upijm ¼

�DpiLpiðdpiÞ
�j

12CjðvpijmÞ
ð1��jÞðfpijmÞ

ð1��jÞ
,

t ppm ¼
X
i

X
j

t mpijm þ t nmpijm
� �

Zpijm,

t nmpijm ¼ gðUpijm,Rjm,TSm,THmÞ

¼

0, if ð j ¼ THmÞ ^ ðUpijm � RjmÞ,

tcjm, if ð j 2 TSmÞ ^ ðUpijm � RjmÞ,

tcjm þ tljm, if ðð j 2 TSmÞ ^ ðUpijm > RjmÞ ^ ðjTSmj 6¼ TMmÞÞ

_ ðð j =2TSmÞ ^ ðjTSmj 6¼ TMmÞÞ,

tcjm þ trj0m, if ðð j 2 TSmÞ ^ ðUpijm > RjmÞ ^ ðjTSmj ¼ TMmÞÞ

_ðð j =2TSmÞ ^ ðjTSmj ¼ TMmÞÞ:

8>>>>>>>>>>><
>>>>>>>>>>>:

The first term in the manufacturing cost is the machining cost, which is incurred
for the time spent to complete a metal cutting operation. The machining time is a
function of the cutting speed, vpijm, and the feed rate, fpijm. As the cutting speed and
the feed rate increase, the machining time decreases. The second term is the tooling
cost. It is related to the tool usage rate, which is the ratio of the machining time to
tool life. The tool usage rate decreases as the cutting speed and feed rate increase.
The relationship between the machining conditions and the expected tool life is
approximated by Taylor’s tool life formula as discussed in Groover (2002).
The third term is the non-machining cost that is incurred for replacing and loading
tools. The non-machining cost depends on the current status of the tool magazine.
The tool changing time, tcjm, occurs when the tool currently loaded in the machine
is not appropriate for the operation, and the required tool is already stored in the
tool magazine. A tool loading time, tljm, is added to the non-machining time when
the required tool is not in the tool magazine and a free slot exists on the tool
magazine. A tool replacement time, trjm, occurs when there is no free slot for the
required tool. In this case, a tool from the tool magazine should be removed in order
to load the required tool. The second objective is the minimization of the total
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weighted tardiness, which depends on the starting time of a part, the machining
and non-machining times of each operation, and the due date of the corresponding
part. If a part is assigned to sequence position s on machine m, the tardiness
is calculated by using the total processing times of the jobs scheduled up to s,
and the processing time and due date of the corresponding part. The processing

Table 1. Parameters.

�j,�j, �j Speed, feed, depth of cut exponents for tool j
Cm, b, c, e Specific coefficient and exponents of the machine power constraint
Cs, g, h, l Specific coefficient and exponents of the surface roughness constraint
Cj Taylor’s tool life constant for tool j
dpi Depth of cut for operation i of part p (in)
Dpi Diameter of the generated surface for operation i of part p (in)
Lpi Length of the generated surface for operation i of part p (in)
HPm Maximum available machine power of machine m (hp)
SFpi Maximum allowable surface roughness for operation i of part p (� in)
DDp Due date of part p
wp Weight of part p
Com Operating cost of machine m ($/min)
Ctj Cost of tool j ($/tool)
tcjm Tool interchange time of tool j with the required tool

for the next operation in machine m
tljm Time required to take a single tool j from central tool storage and load

on machine m when there is a free slot on the tool magazine
trjm Tool replacing time of worn tool j with a new tool

from central tool storage to machine m
TMm Tool magazine capacity of machine m
Op Operation set of part p
u Weight of first objective (minimization of manufacturing cost) (0 � u � 1)

Table 2. Decision variables.

vpijm Cutting speed for operation i of part p using tool j on machine m (fpm)
fpijm Feed rate for operation i of part p using tool j on machine m (ipr)
Zpijm Binary variable which is equal to 1 if operation i of part p is assigned

to machine m and uses tool j
Upijm Tool usage rate of operation i of part p using tool j on machine m
Rjm The ratio of remaining tool life of tool j on machine m to the

tool life of a new tool
TSm Set of tools on the tool magazine of machine m
THm Type of tool on the tool holder of machine m
tnmpijm Non-machining time of operation i of part p using tool j on machine m

tmpijm Machining time of operation i of part p using tool j on machine m

f m
pm, f

t
pm Manufacturing cost and total weighted tardiness of part p on machine m

tppm Sum of machining and non-machining times of all operations
of part p on machine m

Tpsm Tardiness value of part p when it is scheduled at sequence position s
on machine m

Xpsm Binary variable which is equal to 1 when part p is scheduled at
sequence position s on machine m
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time of a part is the sum of machining and non-machining times of all operations for
the corresponding part. These two objectives usually conflict with each other.
We can decrease the machining time, and hence machining cost, by increasing the
cutting speed and feed rate. But, this will increase the tooling and non-machining
costs. The total weighted tardiness increases or decreases according to changes in
the sum of machining and non-machining times. In this study, we aim to find efficient
solutions which provide alternatives to the decision maker (DM). A solution S
is inefficient if there exists another solution S0 such that f iðS0

Þ � f iðSÞ, 8 i and
f iðS0

Þ < f iðSÞ for at least one i. If there is no solution like S0, then S is called an
efficient solution.

In the proposed MP model, the first set of constraints represents the machining
conditions selection constraints imposed on vpijm and fpijm. In order to find machining
conditions for each operation–tool pair, we use the tool life, machine power and
surface roughness constraints of the geometric programming model proposed by
Akturk and Avci (1996). These constraints are as follows:

�DpiLpiðdpiÞ
�j

12Cj

� �
ðvpijmÞ

ð�j�1Þ
ð fpijmÞ

ð�j�1Þ
� 1, 8 p, i, j,m, ð1Þ

CmðdpiÞ
e

HPm

� �
ðvpijmÞ

b
ð fpijmÞ

c
� 1, 8 p, i, j,m, ð2Þ

CsðdpiÞ
l

SFpi

 !
ðvpijmÞ

g
ð fpijmÞ

h
� 1, 8 p, i, j,m, ð3Þ

vpijm, fpijm > 0, 8 p, i, j,m: ð4Þ

The first constraint is the tool life constraint. In order to perform each operation
with a single tool, the tool usage rate should not exceed the available tool life.
The second constraint (machine power constraint) guarantees the feasibility of the
cut according to the machine’s capacity. The third constraint is the surface roughness
constraint which is necessary for quality requirements. The decision variables are the
cutting speed and feed rate. The specific constants for the tools, which change
according to the tool type and the parts’ material, can be obtained from machining
handbooks.

The second set of constraints is the tool allocation, part loading and scheduling
constraints, which can be written asX

s

X
m

Xpsm ¼ 1, 8 p, ð5Þ

X
p

Xpsm � 1, 8m, s, ð6Þ

X
j

X
m

Zpijm ¼ 1, 8 p, i, ð7Þ

X
j

Zpijm �
X
j

Zp,iþ1,j,m, 8 p, i,m, ð8Þ
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X
i

X
j

Zpijm ¼ jOpj
X
s

Xpsm, 8 p,m, ð9Þ

Xpsm 2 f0, 1g, 8 p, s,m and Zpijm 2 f0, 1g, 8 p, i, j,m: ð10Þ

According to the fifth constraint, each part should be assigned to a single machine
and a sequence position. Each sequence position on each machine should be
occupied by at most one part, which is dictated by constraint (6). Constraint (7)
guarantees that each operation of a part should be performed by a single tool
alternative on a single machine. Constraints (8) and (9) state that all operations
of a part should be performed on the same machine. The last set is integrality and
non-negativity constraints.

The proposed mathematical model is nonlinear due to constraints (1)–(3), and
the machining and tooling costs and total weighted tardiness. The non-machining
cost, which depends on the current status of the tool magazine, is difficult to
calculate at the beginning of the planning horizon since it depends on the previous
tool allocation, and part loading and sequencing decisions. The overall problem
we consider is quite complex and thus we develop heuristics to solve it as explained
in the following sections.

3. Problem space genetic algorithm

Problem space search was proposed by Storer et al. (1992) and used successfully in
solving different problems such as the scheduling of aircraft landings (Ernst et al.
1999), the melt scheduling in a steel manufacturer (Naphade et al. 2001) and
the scheduling of a single machine with weighted tardiness objective (Avci et al.
2003). Problem space search uses a neighbourhood structure in the problem space,
instead of a solution space. In problem space search, a constructive ‘problem-
specific’ base heuristic, H, maps a problem instance data vector D to a solution
sequence S, i.e. H: D ! S. Given any solution S, the objective function V(S) can
be calculated. Let � be the set of perturbation vectors. A perturbation vector is
decoded into a sequence by applying the base heuristic to the perturbed data
(H(Dþ �)) and the objective value is obtained by applying V(H(Dþ �)). The opti-
mization problem can be defined as finding the solution with minimum objective
function value over all perturbation vectors (min� VðHðDþ �))).

One advantage of using problem space search in this problem is that there is no
need for a feasibility check, which will take significant computation time in loading
and scheduling of flexible manufacturing systems with tooling constraints in classical
local search methods using solution space as the neighbourhood structure. The basic
steps of the proposed problem space genetic algorithm (PSGA) are as follows.

(1) Set the generation number k equal to zero and form the initial perturbation
matrix, Ak

Ak
¼

1
..
.

P

�k1,ð11Þ � � � �k1,ðpmÞ � � � �k1,ð jmÞ � � �

..

. ..
. ..

.

�kP,ð11Þ � � � �kP,ðpmÞ � � � �kP,ð jmÞ � � �

2
64

3
75,
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where the values of �ky,ðpmÞ and �ky,ð jmÞ are randomly generated from a uniform
distribution UN ½��, �� and P is the population size. The perturbation values
are generated for each part–machine pair, which is used to perturb the part
selection index, PSpm (as discussed in section 4), and for each tool–machine
pair, which is used to perturb the tool index, TIjm (as discussed in section 4.3).

(2) For each perturbation vector, i 2 f1, 2, . . . ,Pg, call the ‘base heuristic’ and
solve the problem with perturbed part selection and tool removal indices.
Find the total manufacturing cost and total weighted tardiness for each
solution.

(3) Update the non-dominated solution set according to the solutions found
in generation k.

(4) For each perturbation vector, y 2 f1, 2, . . . ,Pg, calculate the fitness value,
which depends on the normalized manufacturing cost ( fmð yÞ) and total
weighted tardiness ( f tðyÞ) of the corresponding solution. The fitness value
of each encoding is the weighted linear function of the two normalized
objectives, which is calculated as follows:

fitnessð yÞ ¼ u
fmðyÞ �min fm

max fm �min fm
þ ð1� uÞ

f tðyÞ �min f t

max f t �min f t
:

(5) Assign selection probabilities to each member of the population according
to the fitness values. The probability of selecting encoding y according to
its fitness value is

Probð yÞ ¼
ðmaxy0 fitnessð y

0
Þ � fitnessð yÞÞscPP

y0¼1ðmaxy00 fitnessð y
00Þ � fitnessð y0ÞÞsc

,

where sc is the selectivity constant.
(6) Generate P encodings for the next generation by using sexual and asexual

reproduction, the elitist approach and mutation operations (see Goldberg
(1989) for more detailed information about GAs).

(7) Go to Step 2 and repeat for a fixed number of generations and number
of restarts.

The parameters of the proposed problem space genetic algorithm should be
selected carefully in order to achieve a better performance. The elements of the
perturbation vectors are generated from a uniform ½��, �� distribution. The magni-
tude of the perturbation vectors is thus controlled by the parameter �. If � is too
small, only a few solutions will be generated (repeatedly), thus the search space will
not be rich. As � approaches infinity, we are essentially generating random solutions.
Thus � must be chosen carefully in order to generate a diverse set of good solutions.
As the selectivity constant, sc, increases, better solutions will have a greater chance
of being selected. If sc is too large, the population will converge quickly, which is
not desirable, since we are trying to find a diversified set of solutions. The algorithm
could find better results as the number of generations increases. The number
of restarts, NS, affects the diversity of the non-dominated solutions.

The performance of PSGA is very sensitive to the performance of the base
heuristic as shown by Avci et al. (2003). The performance of PSGA increases with
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a good, problem-specific base heuristic. In this study, we propose simultaneous and
sequential algorithms that are used in PSGA as base heuristics. The proposed
algorithms are explained in the following sections.

4. Simultaneous approach

In problem space search, one needs a problem-specific base heuristic, which maps
a point in problem space to a solution. Our aim is to minimize the total manufactur-
ing cost and total weighted tardiness. The machining and tooling costs are functions
of the cutting speed and feed rate as explained in section 2. The non-machining
cost and the total weighted tardiness are dynamic terms, i.e. they change as the
state of the system changes. The status of the tool magazine determines the non-
machining time, and hence the non-machining cost and the total weighted tardiness.
According to the proposed base heuristic, tool allocation, part loading and
scheduling decisions are made. The steps of the base heuristic are as follows.

. Step 1. Initialization: UNS ¼ f1, 2, . . . ,Ng, ALT ¼ f1, 2, . . . ,Mg and
tnowm ¼ 0 for all m 2 ALT, where UNS is the set of unscheduled parts, ALT
is the set of altered machines and tnowm is the current time, on machine m.

. Step 2. For each part p 2 UNS and machine m 2 ALT, calculate the
increase in both manufacturing cost and total weighted tardiness as fmpm ¼P

i

P
jðComt

m
pijm þ CtjUpijm þ Comt

nm
pijmÞ and f tpm ¼ maxf0, tnowm þ

P
i

P
jðt

m
pijmþ

tnmpijmÞ �DDpg, respectively.
. Step 3. Calculate the normalized values of the objectives as

f 0pm ¼
fpm �minp,m fpm

maxp,m fpm �minp,m fpm
:

Find the machine, m( p), giving the minimum weighted linear function
of two objectives for each part p 2 UNS, i.e. mðpÞ ¼ argmin8m �

ðu � fm
0

pm þ ð1� uÞ � f t
0

pmÞ.
. Step 4. Calculate the following part selection index for each f p,mð pÞg
pair found in Step 3:

PSp,mðpÞ ¼
wp

t
p
p,mð pÞ

exp �
max 0,DDp � tnowmðpÞ � t

p
p,mðpÞ

n o
k � t

2
4

3
5,

where

t ¼

P
p2UNS t

p
p,mðpÞ

jUNSj
, t

p
p,mðpÞ ¼

X
i

X
j

tmp,i,j,mðpÞ þ tnmp,i,j,mðpÞ

� �
,

and k is a lookahead parameter. Normalize the part selection index as

PS0p,mðpÞ ¼
PSp,mðpÞ �minp,mðpÞ PSp,mðpÞ

� �
maxp,mðpÞ PSp,mðpÞ

� �
�minp,mðpÞ PSp,mðpÞ

� � :
Select the f p,mðpÞg pair giving the maximum PS0p,mðpÞ þ �p,mðpÞ,
i.e. f p�,mðp�Þg ¼ argmaxp2UNS PS0p,mðpÞ þ �p,mðpÞ

� �
.
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. Step 5. Assign part p� to machine mðp�Þ. Update the current time on
machine mð p�Þ such that tnowmðp�Þ ¼ tnowmðp�Þ þ t

p
p�,mðp�Þ. The remaining life of

the tools used by part p� is updated as Rj,mðp�Þ ¼ Rj,mðp�Þ �Up�,i, j,mðp�Þ.
. Step 6. Update UNS ¼ UNSnfp�g and ALT ¼ fmð p�Þg. If UNS 6¼ 1,
go to Step 2, else stop.

In the proposed algorithm, the parts are scheduled one at a time since the
non-machining times depend on the tool magazine status and cannot be determined
easily in advance. The part loading and scheduling, and tool allocation and
replacement decisions are given at each decision point considering the current
status of the tool magazine. Since the non-machining cost and weighted tardiness
are dynamic terms in the objective function, they are recalculated after each
assignment (Step 2).

In most of the existing studies considering parallel machine environments,
the primary objective is balancing the workload. As the machines become available,
a part is selected and loaded to the first available machine. However, balancing the
workload might not be a good alternative when the manufacturing cost is consid-
ered. In the proposed algorithm, the parts are loaded to the machines that give
the minimum increase in both manufacturing cost and total weighted tardiness at
the current time. The machine giving the minimum increase is the most appropriate
machine for that part at the current time. At some later time, since the tool magazine
status changes, another machine may become better for that part. Since the two
objectives have different ranges, the objective function values are normalized in
order to prevent the dominance of one objective over the other. The weighted
linear combination of the normalized objectives is used for determining the chosen
machine (Step 3).

After the most suitable machine is determined for each part, a part selection
index is used for selecting a part–machine pair (Step 4). The proposed index
considers the weights of parts, the slack, and the sum of machining and non-
machining times. The index gives higher priority to parts having less slack and
shorter weighted processing time. The processing time is taken as the sum of machin-
ing and non-machining times. The part selection indices are normalized between
zero and one and the perturbation values are added to the normalized indices.
The part–machine pair giving the maximum perturbed part index is selected for
scheduling. The algorithm continues until all parts are scheduled.

In the proposed base heuristic, there are three important issues: determination
of machining conditions, selection of the tool that will be used to process each
operation and calculation of non-machining times. These decisions are all implicit
in Step 2 of the algorithm above. In the following subsections, we will explain each
issue in detail.

4.1 Machining conditions selection

Machining conditions such as the cutting speed and feed rate affect the machining
times and tool usage rates. The machining times are the primary inputs to the
scheduling problem. As Sodhi et al. (2001) stated, the selection of cutting parameters
is guided by the minimization of either the processing cost or the processing time.
Tool usage rates affect the tool allocation and replacement decisions. In order to find
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machining conditions, we use the geometric programming model proposed by
Akturk and Avci (1996). The GP model is as follows:

min SMOPpijm ¼ Comt
m
pijm þ CtjUpijm,

s:t: ð1Þ, ð2Þ, ð3Þ, ð4Þ ðfrom the MP model in section 2Þ:

The model minimizes the sum of machining and tooling costs subject to tool life,
machine power and surface roughness constraints. As discussed in a previous study
by Turkcan et al. (2003), the surface roughness constraint is binding at optimality.
When constraint (3) is tight, CsðdpiÞ

l
ðvpijmÞ

g
ð fpijmÞ

h=SFpi ¼ 1. The objective function
(the sum of machining and tooling costs) becomes a function of machining time such
that SMOPpijm ¼ Comt

m
pijm þ Apijðt

m
pijmÞ

Bj where tmpijm � tml
pijm,

Bj ¼
gð�j � 1Þ � hð�j � 1Þ

h� g
,

and

Apij ¼
�DpiLpiðdpiÞ

�jCtj

12Cj

� �
CsðdpiÞ

l

SFpi

" #ð�j��jÞ=ðh�gÞ
�DpiLpi

12

� �ð�BjÞ

:

The sum of machining and tooling costs is a convex function of machining time.
The minimum machining time, tml

pijm, is the point at which surface roughness and
machine power or tool life constraints intersect. When non-machining times are
ignored, the minimum machining times minimize the total weighted tardiness.
Let tmu

pijm be the machining time that minimizes SMOPpijm. In this study, since we
try to minimize both the manufacturing cost and total weighted tardiness, we select
the machining time as the weighted linear combination of tmu

pijm and tml
pijm,

i.e. tmpijm ¼ u � tmu
pijm þ ð1� uÞ � tml

pijm.

4.2 Tool selection

Advances in cutting tool materials and designs will increase the cutting speeds
at which the machining can be carried out, consequently reducing the machining
cost at the expense of higher initial tooling cost. Therefore, we consider a set of
alternative cutting tool types for each machining operation, since no one cutting tool
type is best for all purposes. The tool alternative giving the minimum sum of machin-
ing and tooling costs is selected as the primary tool in our study. In the first
part of our computational study, we assume that all operations are performed
with their primary tools. In section 6.1, we consider alternative tooling. As a
result, we not only provide solution flexibility in choosing different tool alternatives,
but also the capability to assign different processing times to each operation to
improve the solution quality.

In the proposed base heuristic at Step 2, both objective function values change
when alternative tools are considered. The main problem in calculating the change
in objective functions is selecting the tool which will be used for performing the
corresponding operation. If the primary tool is on the tool holder or on the tool
magazine and the remaining life of that tool is enough to perform the operation, then
the primary tool is used. If we cannot find the primary tool in the tool magazine,
we then check whether one of the alternative tools exists in the tool magazine.
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If at least one of the alternative tools exists in the tool magazine, we calculate the
tool selection index, Spijm, for the tools which have enough remaining life. The tool
selection index for part p on machine m using tool j for operation i is calculated
as follows:

Spijm ¼ Comt
m
pijm þ CtjUpijm þ Comt

nm
pijm

� �
tmpijm þ t nmpijm
� �

:

The first term in the index is the manufacturing cost, which is the sum of machining,
tooling and non-machining costs. The second term is the total processing time, which
is the sum of machining and non-machining times. According to the proposed index,
the tool giving the least manufacturing cost and the least total processing time
is preferable. The total processing time can be thought of as a lookahead mechanism
which increases the priority of the tool giving less processing time, since the com-
pletion time of the corresponding operation is important for the weighted tardiness
of the remaining unscheduled parts. We calculate the tool selection index for all
alternative tools. The tool giving the minimum index is selected for processing
the part.

4.3 Non-machining time calculation

According to the proposed base heuristic (PI), the non-machining times should
be calculated at each decision point since the tool magazine status changes after
each assignment. Therefore, the calculation of non-machining times is a very critical
and time-consuming task. In order to decrease the computation time, we consider
two alternatives for calculation of non-machining times. The first alternative,
denoted as PI-avg, uses average non-machining times. We know that the non-
machining time of an operation may take any one of four different values (0, tcj,
tcjþ tlj, tcjþ trj), which change according to the tool magazine status as explained
in section 2. For example, if a part has three operations, there are 34 non-machining
time alternatives. We can find an average non-machining time by using all possible
alternatives, assuming that they occur with equal probabilities, and use that single
value throughout the PSGA. However, when we look at the actual non-machining
times that are calculated in PSGA using PI, we see that the alternatives have different
frequencies. Some non-machining time alternatives rarely occur. Therefore, PSGA
using PI, which calculates non-machining times at each decision point, can be used,
until we obtain a certain number of observations. After that point, we can use the
average non-machining times calculated using the observed values by implicitly
assuming that the non-machining times do not fluctuate. The best way to measure
variability of the non-machining times is the coefficient of variation (CV) over a
number of observations. In our study, we calculate the CV of a part p on machine m
after 1000 non-machining time observations. If CV is smaller than 0.75, it is
considered as steady and the average of non-machining times is used as the non-
machining time of that part for the rest of the iterations. If it is greater than 0.75, the
non-machining times are calculated at each decision point until the number of
observations becomes 2000. If CV � 0:75 then we use the average non-machining
time. Otherwise, we take 2000 more observations and recalculate the average
non-machining times that will be used afterwards.

The second alternative, EXP, uses expected non-machining times. Since
the remaining tool lives can be any value between 0 and 1, we assume that the
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remaining life of a tool is uniformly distributed over [0.0, 1.0]. If the maximum
remaining life of tools loaded on the tool magazine, maxfRjmg, is less than the
usage rate, Upijm, then we have to load the required tool. If there is an empty slot
on the tool magazine, the non-machining time is the sum of tool changing and
loading times. If there is no empty slot, a tool is replaced. The non-machining
time becomes the sum of tool changing and replacing times. If the remaining
life of the tool is enough to perform the operation, the non-machining time
is only the tool change time. The expected non-machining time for operation i
of part p using tool j on machine m is calculated as follows:

EðtnmpijmÞ ¼

Z Upijm

0

ðtcj þ trj0 ÞdU
0
þ

Z 1

Upijm

tcj dU
0
¼ trj0Upijm þ tcj,

if there is no empty slot,Z Upijm

0

ðtcj þ tljÞdU
0
þ

Z 1

Upijm

tcj dU
0
¼ tljUpijm þ tcj, otherwise.

8>>>>>><
>>>>>>:

An important issue in non-machining time calculation is choosing which
tool to remove when there is no free slot in the tool magazine for the required
tool of the current operation. This critical decision affects the non-machining
times of the succeeding parts that will be scheduled on that machine. Tang and
Denardo (1988) proposed the keep tool needed soon (KTNS) rule for
changing the tools on the tool magazine. The tools which are required most by
the remaining unscheduled operations are kept on the tool magazine. If a tool
that has not enough remaining life to perform any operation is required by most
of the operations, it is kept on the tool magazine according to the KTNS rule.
This tool will occupy a tool slot on the tool magazine, although it cannot be used
for any other operation. In order to use the tool magazine capacity effectively,
the remaining tool life and the number of operations that can be performed by
the remaining tool life should be considered for determining the tool to be removed.
We propose a new tool index, TI, which is calculated as follows for tool j on
machine m:

TIjm ¼ Rjm

X
xpijm:

If the remaining life of tool j on machine m, Rjm, is high and the number of opera-
tions that can be performed with the remaining life,

P
xpijm, is also high, then

it would be beneficial to keep that tool in the tool magazine. If we remove this
tool, the tooling and the non-machining costs are likely to increase due to more
frequent tool changes at later steps. The number of operations that can be performed
with the remaining life is calculated by considering all unscheduled operations.
In a previous study (Turkcan et al. 2003), we showed that the proposed tool
index, TI, performs better than the KTNS rule.

In the proposed PSGA, the tool index is calculated for each tool loaded on the
tool magazine. Then, the tool indices are normalized between zero and one and
perturbation values generated to perturb the tool indices (�y,ð jmÞ) are added to the
indices. The tool giving the time minimum perturbed index is removed from the
tool magazine.
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5. Sequential approach

In this study, we also propose a sequential algorithm (SLC) to solve the part
grouping, loading, scheduling and tool management problems sequentially.
The only reason that we propose a SLC algorithm is to show the relative merits
of the proposed simultaneous algorithms discussed in section 4 over a sequential
approach. The SLC algorithm uses the single linkage clustering method to solve
the part-grouping problem, such that the parts are grouped into part families and
then the part families are loaded on the machines. First, a 0–1 tool–part incidence
matrix is formed. Then, the similarities between the parts are calculated according
to the total number of tools and the number of common tools required to process
the parts. The similarity coefficient is calculated as follows:

�pr ¼
jTRp

T
TRrj

jTRp

S
TRrj

,

where TRp is the set of primary tools required to process all operations of part p.
If parts p and r require the same tools for all operations, �pr will be equal to one.
�pr will be smaller when the number of common tools decreases. The parts with
maximum similarity coefficient are combined into a part family if the maximum
coefficient is greater than a certain predetermined threshold value, ��. The similar-
ity coefficient between the new part family s and all other part families p0 is
updated as �sp0 ¼ minf�p�p0 , �r�p0 g. If the grouping continues until the number of
part families is equal to the number of machines, the parts that have totally
different tooling requirements might be in the same group. The aim in grouping
the parts is to reduce the number of tool replacements due to the part mix. After
the part families are formed, they are assigned to machines with the objective of
balancing the workload, which is the most commonly used objective in loading
problems. Although the parts in the same group are assigned to the same machine,
they are not considered as a batch that should be processed together since when
we consider the part families as batches, the total weighted tardiness might increase
significantly.

The second stage is the scheduling of the parts on each machine. Since we con-
sider the total weighted tardiness objective in our study, we use the apparent tardi-
ness cost (ATC) rule (Morton and Pentico 1993) to schedule the parts. The ATC
rule, which considers the slack values and expected processing times, is the best
performing dispatching algorithm for single machine weighted tardiness problems.
At the last stage of multiple-stage procedures, the tool allocation decisions are made.
In most of the existing studies, the keep-tool-needed-soon (KTNS) rule is used.
In the proposed method, the tool allocation decisions are given while the parts are
scheduled according to the ATC rule. A tool removal index, TI, which considers the
remaining life of the tool and the number of operations that can be performed with
the remaining life, is used for tool replacement.

In the SLC algorithm, we use well-known algorithms from the literature to solve
the problems at each stage. Although these algorithms can find good solutions for
each subproblem, they might not give a good solution for the overall problem,
because they ignore the interaction between the problems and the decisions given
at one stage become a limitation for the succeeding stage.
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6. Computational study

We performed a computational study in order to test the performance of the
proposed PSGA with different base heuristics. The performance of the proposed
simultaneous approaches (PI, PI-avg, EXP) is compared with the performance
of a sequential approach (SLC), which is the most commonly used approach in
the literature.

In the following sections, first the experimental design factors and the parameters
used in our computational study are explained. A small numerical example is
provided in order to show which integration of subproblems has the main effect
on the improvement. The numerical example also shows how a feasible solution
is improved and becomes a better solution in the proposed PSGA. The results of
the computational study are presented in the third section. The last section shows
the effect of using alternative tooling on the performance of the proposed algorithm.

All algorithms are coded in the C language and compiled with Gnu C compiler.
The problems are solved on a 400MHz UltraSPARC station.

6.1 Experimental design

There are four experimental factors that can affect the efficiency of our algorithm.
The factor levels can be seen in table 3. The experimental design is a 24 full-
factorial design. We take five replications for each factor combination, resulting
in 80 different randomly generated runs.

The number of operations per part, factor A, affects the size and load of
the system. The tooling cost, factor B, affects the ratio of tooling cost to machining
cost and hence the total machining and non-machining costs. When factor B is at the
low level, the ratio is approximately 15–20%. The ratio is approximately 25–30%
at the high level. Factor C, which determines the relative importance weight of
parts with respect to each other, affects the total weighted tardiness objective
and hence the machine allocation and scheduling decisions. Factor D is the due
date tightness factor, which affects the weighted tardiness objective. When due
dates are loose, the manufacturing cost objective dominates the weighted tardiness
objective, and machines giving less manufacturing cost are selected. When due dates
are tight it becomes more difficult to solve the problem, since the trade-off between
the objectives increases. The average makespan in the due date tightness
factor is calculated by using the expected processing times and is as follows:
average makespan ¼ ð

P
p

P
mðt

m
pm þ EðtnmpmÞÞÞ=ðM �MÞ.

Table 3. Experimental design factors.

Factor Definition Low level High level

A Number of operations per part UN � ½2, 6� UN � ½6, 10�
B Tooling cost ðCtjÞ UN � ½20, 40� UN � ½50, 70�
C Weight ðwpÞ UN � ½0:10, 0:70� UN � ½0:30, 0:50�
D Due date tightness Loose Tight

UN � ½0:6, 1:0� UN � ½0:1, 0:4�
�average makespan �average makespan
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The other variables are assumed to be fixed parameters. We assume three
non-identical parallel CNC machines. The first machine (Mazak Super Quick
Turn 100M-Y) has a horse power of 10 and tool magazine capacity of 12.
The horse power and tool magazine capacity of the second machine (Mazak
Quick Turn 300) are 30 and 16, respectively. The third machine’s (Mazak
Integrex 400Y) horse power is 40 and tool magazine size is 40. The first two CNC
machines have small tool magazines relative to the third one. As Grieco et al. (2001)
stated, machines with large tool magazines not only require high investment costs
but also result in high indexing times. The operating cost of a machine consists
of depreciation, labour, electricity, and maintenance costs. The sum of labour,
electricity and maintenance costs is 0.08 $/min for all machines. The depreciation
cost is determined by using the initial cost and the useful life of the machines.
The first machine’s initial cost is $60 000 and useful life is 10 years. As the machine
works 300 days/year, 480min/day, the depreciation cost is $60 000 (10 years�
300 days=year� 480min=dayÞ ¼ 0:04 $=min. The initial cost of the second machine
is $100 000 and the useful life is 10 years. The depreciation cost is 0.07 $/min.
The third machine has an initial cost of $280 000 and a useful life of 20 years.
The depreciation cost is 0.09 $/min. The operating costs are 0.12, 0.15 and 0.17 for
machines 1–3, respectively. There are 100 parts that will be scheduled.

There are 15 different tool types for roughing operations and five different
tool types for finishing operations. Tool change times are selected randomly
from UN � ½0:040, 0:044� for machine 1, UN � ½0:046, 0:050� for machine 2 and
UN � ½0:20, 0:30� for machine 3. Tool change times are calculated by considering
the tool indexing times, which are given in the catalogue of the CNC machines
mentioned above, and tool magazine size. Tool loading times are selected randomly
from UN � ½0:78, 0:80�. The tool replacing times are two times greater than the
tool loading times. The operation related parameters, Dpi and Lpi, are selected
randomly from the interval UN � ½1:5, 3� and UN � ½4, 8�, respectively. The last
operation of each part is the finishing operation and the other operations are
roughing operations. SFpi ¼ UN � ½300, 500� and dpi ¼ UN � ½0:2, 0:3� for roughing
operations and SFpi ¼ UN � ½30, 70� and dpi ¼ UN � ½0:025, 0:075� for finishing
operations. We assume that the objectives are equally important for the decision
maker (u ¼ 0:5).

6.2 Numerical example

The simultaneous approach to FMS loading, scheduling and tool management
problems is intuitively better than the sequential approach, which is the most
commonly used method in the existing systems. However, we do not know which
integration of the subproblems has the main effect in the improvement. In order to
see the effect of integration at different levels, we built two new algorithms. The first
algorithm, SLC-SCHTOOL, solves the loading problem first. The group technology
approach, used in the SLC algorithm, is used to group the parts and assign the
parts to the machines in this algorithm. Then the scheduling and tool management
problems are integrated and solved simultaneously in the second stage. The pro-
posed part selection index, which is used in algorithm PI, is used to schedule parts
on each machine. The actual non-machining times are calculated at each decision
point for all unscheduled parts. The second algorithm, SLC-LOADSCH, integrates
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the loading and scheduling problems. The loading and scheduling problems are
solved as they are solved in algorithm PI. The only difference is that the expected
processing times are used instead of calculating the actual non-machining times to
find the proposed machine selection and part selection indices. The tool allocation
decisions are given at the second stage after loading and scheduling decisions
are made. The proposed algorithms are coded in C language and compared with
the proposed sequential algorithm (SLC) and simultaneous algorithm (PI).

The experimental design settings discussed above are used to generate the data
for the numerical example. In order to show the feasible solutions in solution space,
we reduced the problem size. Ten parts are considered for scheduling on two
CNC machines (Mazak Super Quick Turn 100M-Y, Mazak Quick Turn 300).
The experimental factor levels for factors A, B, C and D are selected as 0, 1, 1
and 1, respectively. The due dates and weights of parts, the tools required to perform
the operations, tool usage rates and the machining times of the operations for the
example can be seen in table 4. The tooling parameters (tool costs and tool changing,
loading and replacing times) are also generated according to the distributions
given in the previous section. They are not included in the paper due to space
limitations. In problem space search, the population size is taken as 30 at the first
40 iterations and as 20 at the last 40 iterations.

The numerical example is solved by using the algorithms SLC, SLC-SCHTOOL,
SLC-LOADSCH, and PI. The sequence of parts on each machine and the objective
function values are shown in table 5 for each algorithm. According to the results,
SLC and SLC-SCHTOOL give the worst results in terms of both manufacturing
cost and total weighted tardiness. In these two algorithms, the loading problem
is solved in the upper level of the hierarchy. The solution of the loading problem
imposes constraints on the lower level problems, which restricts the solution space
unnecessarily and does not provide enough flexibility to the lower level problems.
Both SLC-LOADSCH and PI give better results since they solve the loading and
scheduling problems simultaneously. Therefore, we could claim that the integration
of loading and scheduling problems has the main effect on the improvement,
since they have a strong interaction with each other. The loading decisions might
change at each decision point due to the current tools loaded on the machines,
which affect the non-machining times.

The numerical example is also used to show how a feasible solution is improved
in the solution space. The proposed PSGA using PI as the base heuristic is used
to solve the example. First, the base heuristic PI is solved with the original problem
data where all perturbation values are equal to zero. The solution found has
a manufacturing cost of 39 and total weighted tardiness of 587. The sequence of
the parts on each machine in the solution can be seen in table 6 (iteration 0).

At the first iteration of PSGA, 30 perturbation vectors are randomly generated.
A perturbation vector consists of perturbation values for each part–machine pair
(used to perturb the part selection index, PSpm) and tool–machine pair (used to
perturb the tool index, TIjm). For example, when we perturb the part selection
indices of the unscheduled parts, different parts might give the maximum value for
different perturbation vectors. The part selected at a decision point might change
according to the values of the perturbation values. Different solutions can be found
by using the perturbation vectors. One of the perturbation vectors gave a solution
dominating the initial solution. This solution has the same manufacturing cost (39)
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with the initial solution, but has a better total weighted tardiness (531). Another
non-dominated solution, which has a better manufacturing cost (38), but worse
total weighted tardiness (696), is also found at the first iteration. At the end of
the first iteration, fitness values are assigned to each perturbation vector by using
the objective values of each solution. The perturbation vectors for the second gen-
eration are generated by using the standard crossover and mutation operations of
genetic algorithms.

At the second iteration, a solution which has a manufacturing cost of 38 and
a total weighted tardiness of 639 is found. This solution dominates the solution
found at the first iteration with objectives of (38, 696). As given in table 6, the
new solution is found by reassignment of parts 4 and 9 to machine 1 and parts 2
and 3 to machine 2. The sequence of parts 2 and 3 is also changed. The algorithm
does not get stuck in a single assignment of parts to machines. It can find different
solutions with different machine assignments and different part sequences on each
machine. Moreover, at iterations 7, 26 and 59, the non-dominated solution set
changes. In addition, table 7 shows the tool magazine status, non-machining times
(NMT) and weighted tardiness (WT) of each part for different non-dominated
solutions. It also highlights the effect of tool magazine status on the non-machining
times. If the tools do not exist on the tool magazine, the non-machining time is high.

Table 5. Numerical example—comparison of the algorithms.

Schedule Objective

Algorithm Machine 1 Machine 2
Manufacturing

cost
Total weighted

tardiness

SLC 6, 4, 2, 7, 10 3, 9, 5, 8, 1 39 632
SLC-SCHTOOL 6, 4, 2 ,7, 10 3, 9, 5, 8, 1 39 632
SLC-LOADSCH 2, 9, 10, 1, 8 3, 6, 4, 7, 5 39 525
PI 6, 2, 1, 10, 5, 8 3, 4, 7, 9 38 606

3, 6, 4, 5, 1 2, 7, 8, 9, 10 39 523

Table 6. Numerical example–non-dominated solutions.

Iteration

Schedule Objective

Machine 1 Machine 2
Manufacturing

cost
Total weighted

tardiness

0 6, 3, 7, 5, 1, 8 4, 2, 9, 10 39 587

1 6, 3, 10 ,2, 5, 1 4, 9, 7, 8 38 696
6, 4, 3, 5, 1 2, 7, 8, 9, 10 39 531

2 4, 6, 9, 10, 5, 1 2, 3, 7, 8 38 639
6, 4, 3, 5, 1 2, 7, 8, 9, 10 39 531

7 6, 4, 9, 10, 5, 1 2, 3, 7, 8 38 630
6, 4, 3, 5, 1 2, 7, 8, 9, 10 39 531

26 6, 4, 9, 10, 5, 1 2, 3, 7, 8 38 630
3, 6, 4, 5, 1 2, 7, 8, 9, 10 39 523

59 6, 2, 1, 10, 5, 8 3, 4, 7, 9 38 606
3, 6, 4, 5, 1 2, 7, 8, 9, 10 39 523

1203Due date and cost-based FMS loading, scheduling and tool management

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
2:

41
 1

3 
N

ov
em

be
r 

20
17

 



T
a
b
le

7
.

N
u
m
er
ic
a
l
ex
a
m
p
le
—

im
p
ro
v
em

en
t
in

th
e
fe
a
si
b
le

so
lu
ti
o
n
.

It
er
a
ti
o
n

M
a
ch
in
e
1

M
a
ch
in
e
2

O
b
je
ct
iv
e

P
a
rt
s

T
o
o
l
m
a
g
a
zi
n
e

N
M
T

W
T

P
a
rt
s

T
o
o
l
m
a
g
a
zi
n
e

N
M
T

W
T

0
6

1
6
–
(1
,1
4
,1
0
)

0
.3

0
4

1
6
–
(1
,2
)

0
.2
5

0
(3
9
,5
8
7
)

3
1
6
–
(1
,1
4
,1
0
,0
)

0
.1
1

1
7

2
1
5
–
(1
6
,2
,1
,1
3
,3
,1
0
)

0
.5
1

8
0

7
1
9
–
(1
,1
4
,1
0
,1
6
,0
,1
3
,7
)

0
.3

6
7

9
1
5
–
(1
6
,2
,1
,8
,3
,1
0
,1
3
,1
1
)

0
.2
7

7
0

5
1
9
–
(1
,2
,1
0
,1
6
,0
,1
3
,7
,9
,6
,1
4
)

0
.3
1

1
2
9

1
0

1
5
–
(1
6
,2
,1
,8
,9
,1
0
,1
3
,1
1
,3
,0
)

0
.2
7

8
0

1
1
9
–
(1
,2
,6
,1
6
,0
,1
3
,7
,9
,1
0
,1
4
)

0
.0
2

1
0
7

8
1
5
–
(0
,2
,6
,1
6
,1
9
,1
3
,7
,9
,1
0
,1
4
,1
)

0
.1
2

3
7

1
6

1
6
–
(1
,1
4
,1
0
)

0
.3

0
4

1
6
–
(1
,2
)

0
.2
5

0
(3
8
,6
9
6
)

3
1
6
–
(1
,1
4
,1
0
,0
)

0
.1
1

1
7

9
1
5
–
(1
,2
,1
6
,1
1
,8
,1
3
)

0
.5

3
0

1
0

1
5
–
(1
,1
4
,1
0
,1
6
,0
,3
,9
)

0
.3

3
9

7
1
9
–
(1
,2
,1
6
,1
1
,8
,0
,1
5
,1
3
,7
)

0
.3
9

9
4

2
1
5
–
(1
0
,1
4
,3
,1
6
,0
,9
,1
,1
3
)

0
.1
3

1
9
5

8
1
5
–
(0
,2
,1
6
,1
1
,8
,1
9
,1
,1
3
,7
)

0
.0
2

1
6

5
1
9
–
(1
0
,2
,3
,1
6
,0
,1
4
,1
,1
3
,1
5
,6
,9
)

0
.3
1

1
7
3

1
1
5
–
(6
,2
,3
,1
6
,0
,1
4
,1
,1
3
,1
5
,1
0
,9
)

0
.0
2

1
3
2

1
6

1
6
–
(1
,1
4
,1
0
)

0
.3

0
2

1
5
–
(1
,1
3
,3
,1
0
)

0
.5
1

1
5

(3
9
,5
3
1
)

4
1
6
–
(1
,1
4
,1
0
,2
)

0
.1
1

9
7

1
9
–
(1
,0
,3
,1
0
,1
5
,1
3
,7
)

0
.3
9

6
1

3
1
6
–
(1
,1
4
,1
0
,2
,0
)

0
.1

4
5

8
1
5
–
(0
,1
9
,3
,1
0
,1
,1
3
,7
)

0
.0
2

1
1

5
1
9
–
(1
,2
,1
0
,6
,0
,1
6
,1
4
,9
)

0
.3
1

1
0
8

9
1
5
–
(0
,1
9
,3
,1
0
,1
,8
,7
,1
3
,1
1
)

0
.2
6

9
2

1
1
9
–
(1
,2
,6
,1
0
,0
,1
6
,1
4
,9
,1
3
)

0
.1
2

9
6

1
0

1
5
–
(3
,1
9
,9
,1
0
,1
,8
,7
,1
3
,1
1
,0
)

0
.1
5

9
4

2
6

3
1
6
–
(1
,0
)

0
.2

0
2

1
5
–
(1
,1
3
,3
,1
0
)

0
.5
1

1
5

(3
9
,5
2
3
)

6
1
6
–
(1
,0
,1
0
,1
4
)

0
.2
1

0
7

1
9
–
(1
,0
,3
,1
0
,1
5
,1
3
,7
)

0
.3
9

6
1

4
1
6
–
(1
,0
,1
0
,1
4
,2
)

0
.1

4
6

8
1
5
–
(0
,1
9
,3
,1
0
,1
,1
3
,7
)

0
.0
2

1
1

5
1
9
–
(1
,0
,1
0
,2
,6
,1
6
,1
4
,9
)

0
.3
1

1
0
8

9
1
5
–
(0
,1
9
,3
,1
0
,1
,8
,7
,1
3
,1
1
)

0
.2
6

9
2

1
1
9
–
(1
,0
,6
,2
,1
0
,1
6
,1
4
,9
,1
3
)

0
.1
2

9
6

1
0

1
5
–
(3
,1
9
,9
,1
0
,1
,8
,7
,1
3
,1
1
,0
)

0
.1
5

9
4

5
9

6
1
6
–
(1
,1
4
,1
0
)

0
.3

0
3

1
6
–
(1
,0
)

0
.2
5

0
(3
8
,6
0
6
)

2
1
5
–
(1
6
,1
4
,3
,1
,1
3
,1
0
)

0
.3
2

8
1

4
1
6
–
(1
,0
,2
)

0
.1
3

0
1

1
9
–
(1
6
,1
4
,3
,1
,1
5
,6
,1
0
,1
3
)

0
.2
1

5
4

7
1
9
–
(1
,1
6
,2
,0
,1
3
,7
)

0
.3
8

5
9

1
0

1
5
–
(1
6
,1
4
,9
,1
,3
,6
,1
0
,1
3
,1
9
,0
)

0
.2
1

8
9

9
1
5
–
(1
,1
6
,2
,0
,8
,7
,1
9
,1
1
,1
3
)

0
.3
9

8
4

5
1
9
–
(1
6
,2
,1
4
,1
,3
,1
5
,1
0
,1
3
,9
,0
,6
)

0
.1
2

1
9
8

8
1
5
–
(1
6
,2
,1
4
,0
,3
,1
,1
0
,1
3
,9
,1
9
,6
)

0
.0
2

4
1

1204 A. Turkcan et al.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
2:

41
 1

3 
N

ov
em

be
r 

20
17

 



When the tools already exist on the magazine, the non-machining times decrease
since only tool changing times are incurred.

The numerical example shows how complicated our problem is. The non-
machining times change as the tool magazine status changes. If we had used the
solution space as the neighbourhood structure, we would have performed a feasi-
bility check after each change in the sequence or machine assignment. The feasibility
check is a time-consuming task in the loading and scheduling problem with tooling
constraints. The non-dominated solutions found show how effectively the proposed
algorithm can find different solutions and improve the non-dominated solution
set. The algorithm searches a large problem space as can be understood from the
resulting non-dominated solutions with different machine assignments and sequence
changes (tables 6 and 7).

6.3 Results

We first compare the single pass implementations of the proposed base heuristics,
PI, EXP and SLC. We could not use PI-avg as a single pass algorithm since
we cannot accurately calculate the average non-machining times due to an insuffi-
cient number of observations. The minimum, average and maximum of the weighted
linear combination of normalized objective functions for algorithms PI, EXP
and SLC are (0.21, 0.36, 0.52), (0.30, 0.45, 0.69) and (0.48, 0.57, 0.89), respectively.
The CPU times in seconds are 0.290, 0.035 and 0.037 for algorithms PI, EXP and
SLC, respectively. According to the first performance measure, PI is the best
algorithm, whereas SLC is the worst algorithm. However, when we look at the
CPU times, we can see that PI is the most time-consuming algorithm. EXP and
SLC have significantly smaller CPU times.

In order to test the performance of PSGA, the number of restarts (NS) is either
one or four. For the single start case (NS1), the population size is 30 for the first
40 generations and 20 for the next 40 generations at level 1 (L1). At level 2 (L2), the
population size is 30 for the first 80 generations and 20 for the next 80 generations.
For the multistart case (NS4), the population sizes are 30 and 20 for the first 10
and last 10 generations, respectively, at level 1 (L1). The population sizes are 30 and
20 for the first 20 and last 20 generations, respectively, at level 2 (L2). The remaining
factors of PSGA are set as fixed parameters after some trial runs. The perturbation
values are uniformly generated from UN � ½�0:5, 0:5�. The percentage of sexual
reproduction is 80%. Uniform crossover, in which the perturbation values of
the offspring come from either parent with probability 0.5, is used. The mutation
probability is set as 0.05. Finally, sc, which is used for assigning probabilities to
the members of the population, is taken as 2.

An important issue in PSGA is the selection of the problem data that will be
perturbed. In our problem, the part selection index, PSpm, which is used to assign
parts to machines, and the tool removal index, TIjm, which is used to remove tools
from the tool magazine, are perturbed to find different solutions for algorithms PI,
PI-avg and EXP. For algorithm SLC, ATCpm and TIjm are perturbed.

We solve 80 problems for each generation–population size level and number of
restarts. The results are summarized in table 8. The first performance measure is the
average of the weighted linear function of two normalized objectives (normobj).
Since the two objectives have different ranges, we cannot take the average of the
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actual values of the two objectives to compare different algorithms. The objective
function values for a solution are normalized according to the minimum and
maximum objective function values found by all algorithms and then the normalized
objective function values are aggregated into a single value by using a weighted
linear function such that

f 0 ¼ u
fm �miny f

m
y

maxy f
m
y �miny f

m
y

þ ð1� uÞ
f t �miny f

t
y

maxy f
t
y �miny f

t
y

:

The solution giving the minimum f 0 is taken as the best solution for the correspond-
ing algorithm. The average is taken over 80 problems. First, we compare the
performance of the PSGA using different base heuristics. As we can see from the
results, PI gives the best results. When we consider the computation times (which is
the third performance measure), we can see that PI is also the most time-consuming
algorithm. The algorithms PI-avg and EXP give solutions that are close to the
solutions found by PI and their computation times are significantly less than the
computation time of PI. The relationship between the CPU times and the normalized
objectives for single start runs at level 1 can clearly be seen in figure 2. According to
these results we can say that the performance of PSGA improves significantly with
a good problem-specific base heuristic. Although PI-avg and EXP have simplifying
assumptions for the calculation of the non-machining times, they give significantly
better results than the sequential approach, SLC. The second comparison shows
the importance of using a GA to search the problem space. We compare the effec-
tiveness of GA to a pure probabilistic search, denoted as RND. In probabilistic
search, we create one very large first generation, and perform no genetic operations.
The random search performed poorly relative to the GA. This indicates the value
of an evolutionary strategy for this problem. Another comparison is between the

Table 8. Computational results.

Algorithm Repr. NS

normobj Deviation CPU time

L1 L2 L1 L2 L1 L2

PI GA 1 0.23 0.22 0.017 0.015 579 1167
GA 4 0.24 0.23 0.021 0.019 589 1171
RND 1 0.32 0.31 0.033 0.033 586 1170
RND 4 0.32 0.31 0.032 0.032 592 1183

PI-avg GA 1 0.26 0.25 0.022 0.019 122 185
GA 4 0.28 0.26 0.023 0.020 126 188
RND 1 0.33 0.33 0.034 0.034 129 196
RND 4 0.33 0.33 0.033 0.033 130 197

EXP GA 1 0.29 0.27 0.025 0.022 66 132
GA 4 0.31 0.28 0.028 0.026 68 134
RND 1 0.39 0.38 0.039 0.036 70 139
RND 4 0.39 0.38 0.038 0.038 70 139

SLC GA 1 0.53 0.53 0.040 0.034 33 66
GA 4 0.54 0.53 0.042 0.037 34 66
RND 1 0.53 0.53 0.042 0.034 33 65
RND 4 0.54 0.53 0.042 0.041 34 66
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population size–generation levels and single and multiple start runs. As the number
of generations increases, PSGA should give better results. However, the normobj
values are very close to each other for all algorithms. We also cannot see a significant
difference between single start and multistart runs according to the normobj values.

For the first performance measure, we select a single solution giving the mini-
mum weighted linear function of two normalized objectives, although we generate a
number of approximately efficient solutions. The average number of non-dominated
solutions for both generation–population size levels are very close to each other and
it is around 12 for algorithms PI, PI-avg and EXP. The average number of non-
dominated solutions is only one for SLC. In SLC, the parts families are allocated
to machines at the beginning of the scheduling period and the allocation does not
change throughout the algorithm. Sequence changes on each machine alone do not
provide enough flexibility for the PSGA to generate more non-dominated solutions.
In order to evaluate the quality of the non-dominated solution sets found by all
algorithms, we use another performance measure, which is the average deviation
from the approximate non-dominated solution set (deviation), as follows:P

i02NDSðmini2NDS� fu½ð f
m
i0 � fmi Þ=f

m
i � þ ð1� uÞ½ðf ti0 � f ti Þ=f

t
i �gÞ

jNDSj
:

The approximate non-dominated solution set, NDS�, is found by using the
non-dominated solutions of all proposed algorithms. In order to calculate the
deviation of a solution in set NDS, first the distance of the solution to the solutions
in set NDS� is calculated in terms of the two objective function values. The minimum
distance is taken as the deviation of that solution, which is calculated for all
solutions in set NDS. The average of the deviations for all solutions is taken as
the deviation of the set NDS from set NDS�. A small numerical example will clarify

CPU time

normobj

579

122

0.530.23 0.26 0.29

66

33

PI

PI-avg

EXP

SLC

Figuare 2. The relationship between normobj and CPU times for all algorithms at (L1,NS1).
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this performance measure. In figure 3, the solutions A1 and A2 are found by
algorithm A and the solutions B1 and B2 are found by algorithm B. B1 and A2
form the approximate non-dominated solution set NDS�. The deviation of point B1
from the non-dominated solution set is zero, because B1 is in set NDS�. The devia-
tion of point B2 is the minimum of d1 and d2. The deviation of set B is the average
of the deviations of all the points in set B. In our computational experiments,
the average of the minimum deviations of the set NDS from set NDS� is taken
over 80 runs. The relative ranking among the algorithms is consistent with the
normobj measure. The GA is better than the RND case. When we compare the
results between levels, as the number of generations increase, PSGA gives better
results, as expected. Since the convergence is slow, the single start runs give
better results than multiple start runs for all algorithms. For such a difficult
problem, taking a long single start run is better than taking multiple shorter runs.

6.4 Alternative tooling

In order to see the effect of flexibility in choosing processing times, we solve the
previously generated 80 problems with the proposed base heuristics considering
the alternative tooling and compare it with the algorithms that assume all operations
are performed with their primary tools. The first comparison is between the single
pass runs. The minimum, average and maximum of the weighted linear combination
of normalized objective functions for algorithms PI-ALT, EXP-ALT and SLC-ALT
considering alternative tooling are (0.18, 0.33, 0.44), (0.30, 0.43, 0.63) and (0.48, 0.55,
0.88), respectively. The CPU times are 0.295, 0.035 and 0.034 for algorithms
PI-ALT, EXP-ALT and SLC-ALT, respectively. According to the first performance
measure, PI-ALT is the best algorithm. However, it has the largest computation
time, but it is still relatively modest. EXP-ALT and SLC-ALT have significantly
smaller CPU times and worse normalized objective function values.

The second comparison is among the PSGA runs. We solve PSGA with PI-ALT,
PI-avg-ALT, EXP-ALT and SLC-ALT for level 1 (L1) and number of
restarts 1 and 4. The average of the weighted linear function of normalized objec-
tives, the average deviation from the approximate non-dominated solution set and

A1

f1

d1

A2

d2

f2

B1

B2

Figure 3. Approximate non-dominated solution set.
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the average CPU times over 80 runs can be seen in table 9. Although the CPU times
are very close to the computational times of the algorithms PI, PI-avg, EXP and
SLC, the average of the weighted linear function of normalized objectives and the
deviation from the approximate solution set are improved when alternative tooling is
considered.

The difference between the algorithms can be seen more clearly when we compare
the percentage improvements in terms of normobj values. The percentage improve-
ments between single pass implementations of PI and PI-ALT and PSGA using these
two algorithms for single start runs can be seen in figure 4. The percentage improve-
ment in weighted linear functions of two objectives between algorithms PI and
PI-ALT, which is calculated as ðnormobjðSP, PIÞ � normobjðSP, PI�ALTÞÞ=
ðnormobjðSP, PIÞÞ � 100 ¼ ðð0:36� 0:33Þ=0:36Þ � 100, is 8.3%. The performance of
the single pass implementation of PI-ALT is significantly better than the single
pass implementation of PI. When PI is used in PSGA the improvement for single
start runs over the single pass implementation of PI is 36.1%. The improvement

Table 9. Computational results—alternative tooling.

Algorithm NS normobj Deviation CPU time

PI-ALT 1 0.20 0.010 587
4 0.22 0.015 595

PI-avg-ALT 1 0.24 0.016 123
4 0.25 0.019 127

EXP-ALT 1 0.26 0.020 65
4 0.28 0.023 67

SLC-ALT 1 0.51 0.014 31
4 0.51 0.023 29

SPnoalt SPalt PSGAaltPSGAnoalt

f agg

D

B

A

C

(A − B)/A = 8.3%

(A − C)/A = 36.1%

(B − D)/B = 39.3%

(C − D)/C = 13.0%

Figure 4. Comparison of percentage improvements.
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of PSGA using PI-ALT over the single pass implementation of PI-ALT is 39.3%.
The percentage improvements in the weighted linear function of normalized
objectives for algorithms PI, PI-avg, EXP and SLC at level 1 can be seen in
table 10. According to these results, we can say that the problem space search
adds more to the objective of the single pass implementation of the algorithm
with a better base heuristic. The percentage difference between the PSGA using PI
and PSGA using PI-ALT is 13.0%. According to these results, we can say that the
flexibility in choosing the processing times of operations provides better solutions.
Also, the performance of PSGA increases more with a better base heuristic.

7. Concluding remarks

In this study, we consider FMS loading, scheduling and tool management problems.
This study is among only a few which consider the interaction between different
levels of the production management hierarchy by solving these problems simul-
taneously. We consider the objectives of minimizing the manufacturing cost
comprised of machining, non-machining and tooling costs, and minimizing the
total weighted tardiness. We propose different base heuristics that are employed in
a PSGA to find approximately efficient solutions which provide alternative solutions
to the decision maker. An important contribution of the proposed base heuristics
is the calculation of the actual non-machining times at each decision point for load-
ing and scheduling the parts (as done in the PI algorithm). The non-machining times
depend on the current status of the tool magazines, and are determined by the
limited tool lives, the limited capacity of the tool magazine, and all the scheduling
and tool allocations decisions made up to the current time. However, this critical
computation is very time consuming. In addition to the PI algorithm, we propose
two different ways to estimate the non-machining times. The first alternative,
PI-avg, uses average non-machining times, which are calculated by using the
actual observations made in PSGA using PI. The second alternative, EXP, uses
expected non-machining times. We also consider alternative tooling, which provides
us flexibility in choosing the tool alternatives and hence the processing times.
According to the computational results, the algorithms that consider alternative
tooling perform better. As expected, different processing time alternatives for an
operation increase the solution quality.

In order to show the solution quality of the proposed simultaneous approaches,
we compare them with a sequential algorithm, SLC. The SLC solves the part loading
and scheduling problem sequentially. The tool replacement decisions are made
after the parts are scheduled on each machine. Although the sequential approach
is simpler and requires less computation time compared to simultaneous approaches,
the improvements of the proposed simultaneous approaches in terms of the normal-
ized objective values over the SLC are large enough (40% and 68% on the average
with and without alternative tooling) to show that there is a significant interaction
between the tool management and scheduling decisions. Therefore, these two
problems should not be viewed in isolation, which supports our claim and shows
the advantage of a simultaneous approach over the SLC. As a result, the proposed
approach not only improves the CNC machine efficiency but also becomes more
responsive to customer due date requirements.
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