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The authors examine whether volatility risk is a priced risk factor in securities
returns. Zero-beta at-the-money straddle returns of the S&P 500 index are
used to measure volatility risk. It is demonstrated that volatility risk cap-
tures time variation in the stochastic discount factor. The results suggest
that straddle returns are important conditioning variables in asset pricing,
and investors use straddle returns when forming their expectations about
securities returns. One interesting finding is that different classes of firms
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react differently to volatility risk. For example, small firms and value firms
have negative and significant volatility coefficients, whereas big firms and
growth firms have positive and significant volatility coefficients during high-
volatility periods, indicating that investors see these latter firms as hedges
against volatile states of the economy. Overall, these findings have important
implications for portfolio formation, risk management, and hedging strategies.
© 2007 Wiley Periodicals, Inc. Jrl Fut Mark 27:617–642, 2007

INTRODUCTION

The notion that equity returns exhibit stochastic volatility is well docu-
mented in the asset pricing literature.1 Furthermore, recent evidence
indicates the existence of a negative volatility risk premium in the
options market (Bakshi & Kapadia, 2003; Buraschi & Jackwerth, 2001;
Coval & Shumway, 2001; Lamoureux & Lastrapes, 1993). However, the
existence of volatility risk in the securities market and its impact on dif-
ferent classes of firms has not been extensively documented. Recently,
Coval and Shumway (2001) examines the return characteristics of S&P
100 index straddles and gives preliminary evidence that volatility risk
may be a common risk factor in securities markets—a finding that con-
tradicts the classical capital asset pricing model (CAPM).

CAPM suggests that the only common risk factor relevant to the pric-
ing of any asset is its covariance with the market portfolio; thus, an asset’s
beta is the appropriate quantity for measuring the risk of any asset.
However, Vanden (2004) shows that when agents face nonnegative wealth
constraints, cross-sectional variation in securities returns is not explained
just by an asset’s beta. Instead, excess returns on the traded index options
and on the market portfolio explain this variation, implying that options are
nonredundant securities. Furthermore, as Detemple and Selden (1991)
suggest, if options in the economy are nonredundant securities, then there
should be a general interaction between the returns of risky assets and the
returns of options. This implies that option returns should help explain
security returns.

In this article, we extend the preceding studies and present evidence
that straddle returns are important for asset pricing because they help
capture time variation in the stochastic discount factor. The findings sug-
gest that volatility risk is time-varying and that options are nonredundant
securities at volatile states of the economy. This has important implications
regarding the allocational role of options in the economy. The preliminary
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time-series regressions, Fama-MacBeth regressions, and generalized
method of moments-stochastic discount factor (GMM-SDF) estimations in
this article confirm the theory that options are effective tools in pricing
securities and allocating wealth among agents as suggested by Vanden
(2004). We also examine the effect of volatility risk in pricing different
classes of firms, i.e., small vs. big and value versus growth, and find distinct
patterns in the returns of these firms, especially at volatile states of the
economy.

Asset pricing theories thus far have been unable to provide a satis-
factory economic explanation for the size and value versus growth anom-
alies.2 In a rational markets framework, we would expect these abnormal
returns to be temporary. Once investors realize arbitrage opportunities,
the abnormal profits of small and value stocks are expected to vanish.
However, this has not been the case. The persistence of these two anom-
alies has led to extensive research and has yielded two alternative lines of
explanations within the rational markets paradigm.

One line, led by Fama and French (1992, 1993, 1995), argues that
a stock’s beta is not the only risk factor. This approach suggests that fun-
damental additional variables such as book-to-market and market value
explain equity returns much better because they are proxies for some
unidentified risk factors. However, the weakness of this explanation lies
in its failure to address the economic variables underlying these factors.
The other line of research within the risk-return framework argues that
it is the time variation in betas and the market risk premium that cause
the static CAPM to fail to explain these anomalies. There is now consid-
erable evidence that conditional versions of CAPM perform much better
than their unconditional counterparts.3

Here we reexamine these two important asset-pricing anomalies with
an important, but somewhat overlooked factor—the volatility risk. There
is now a considerable amount of evidence that volatility risk is priced in
the options market. First, Jackwerth and Rubinstein (1996) report that 
at-the-money implied volatilities of call and put options are consistently
higher than their realized volatilities, suggesting that a negative
volatility premium could be an explanation to this empirical irregularity.
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2Banz (1981) and Reinganum (1981) document that portfolios formed on small sized firms earn
returns higher than the CAPM predicts. Rosenberg, Reid and Leinstein (1985) find that firms with
high book-to-market ratios (value firms) earn higher returns than firms with low book-to-market
ratios (growth firms). Davis, Fama, and French (2000) report that the value premium in U.S. stocks
is robust.
3See Ferson (1989), Ferson and Harvey (1991), Ferson and Korajczyk (1995), Jagannathan and
Wang (1996), Lettau and Ludvigson (2001), and Altay-Salih, Akdeniz, and Caner (2003) for the the-
ory behind time-varying beta and conditional CAPM literature.



Furthermore, Coval and Shumway (2001) report that zero-beta at-the-
money straddles on the S&P 100 index earn returns consistently lower
than the risk-free rate, suggesting the presence of a negative volatility risk
premium in the prices of options. As an extension of this study, Driessen
and Maenhout (2005) report that volatility risk is also priced in the
Financial Times and the London Stock Exchange (FTSE) and Nikkei
index options. Finally, Bakshi and Kapadia (2003) show that delta-hedged
option portfolios consistently earn negative returns and conclude that
there exists a negative volatility risk premium in option prices.

Although the above evidence indicates that volatility risk is priced
in options markets, we are less confident that it is priced in securities
markets. Recent studies find that volatility risk can explain the cross-
section of expected returns. For example, Moise (2005) uses innova-
tions in the realized stock market volatility, and demonstrates that
volatility risk helps explain some of the size anomaly. Furthermore, by
using changes in the volatility index (VIX) of the Chicago Board Options
Exchange (CBOE), Ang, Hodrick, Xing, and Zhang (2006) demonstrate
that aggregate volatility is a cross-sectional risk factor. However, in this
study, a measure from the options market, i.e., straddle returns on the
S&P 500 index, is used as a proxy for volatility risk. The reasoning
behind using straddle returns is intuitive. As Detemple and Selden
(1991) argue, if options are nonredundant securities in the economy,
then their returns should appear as factors in explaining the cross sec-
tion of asset returns. Furthermore, Vanden (2004) reports that returns
of call and put options indeed explain a significant amount of variation
in securities return, but fail to explain the returns for small and value
stocks. The failure of Vanden’s model could be due to omitting an
important risk factor—the volatility risk. Furthermore, straddles are
volatility trades, and they provide insurance against significant down-
ward moves.4 Thus, overall, straddle returns are ideal for studying the
effects of volatility risk in security returns.

The remainder of this article is organized as follows. First, data and the
procedures for calculating straddle returns are presented. Econometric
issues in the estimation of the volatility risk premium are discussed in the
next section. This is followed by empirical results. The final section offers
concluding remarks.
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that is reported by French, Schwert, and Stambaugh (1987), and Glosten, Jagannathan, and Runkle
(1993). Engle and Ng (1993) show that volatility is more associated with downward market moves
due to the leverage effect.



METHOD

Data

The data consist of two parts, S&P 500 options data and stock return data,
covering the period January 1987 through October 1994.5 Daily S&P 500
options data is obtained from the CBOE and consists of daily closing prices
of call and put options, the daily closing level of the S&P 500 Index, the
maturities and strike prices for each option, the dividend yield on the S&P
500 Index, and the one-month T-bill rate. For option volatilities, the closing
level of CBOE’s S&P 500 VIX index is used. For market portfolio, CRSP’s
value weighted index on all New York Stock Exchange (NYSE), American
Express (AMEX), and National Association of Securities Dealers’Automated
Questions (NASDAQ) stocks are used. The return data on size and book-to-
market portfolios are obtained from Kenneth French’s data library.

Procedure

The method for calculating daily option returns is as follows. First, options
that significantly violate arbitrage-pricing bounds are eliminated. Then,
options that expire during the following calendar month are identified. This
roughly coincides with options that have 14 to 50 days to expiry in our sam-
ple. The reason for choosing options that expire the next calendar month is
that they are the most liquid data among various maturities.6 Options that
expire within 14 days are excluded from the sample because they show large
deviations in trading volumes, which casts doubt on the reliability of their
pricing associated with increased volatility.7 Next, each option is checked
whether it is traded the next trading day or not. If no option is found in the
nearest expiry contracts, then options in the second-nearest expiry contracts
are used. To calculate the daily return of an option, raw net returns are used.
The usage of raw net returns is justified by Coval and Shumway (2001) who
argue that log-scaling of option returns can be quite problematic.

Once daily call and put returns are calculated, they are grouped
according to their moneyness levels. Although there is no standard proce-
dure for classifying at-the-money options, options with a moneyness level
(S-K) between �5 and �5 are classified as at-the-money options. This
classification also guarantees that there are at least two options around
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5We are grateful to Ramazan Gencay (Professor of Economics, Department of Economics, Simon
Fraser University) for providing the data.
6According to Buraschi and Jackwerth (2001), most of the trading activity in S&P 500 options is con-
centrated in the nearest (0–30 days to expiry) and second nearest (30–60 days to expiry) contracts.
7Stoll and Whaley (1987) report abnormal trading volumes for options close to expiry.



the spot price. One reason for focusing on zero-beta at-the-money strad-
dles was to capture the effect of volatility risk, as mentioned previously.
Another advantage of studying at-the-money options is that they are less
prone to pricing errors compared to deep-out-of money options, as cited
in option pricing literature.8 Using the above procedure results in 1937
days of return data out of 1980 trading days.

The straddle returns are calculated according to the methodology
outlined by Coval and Shumway (2001). To capture the effect of volatil-
ity risk, zero-beta at-the-money straddle returns on the S&P 500 index
are used. The advantage of using S&P 500 index options is that they are
highly liquid, thus they are less prone to microstructure and illiquid trad-
ing effects. Zero-beta straddles are formed by solving for u from the fol-
lowing set of equations,

(1)

(2)

where rv is the straddle return, rc and rp are the call and put returns, u is
the fraction of the straddle’s value in call options, and bc and bp are the
market betas of the call and put options, respectively. It is straightfor-
ward to calculate returns on call and put options; however, to calculate
the return of a straddle, the value of u is needed, which depends on
bc and bp. By using the put-call parity theorem, Equation (2) can be
reduced into a single unknown, bc, and the value of u is derived as
follows

(3)

where C is price of the call option, P is price of the put option, and s is
the level of the S&P 500 Index.

The only parameter that is not directly observable in the above
equation is the call option’s beta, bc. We use Black-Scholes’ beta, which
is defined as

(4)bc �
s
C

 N c ln(s�X) � (r � q � s2�2)t

s2t
dbs

u �
�Cbc � s

Pbc � Cbc � s

ubc � (1 � u)bp � 0

rv � urc � (1 � u)rp
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on average less than market prices for in-the-money call options. Also, Gencay and Salih (2003)
document that pricing errors are larger in the deeper-out-of-money options compared to at-the-
money options.



where N[.] is the cumulative normal distribution, X is the exercise price
of call option, r is the risk-free short-term interest rate, q is the dividend
yield for S&P 500 assets, s is the standard deviation of S&P 500 returns,
and t is the option’s time to maturity.

The methodology to calculate zero-beta at-the-money straddle
returns is as follows. First, an option’s beta is calculated according to
Equation (4). Then, u is derived by incorporating the previously calculated
call and put option returns into Equation (3). Finally, straddle returns for
each day are calculated according to Equation (1). The daily zero-beta
straddle return is then simply the equally weighted average of at-the
money-straddle returns that are found in the final step.

Table I reports the summary statistics for the daily S&P 500 (SPX)
straddle returns. The average daily S&P 500 straddle return is �1.06%
with a minimum return of �87.77% and maximum of 441.79%. The mean
and median of the daily zero-beta straddle returns are negative as docu-
mented by the earlier literature. Note that call option betas are instanta-
neous betas; therefore, the straddles are zero-beta at the construction.
However, we calculate the zero-beta straddle returns by using daily buy and
hold returns. Thus, they are zero-beta instantaneously and their betas
might change during the holding period. This might be the possible expla-
nation of negative correlation of �0.54 between the straddle returns and
market returns.9 The straddle returns also exhibit positive skewness and rel-
atively high kurtosis.
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9To check the robustness of the results, we set the theoretical position beta in Equation (2) to a con-
stant such that the in-sample straddle beta is exactly zero. Negative mean and median volatility risk
premium still persists and furthermore conclusions from time series regressions do not change.
Overall, these results are in line with the literature on negative volatility risk premium, and the find-
ings in Coval and Shumway (2001).

TABLE I

Summary Statistics for Daily Zero-Beta Straddles

Daily straddle returns (%)

Mean �1.06
Median �1.58
Minimum �87.77
Maximum 441.79
Skewness 17.03
Kurtosis 520.03
Correlation �0.54

Note. This table reports the summary statistics for the returns of daily zero-beta at-the
money straddles. The sample covers the period January 1987 to October 1994 (1980
days). After adjusting for moneyness and maturity criteria, there are 1937 days of data.
Correlation is the correlation of straddle returns with market returns.



Econometric Specifications

To test the main hypothesis that volatility risk—proxied by zero-beta 
at-the-money straddle returns—is priced in securities returns, we first
regress the excess returns of size and book-to-market portfolios on excess
straddle returns and on the market factor.10 The empirical model to be
tested is

(5)

where rits are realized returns of size and book-to-market portfolios, and
rjts are the returns of factors that are included in the regressions.

The above analysis relies on monthly holding period returns, both
because microstructure effects tend to distort daily returns, and to rule
out nonsynchronous trading effects that could be present in daily data.
To calculate monthly at-the-money straddle returns, an equally weighted
portfolio of at-the-money straddles is formed for each day and then
each day’s return is cumulated to find monthly holding period returns.
This adds up to 94 monthly straddle returns, which are used as
an independent variable in the preceding time-series regressions.
Although these regressions are not formal tests of whether volatility
risk is priced or not, they nevertheless give clues about the potential
explanatory power of straddle returns in explaining the cross-section of
expected returns.

Next the question of whether volatility risk is a priced risk factor is
examined by performing Fama-MacBeth (Fama & MacBeth, 1973) two-
pass regressions by using the 25 size and book-to-market portfolios.11

The model to be tested is

(6)

More specifically, in the first pass, portfolio betas are estimated from
a single multiple time-series regression via Equation (5). Instead of using
the 5-year rolling-window approach, a full sample period is used.12 In the

E[rit] � ai � b�l.

rit � rft � ai � a
j
bij(rjt � rft) � eit,
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11The returns on 25 portfolios formed on size and book-to-market equity are obtained from Kenneth
French’s data library.
12Rolling regression approach is not appropriate in samples, which have fewer than 150 time series
observations, as pointed out in Lettau and Ludvigson (2001).



second pass, a cross-sectional regression is run at each time period, with
full-sample betas obtained from the first pass regressions, i.e.,

(7)

Fama and MacBeth (1973) suggests that we estimate the intercept
term and risk premiums, ai and lj�s, as the average of the cross-sectional
regression estimates

One problem with the Fama-MacBeth procedure is that it ignores the
errors-in-variables problem that results from the fact that in the second
pass, beta estimates instead of the true betas are used. In order to avoid this
problem, a GMM approach within the SDF representation is employed.
The advantage of a GMM approach is that it allows the estimation of model
parameters in a single pass, thereby avoiding the error-in-variables prob-
lem. The advantage of the SDF representation relative to the beta repre-
sentation is that it is extremely general in its assumptions and can be
applied to all asset classes, including stocks, bonds, and derivatives.
Cochrane (2001) demonstrates that both representations express the same
point, but from slightly different viewpoints. However, the SDF view is
more general, it encompasses virtually all other commonly known asset
pricing models. Ross (1976) and Harrison and Kreps (1979) state that in
the absence of arbitrage and when financial markets satisfy the law of one
price, there exists a stochastic discount factor, or pricing kernel, mt�1, such
that the following equation holds

(8)

where Rit�1 is the gross return (one plus the net return) on any traded
asset i, from period t to period t � 1. We denote this as the uncondition-
al SDF model.

Because considerable evidence exists to suggest that expected excess
returns are time-varying, the above unconditional specification may be
too restrictive. Thus, to answer the question of whether or not there exists
time-variation in the volatility risk premium, both unconditional and con-
ditional models of asset pricing are tested. The conditional SDF model is
denoted as

(9)Et[Rit�1mt�1] � 1

E[Rit�1mt�1] � 1,

âi �
1
Ta ˆ

T

t�1
ait, and   l̂j �

1
Ta

T

t�1
l̂jt.

E[rit] � ait � b�ijljt, i � 1, 2, p , N for each t.
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where Et denotes the mathematical expectation operator conditional on
the information available at time t.

Following Jagannathan and Wang (1996), we consider a linear fac-
tor pricing model with observable factors, ft. Then, mt+1 can be repre-
sented as

(10)

where at, and bt are time-varying parameters. Note that, when at, and bt are
constants, we obtain the unconditional version of linear factor models.

The question here is how one can incorporate the information that
investors use when they determine expected returns in Equations (9)
and (10). Because the investors’ true information set is unobservable,
one has to find observable variables to proxy for that information set.
Cochrane (1996) shows that conditional asset pricing models can be
tested via a conditioning time t information variable, zt. One way of
incorporating conditioning variable, zt, into the model is to scale factor
returns, as discussed in Cochrane (2001), and used in Cochrane (1996),
Hodrick and Zhang (2001), and Lettau and Ludvigson (2001). This is
done by scaling the factors with zt, thus modeling the parameters at, and
bt as linear functions of zt as follows

(11)

(12)

Plugging these equations into Equation (10), and assuming that we
have a single factor, we have a scaled multifactor model with constant
coefficients taking the form

(13)

The scaled multifactor model can be tested by rewriting the condi-
tional factor model in Equation (9), as an unconditional factor model
with constant coefficients g0, g1, h0, and h1 as follows,

(14)

In the next section, empirical results of ordinary least squares
(OLS) time-series regressions (Equation 5), Fama-MacBeth regres-
sions (Equation 6), and the GMM-SDF estimations (Equation 8) are
presented.

E[Rit�1(g0 � g1zt � h0 ft�1 � h1zt ft�1)] � 1.

 � g0 � g1zt � h0 ft�1 � h1zt ft�1

 mt�1 � (g0 � g1zt) � (h0 � h1zt)ft�1

bt � h0 � h1zt

at � g0 � g1zt

mt�1 � at � b�t ft�1
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EMPIRICAL FINDINGS

Time Series Regressions

Coval and Shumway (CS; 2001) argue that zero-beta at-the-money strad-
dles can proxy for volatility risk, which can, in turn, explain the variation
in the cross-section of equity returns. Usually, highly volatile periods are
associated with significant downward market moves. Furthermore, index
straddles earn positive (negative) returns in times of high (low) volatility,
as can be seen by the negative correlation between the straddle and mar-
ket returns in Table I. CS also argue that volatility risk is a possible expla-
nation for the well-known size anomaly among securities returns. For a
preliminary investigation of those two hypotheses, we use a two-factor
model, and regress excess returns of the Center for Research in Security
Prices’ (CRSP; University of Chicago Graduate School of Business,
Chicago, IL) size deciles on the excess returns of CRSP’s value-weighted
index on all NYSE, AMEX, and NASDAQ stocks and the excess returns of
zero-beta at-the-money straddles. Table II presents the results of these
regressions.

As can be seen from the table, there exists a statistically significant
relationship between straddle returns and securities returns in 9 of the
10 size deciles. Thus, straddle returns and therefore volatility risk could
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TABLE II

2-Factor Time Series Regressions

rit � rft � ai � bim (rmt � rft) � biv (rvt � rft) � eit

rit � rft ai t-Statistic bim t-Statistic biv t-Statistic Adj. R2

Small 10 �0.0024 �0.61 0.7555 6.91*** �0.0109 �4.55*** 0.64
Decile 9 �0.0039 �1.23 0.9612 11.37*** �0.0080 �4.29*** 0.78
Decile 8 �0.0004 �0.18 1.0106 13.69*** �0.0063 �3.98*** 0.84
Decile 7 �0.0017 �0.70 1.0612 14.86*** �0.0052 �3.33*** 0.86
Decile 6 0.0009 0.40 1.0553 14.83*** �0.0040 �2.74*** 0.88
Decile 5 0.0009 0.51 1.0337 20.91*** �0.0031 �3.02*** 0.92
Decile 4 0.0004 0.37 1.0343 27.10*** �0.0024 �2.31** 0.95
Decile 3 0.0007 0.60 1.0917 27.76*** 0.0003 0.36 0.96
Decile 2 0.0004 0.55 1.0801 34.26*** 0.0019 2.67*** 0.98
Big 1 0.0006 0.56 0.9953 32.97** 0.0024 2.99*** 0.96

GRS F-Test � 2.3314 (p � .0179)

Note. This table reports monthly time-series regression results of excess returns of CRSP’s size deciles on market factor
and excess straddle returns. The dependent variable is the excess return of CRSP’s size-decile portfolio, rmt is the return of
CRSP’s value-weighted index on all NYSE, AMEX, and NASDAQ stocks, rvt, is the monthly zero-beta straddle return, and 
rft is the 1-month T-bill rate. All t-values are corrected for autocorrelation (with lag � 3) and heteroskedasticity as suggested
by Newey and West (1987). GRS F-Test reported at the bottom of the table is from Gibbons, Ross, and Shanken (1989).

*p � .10. **p � .05. ***p � .01. (Significance levels).



be a significant variable in explaining securities returns. In their recent
studies, Moise (2005) and Ang et al. (2006) also document statistically
significant negative price of risk for aggregate volatility. In our case, the
economic interpretation of this negative volatility risk premium could be
that buyers of zero-beta at-the-money straddles are willing to pay a pre-
mium for downside market risk. If investors are assumed to be averse to
downward market moves, the existence of a negative volatility risk pre-
mium would be justified, because downward moves are associated with
high volatility periods. Following Vanden’s theoretical framework, this
would imply that straddles are effective tools in completing the market
because they help investors avoid insolvency and negative wealth levels
during high volatility periods.

A more interesting finding, which also confirms CS’s predictions, is
the significant pattern observed in the coefficients of straddle returns.
The coefficients of straddle returns monotonically increase from the
smallest size decile to the largest. This finding, if persistent, can be a
potential explanation for the widely known size anomaly. Because stocks
with small market capitalizations are the ones that are affected most by
highly volatile states of the economy, the volatility coefficients of smaller
decile firms are expected to be lower than larger decile firms, i.e., they
are associated with more negative volatility risk premiums.13 Moreover,
the coefficients of the largest size decile turn out to be significantly pos-
itive, suggesting that investors see large firms as hedges against innova-
tions in volatility. This finding suggests that, during volatile periods, large
firms tend to protect their investors better than small firms.

The explanatory power of the regressions is relatively high with
adjusted R2s ranging from 0.64 to 0.98. Furthermore, none of the inter-
cept terms are significantly different form zero according to the t-statistics.
However, the Gibbons, Ross, and Shanken (GRS; 1989) F-test rejects
the hypothesis that all the intercepts are jointly equal to zero at the 5%
level. Overall, the above results favor the explanation that volatility risk
might be a potential priced factor among securities returns.

Next, the relevance of the volatility risk factor on different classes of
firms is examined. To do this, 25 portfolios formed on size and book-to-
market are used. One advantage of using this broader portfolio set is to see
the robustness of the above results across book-to-market portfolios,
as well.

Table III documents the time-series regression results for the
25 portfolios. As can be seen, straddle returns still explain the variation in
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the returns of 21 out of 25 portfolios formed according to size and book-
to-market. Consistent with the previous results, small-size portfolios (the
lowest three size quintiles) have statistically significant negative coeffi-
cients for most of the book-to-market levels (14 out of 15 portfolios).
Although, the intercept term ai is not statistically significant for 23 of the
portfolios, the GRS-F test rejects the hypothesis that intercepts are jointly
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TABLE III

Twenty-Five (5 � 5) Portfolio Regressions

rit � rft � ai � bim (rmt � rft) � biv (rvt � rft) � eit

Size B/M ai t-Statistic bim t-Statistic biv t-Statistic Adj. R2

S L �0.0115 �2.67*** 1.0271 9.51*** �0.0100 �3.89*** 0.70
S 2 �0.0018 �0.48 0.9158 9.06*** �0.0098 �4.33*** 0.70
S 3 �0.0012 �0.37 0.8589 9.63*** �0.0085 �4.53*** 0.76
S 4 0.0011 0.36 0.7602 8.20*** �0.0105 �4.91*** 0.72
S H 0.0018 0.41 0.7808 8.08*** �0.0105 �4.82*** 0.65
2 L �0.0052 �1.67* 1.2560 14.09*** �0.0041 �1.95** 0.81
2 2 �0.0014 �0.47 1.0796 14.50*** �0.0067 �4.16*** 0.82
2 3 0.0026 1.05 0.8742 11.08*** �0.0080 �5.19*** 0.84
2 4 0.0011 0.49 0.7999 12.43*** �0.0080 �5.70*** 0.82
2 H 0.0012 0.35 0.9861 10.79*** �0.0062 �2.90*** 0.77
3 L �0.0013 �0.45 1.2517 18.22*** �0.0014 �0.83 0.83
3 2 0.0010 0.45 1.0854 16.14*** �0.0045 �2.96*** 0.88
3 3 �0.0001 �0.07 0.8722 13.27*** �0.0047 �3.03*** 0.86
3 4 0.0024 1.07 0.8723 13.77*** �0.0033 �2.27** 0.85
3 H 0.0027 0.98 0.9250 15.26*** �0.0062 �4.08*** 0.82
4 L 0.0013 0.73 1.1890 26.99*** 0.0013 1.13 0.89
4 2 �0.0006 �0.35 1.0294 25.29*** �0.0050 �4.69*** 0.93
4 3 �0.0011 �0.53 1.0834 13.95*** �0.0005 �0.27 0.90
4 4 0.0023 1.35 0.9081 15.45*** 0.0022 1.81* 0.89
4 H 0.0027 1.11 0.9264 12.16*** �0.0038 �2.19** 0.82
B L 0.0012 0.52 1.1202 24.26*** 0.0037 3.39*** 0.88
B 2 0.0002 0.10 1.1129 24.46*** 0.0027 2.55** 0.92
B 3 0.0005 0.25 0.8575 17.83*** �0.0025 �2.54** 0.87
B 4 0.0004 0.26 0.9113 24.29*** 0.0043 2.91*** 0.83
B H 0.0027 0.79 0.9354 14.67*** 0.0008 0.38 0.70

GRS F-Test � 2.7293 (p � .0071)

Note. This table reports monthly time-series regression results of excess returns of CRSP’s 25 size and book-to-market
portfolios on market factor and excess straddle returns. The returns on 25 portfolios formed on size and book-to-market equity
are obtained from Kenneth French’s data library. The 25 portfolios constructed at the end of each June, are the intersections
of 5 portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio of book equity to market equity
(BE/ME). The size breakpoints for year t are the NYSE market equity quintiles at the end of June of t. BE/ME for June of year
t is the book equity for the last fiscal year end in t � 1 divided by ME for December of t � 1. The BE/ME breakpoints are
NYSE quintiles. S and B stands for the smallest and biggest size quintiles; L and H stands for the lowest and highest book-
to-market quintiles. rit is the dependent variable which denotes the return on each of the 25 portfolios from January
1987–October 1994. rmt is the return of CRSP’s value-weighted index on all NYSE, AMEX, and NASDAQ stocks, rvt is the
monthly zero beta straddle return, and rft is the 1-month T-bill rate obtained from Ibbotson Associates (Chicago, IL). All t-val-
ues are corrected for autocorrelation (with lag � 3) and heteroskedasticity as suggested by Newey and West (1987). GRS F -
Test reported at the bottom of the table is from Gibbons, Ross, and Shanken (1989).

*p � .10. **p � .05. ***p � .01. (Significance levels).



equal to zero. This result is consistent with Vanden (2004) and Coval and
Shumway (2001).

Looking across book-to-market portfolios, it is seen that high book-
to-market (value) stocks consistently have significant and negative coef-
ficients in the smallest four size quintiles and low book-to-market
(growth) stocks have significant and positive coefficients in the biggest
size quintile. The positive and significant coefficients for the big-growth
portfolios are interesting. This result, if persistent, might indicate that
among the big firms, investors see only growth firms as potential hedges
against volatile states of the economy. This, in turn, can be a possible
explanation for the value versus growth anomaly.

To further check the robustness of this explanation, the sample is
refined to six portfolios based on size and book-to-market. As can be seen
from Table IV, small-sized firms still have negative and significant coeffi-
cients consistent with the previous documented results. Furthermore,
among big firm portfolios it is only the growth portfolio, which exhibits a
positive and significant volatility risk coefficient. These consistent results
indicate that the volatility risk could not only explain the size anomaly
but also the value versus growth anomaly. When formed according to
size, it is clearly seen that small firms are more prone to volatility risk,
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TABLE IV

Six (2 � 3) Portfolio Regressions

rit � rft � ai � bim (rmt � rft) � biv (rvt � rft) � eit

Size B/M ai t-Statistic bim t-Statistic biv t-Statistic Adj. R2

S L �0.0046 �1.57 1.1557 14.74*** �0.0058 �3.30*** 0.8
S 2 0.0056 2.52** 0.8997 13.06*** �0.0066 �4.43*** 0.86
S H 0.0059 2.07** 0.8642 11.58*** �0.0076 �4.52*** 0.80
B L 0.0053 3.24*** 1.1287 35.50*** 0.0027 3.54*** 0.94
B 2 0.0047 4.21*** 0.9329 32.55*** 0.0010 1.60 0.94
B H 0.0056 2.97*** 0.8659 25.07*** �0.0002 �0.15 0.86

GRS F-Test � 2.3260 (p � .0178)

Note. This table reports monthly time-series regression results of excess returns of CRSP’s six size and book-to-market port-
folios on market factor and excess straddle returns. Portfolios are constructed at the end of each June, which are the inter-
sections of two portfolios formed on size (market equity, ME) and three portfolios formed on the ratio of book equity to market
equity (BE/ME). The size breakpoint for year t is the median NYSE market equity at the end of June of year t. BE/ME for June
of year t is the book equity for the last fiscal year end in t � 1 divided by ME for December of t � 1. The BE/ME breakpoints are
the 30th and 70th NYSE percentiles. S and B stands for the smallest and biggest size quintiles; L and H stands for the lowest
and highest book-to-market quintiles. rit is the dependent variable which denotes the monthly return on each of the six portfo-
lios from January 1987–October 1994. rmt is the monthly return of CRSP’s value-weighted index on all NYSE and AMEX
stocks, rvt is the monthly zero beta straddle return, and rft is the 1-month T-bill rate obtained from Ibbotson Associates (Chicago,
IL). All t-values are corrected for autocorrelation (with lag � 3) and heteroskedasticity as suggested by Newey and West
(1987). GRS F-Test reported at the bottom of the table is from Gibbons, Ross, and Shanken (1989).

*p � .10. **p � .05. ***p � .01. (Significance levels).



whereas big firms are seen as hedges against this kind of risk. However, a
detailed analysis reveals that it is actually the growth portfolios among
big firms that provide a hedge against volatility risk.

Is Volatility Risk Priced?

Up to now, the documented evidence suggests that straddle returns are
useful explanatory variables over the sample period studied, but we
cannot conclude whether volatility risk is priced in security returns or
not. In an attempt to answer this question, Fama-MacBeth two-pass
regressions are performed. Panel A of Table V reports the results of these
tests for the conditional and unconditional versions of various CAPM
specifications. More specifically, risk premiums estimated according
to Equation (6), their associated Shanken-corrected and uncorrected 
t-statistics, and adjusted R2 statistics for the cross-sectional regressions
are shown.

The first row of Table V presents results for the traditional uncondi-
tional CAPM taking the form

The statistically insignificant t-statistic for the market risk premium
shows the inability of the value-weighted market beta to explain the
cross-section of average returns. Moreover, the negative sign of the mar-
ket risk premium contradicts the CAPM theory. These findings are also
supported by the very low explanatory power for the model. The results
are in line with the Fama and French (1992) findings.

Next, we test the significance of volatility risk as a priced factor with
the following model

Row 2 of Panel A shows that adding straddle betas significantly con-
tributes to the explanatory power of the two-factor model. The adjusted
R2 increases dramatically from 3% to 32%. Although the volatility risk
premium is positive, the insignificant t-statistic shows that it is not a
priced risk factor. This result needs further exploration, as it contradicts
the previous findings of significant volatility betas in time-series regres-
sions. One explanation for this contradiction could be the time variation
inherent in the volatility risk premium and the inadequacy of the uncon-
ditional models to capture this time variation. The literature on time-
varying risk premiums argues that conditional versions of factor models

E[rit] � ai � lmb
m
i � lstb

st
i .

E[rit] � ai � lmb
m
i .
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TABLE V

Evaluation of Various CAPM Specifications Using 25 Fama-French Portfolios

Panel A: Risk premium estimates using two-pass Fama-MacBeth regressions

ROW ai lm lst lSMB lHML lscaled Adj. R2

1 1.4486 �0.7850
(2.17**) (�0.96) 0.03
(2.16**) (�0.95)

2 1.4274 �0.7254 23.4020
(2.16**) (�0.92) (0.79) 0.32
(2.15**) (�0.91) (0.78)

3 0.7525 �0.0643 �0.1794 0.2110
(1.81*) (�0.10) (�0.68) (0.83) 0.44
(1.80*) (�0.10) (�0.67) (0.82)

4 1.6442 �1.1322 37.8143 �5.6965
(2.43**) (�1.42) (1.20) (�2.37**) 0.42
(2.34**) (�1.32) (1.11) (�2.21**)

5 1.2121 �0.6912 15.4201 �0.1077 0.2964 �6.0019
(3.05***) (�1.17) (0.71) (�0.41) (1.17) (�2.37**) 0.52
(2.94***) (�1.08) (0.66) (�0.38) (1.08) (�2.20**)

Panel B: SDF estimates using GMM

HJ-Dist. 
d0 dm dst dSMB dHML dscaled HJ-Dist. identity

6 0.9179 5.8378 1.0445 0.0121
(8.55***) (2.13**) (0.00) (0.00)

7 0.9288 5.9155 0.0765 1.0440 0.0116
(8.59***) (1.49) (0.44) (0.00) (0.01)

8 0.9108 6.2797 0.6760 �1.0204 1.0438 0.0112
(8.06***) (1.92*) (0.15) (�0.20) (0.00) (0.00)

9 0.9390 6.2940 0.0845 0.3772 1.0155 0.0100
(8.63***) (1.38) (0.42) (1.82*) (0.00) (0.11)

10 0.9435 6.0327 0.0857 0.2176 �0.7585 0.3794 1.0153 0.0096
(8.35***) (1.23) (0.40) (0.04) (�0.15) (2.15**) (0.00) (0.13)

Note. CAPM � Capital asset pricing model; SDF � stochastic discount factor; GMM � generalized method of moments.
This table gives the estimates for the cross-sectional Fama-MacBeth regression model

and the model for the moments

with either a subset or all of the variables. Panel A reports the individual risk-premium, lj, estimates from the second-pass
cross-sectional regressions. In the first stage, the time-series betas are computed in one multiple regression of the portfolio
of excess returns on the factors. The term rit is the return on 25 Fama-French portfolios (i � 1,2,…,25) in month t (January
1987–October 1994). The numbers in parantheses are the two t-statistics for each coefficient estimate. The top statistic
uses uncorrected Fama-MacBeth standard errors; the bottom statistic uses Shanken (1992) correction. The term adjusted
R2 denotes the cross-sectional R2 statistic adjusted for the degrees of freedom. Panel B reports GMM estimates for various
SDF representations and their associated t- and p-values. The model for the moments are estimated using the GMM
approach with the Hansen-Jagannathan (1997) weighting matrix. is the straddle return, is the return on the value-
weighted index of all NYSE, AMEX, and NASDAQ stocks, rSMB

t , and r HML
t       are the returns on Fama-French mimicking portfo-

lios related to size and book-to-equity ratios, and r scaled
t        is the return of the scaled variable, i.e. r st

t   
# r m

t�1. The numbers in
parantheses are the t-statistics for each coefficient estimate. The minimized value of the GMM criterion function is the first
item under the “HJ-dist.,” with the associated p-values immediately below it. The final column reports HJ-dist. using the
identity matrix as suggested by Lettau and Ludvigson (2001).

*p � .10. **p � .05. ***p � .01. (Significance levels).
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better explain this time variation than their unconditional counterparts.
Hence, a natural extension is to perform the preceding analysis with con-
ditional factor models.

Conditional Factor Models

Cochrane (1996, 2001) argues that conditional factor models can be
represented in an unconditional form by using appropriate scaling vari-
ables. We posit that investors use time t straddle returns when forming
their expectations about time t � 1 returns. For the conditional model
with one factor (market return) and one scaling variable (straddle
return), the scaled market factor would take the form, and the
cross-sectional regression for this scaled model would be

where is the beta of the scaled market factor. Row 4 of Table 5
reports the estimated coefficients of the proposed conditional model. The
estimated risk premia for straddle and market returns are still not statisti-
cally significant; however, the coefficient of the scaled market beta is neg-
ative and statistically significant at the 5% level. The explanatory power of
the model also improves from an R2 of 0.32 to 0.42.

Besides the statistical significance of the scaled factor in the condi-
tional model, we examine the effect of a one standard deviation change
in the estimated betas on average returns of various portfolios. This is
done to see the sensitivity of average portfolio returns to changes in
betas that are estimated in the first-pass. For example, taking the big-
growth portfolio, a one standard deviation increase in the beta of the
scaled factor causes a 0.19% decrease in the average return of the port-
folio. The effect of a one standard deviation increase in the market beta
results in a decrease of 0.03% in the average return, whereas a one stan-
dard deviation increase in straddle beta increases the average return of
the big-growth portfolio by 1.25%. However, ones need to be careful
when interpreting the risk-premiums associated with the scaled returns.
Lettau and Ludvigson (2001) argue that individual risk-premium esti-
mates for the scaled multifactor model should not be interpreted as risk
prices as in unconditional models. Cochrane (2001) notes that scaled
returns act as payoffs to managed portfolios, thus in incomplete market
settings state contingencies can be provided through trading strategies
using conditioning information. The significance of the scaled market
factor in the conditional model indicate that investors use straddle

bi
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returns in forming their expectations about the future prices of securi-
ties. This also supports the nonredundancy of options hypothesis by
Vanden (2004). Overall, these results suggest that there exists a time
variation in the volatility risk premium and that the scaled market return
is an important factor for asset pricing.

Lettau and Ludvigson (2001) show that conditional versions of
CAPM perform much better than the unconditional models. Using the
log consumption-wealth ratio as a conditioning variable, they document
that these models perform about as well as the Fama-French three-factor
model. In our case, Row 4 of Table V demonstrates that the conditional
CAPM, using straddle returns as a conditioning variable, performs slightly
worse than the Fama-French three factor model, where none of the risk
premia is statistically significant. Furthermore, we test whether or not the
addition of Fama-French factors can explain the cross-section of expected
returns not explained by our model. The model to be tested is

where scaling is done in a similar manner as in the one factor model.
Row 5 of Table 1 reports the results of this estimation. Although the
explanatory power of the model increases to an R2 of 52%, the coeffi-
cients of the Fama-French factors are still insignificant. The only signifi-
cant risk premium is that of the scaled market factor. This confirms that
the conditional model using straddle returns as a scaling variable is suc-
cessful in explaining the cross-section of average returns.

Generalized Method of Moments-Stochastic
Discount Factor Tests

Because the Fama-MacBeth regressions are criticized for having errors-in-
variables problem, we also examine whether the volatility risk is priced or
not by using a GMM framework in various SDF representations. Panel B
of Table V reports the estimates of SDF coefficients and their associated 
t-statistics, p-values, and Hansen-Jagannathan distances (HJ-dist.).14 The
first model to be tested is the unconditional CAPM, i.e.,

where Rit is the gross return of 25 Fama-French portfolios and is the
return on the value-weighted index of all NYSE, AMEX, and NASDAQ

rt
m
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stocks. Row 6 of Panel B presents the results of this estimation. Contrary
to the previous findings, the unconditional CAPM yields a statistically sig-
nificant coefficient for the market factor. However, the estimated HJ-dist.
shows that the pricing error is very high, and significantly different from
zero, suggesting that this model is a poor SDF representation.

Next, we test whether straddle returns are a part of the stochastic
discount factor or not. This gives the following SDF specification

Row 7 shows that, including straddle returns in the unconditional
model results in slightly lower pricing errors. However, the insignificant
coefficient for straddle returns suggests that volatility risk does not play a
significant role in constructing a stochastic discount factor in the uncon-
ditional form. This result is consistent with the previous Fama-MacBeth
results. Next, we test whether the Fama-French factors are significant
explanatory variables by the following SDF representation

As can be seen in Row 8, the coefficients are still insignificant and
the pricing errors are slightly better than that of the traditional CAPM.

Row 9 of Panel B presents the results for the conditional CAPM using
straddle returns as the conditioning variable. The model to be tested is

where is calculated as before. The statistically significant coefficient
for the conditioning variable suggests that this variable plays an important
role in constructing a stochastic discount factor. This finding is consis-
tent with our previous results and also confirms that there exists time vari-
ation in the volatility risk premium. However, although the pricing error is
considerably lower, it is still significantly different from zero. Due to the
small-sample problems with GMM estimation, it is not surprising to
obtain large HJ-distances that are statistically different from zero. Altonji
and Segal (1996), Cochrane (2001), and Lettau and Ludvigson (2001)
suggest that using GMM estimates with the identity matrix is far more
robust to small-sample problems. The last column of Panel B reports esti-
mates of Hansen-Jagannathan distances using the identity matrix. Note
that, HJ-distances estimated with the identity matrix, and therefore pric-
ing errors decrease drastically for all the models. However, only for the
conditional models (Row 9 and 10) are the pricing errors not significantly
different from zero. Furthermore, the addition of Fama-French factors to
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the conditional model does not considerably improve the explanatory
power of the model, as reported in Row 10.

Consistent with the earlier findings from Fama-MacBeth regres-
sions, conditional models using straddle returns as a scaling variable per-
form better than unconditional models examined in this study. Besides
this statistical significance, to check the economic significance of the
results, we examined the impact on the SDF of a one standard deviation
change in factor returns. For example, for the conditional model in Row 9
in Table 5, a one standard deviation increase in scaled factor returns cor-
responds to a 0.15 standard deviation increase in the SDF. The effect of a
one standard deviation increase in straddle returns is 0.47 standard devi-
ation increase in the SDF, and a one standard deviation increase in mar-
ket returns cause a 1.22 standard deviation increase in the SDF. As for
the economic interpretation of the scaled returns, we can think of them
as payoffs to managed portfolios as in Cochrane (2001). For example, an
investor who observes high zero-beta straddle returns is expected to
decrease his or her holdings in the market portfolio. Our findings confirm
that investors use straddle returns as a conditioning variable when form-
ing their expectations of securities returns. Thus, they are important for
asset pricing because they help capture the time variation in the SDF.

Effect of the 1987 Crash

The effect of time variation in the volatility risk premium on asset
returns can be tested by the threshold regression methodology. We
applied the supremum Lagrange multiplier (sup-LM) test used in
Hansen (1996) to explore the question of whether there are statistically
significant discrete regime shifts in the risk factors due to certain instru-
mental variables. VIX Volatility of at-the-money options and the differ-
ence between volatilities of at-the-money and out-of-money options are
used as instrumental variables, but no significant regime shifts are
detected. However, the bootstrap p-values are likely to be poorly estimat-
ed in samples of the size encountered here.

Nevertheless, in an attempt to explore the possible effects of a high-
volatility periods on our results, the sample is divided into two sub-
samples, one including the crash period and one excluding it.

As can be seen from Table VI, when the crash period is excluded
from the sample, the significance of the volatility risk factor vanishes for
9 of the 10 size portfolios. This result confirms that there exists time vari-
ation in the volatility risk premium and it has several implications regard-
ing the redundancy of options. According to Vanden (2004), options
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effectively complete the market when agents face nonnegative wealth
constraints. That is, options are nonredundant, because they help agents
to avoid insolvency while still allowing them to obtain a degree of leverage
that is not possible through direct borrowing. Thus, the high explanatory
power of the proposed 2-factor model through the crash period makes
sense in this manner. Straddles explain asset returns in periods of high
volatility because they allow their investors to hedge volatility risk and
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TABLE VI

Ten Size Regressions With and Without 1987 Crash

rit � rft � ai � bim (rmt � rft) � biv (rvt � rft) � eit

January 1987–November 1990

rit � rft ai t-Statistic bim t-Statistic biv t-Statistic Adj. R2

Small 10 �0.0111 �2.54** 0.7806 9.64*** �0.0097 �5.73*** 0.85
Decile 9 �0.0099 �2.37** 0.9141 13.64*** �0.0085 �6.23*** 0.90
Decile 8 �0.0039 �1.12 0.9848 13.55*** �0.0066 �4.44*** 0.91
Decile 7 �0.0062 �1.63 1.0383 13.85*** �0.0055 �3.35*** 0.90
Decile 6 �0.0038 �1.24 1.0139 12.72*** �0.0047 �2.93*** 0.92
Decile 5 �0.0029 �1.16 1.0052 16.74*** �0.0035 �2.85*** 0.94
Decile 4 �0.0003 �0.16 1.0172 24.49*** �0.0029 �2.60** 0.96
Decile 3 �0.0014 �0.79 1.0868 20.06*** 0.0004 0.29 0.97
Decile 2 �0.0009 �0.69 1.0770 26.37*** 0.0019 2.09** 0.98
Big 1 0.0024 1.51 1.0035 28.42*** 0.0025 2.67** 0.97

GRS F-Test � 2.3249 (p � .0183)

December 1990–October 1994

rit � rft ai t-Statistic bim t-Statistic biv t-Statistic Adj. R2

Small 10 0.0080 1.58 0.7413 2.31** �0.0043 �0.25 0.24
Decile 9 0.0030 0.71 1.0906 4.36*** �0.0009 �0.05 0.53
Decile 8 0.0047 1.37 1.1021 6.00*** 0.0027 0.22 0.65
Decile 7 0.0058 1.97* 1.1727 8.24*** 0.0099 1.06 0.74
Decile 6 0.0087 2.63** 1.2120 11.02*** 0.0131 1.04 0.80
Decile 5 0.0062 2.45** 1.1301 15.73*** 0.0057 0.54 0.85
Decile 4 0.0033 1.94* 1.1127 15.10*** 0.0084 1.63 0.92
Decile 3 0.0034 2.50** 1.1162 34.07*** 0.0034 0.90 0.96
Decile 2 0.0028 3.08*** 1.1091 40.15*** 0.0072 2.29** 0.97
Big 1 �0.0023 �1.78* 0.9564 17.42*** �0.0027 �0.62 0.93

GRS F-Test � 2.8324 (p � .0045)

Note. This table reports monthly time-series regression results of excess returns of CRSP’s size deciles on market factor
and excess straddle returns. The effect of the crash is examined by dividing the sample period into two subsamples, one
from January 1987–November 1990 (47 months), and the other from December 1990–October 1994 (47 months). All 
t-values are corrected for autocorrelation (with lag � 3) and heteroskedasticity as suggested by Newey and West (1987).
GRS F-Test reported at the bottom of the table is from Gibbons, Ross, and Shanken (1989).

*p � .10. **p � .05. ***p � .01. (Significance levels).



help them avoid insolvency in those periods. The failure of straddle
returns to explain security returns in periods of low volatility arises
because straddles are redundant securities at those times. As the highest
volatility period in our sample is around October 1987 (see Figure 1), the
exclusion of this time period results in less explanatory power for
the volatility risk factor. Thus, although volatility risk is priced for all
classes of assets at times of high volatility, we cannot assert the same for
times of low volatility.

Asset return volatility literature documents that high volatility peri-
ods tend to coincide with business cycle downturns and recessions
(Turner, Startz, & Nelson, 1989; Schwert, 1989; Hamilton & Lin, 1996;
Perez-Quiros & Timmerman, 2001). In addition, Chauvet and Potter
(2000) argue that bear markets have higher volatility than bull markets.
Our finding of a significant volatility beta in a high volatility period like
1987 is in line with the literature. However, we also report an insignifi-
cant volatility beta for the time period of 1991–1992, which is often
cited as a period of poor business conditions and high volatility, is at
odds with the above literature. We offer two possible explanations for
this. First, as can be seen from Figure 1, VIX is much higher in the
1987 crash period compared to the volatility around 1991–1992 down-
turn. This large difference in the level of volatility, which is captured by
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Monthly average implied volatility of the S&P 500 Index. The monthly 

implied volatilities of the S&P 500 Index (VIX) for the period January 1987 
through October 1994 is shown. Daily VIX data for the sample period is obtained 
from the Chicago Board of Options Exchange. Monthly implied volatility is the 
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straddle returns, might lead the volatility betas to be insignificant for
the latter period. One can also argue that it might be the fear of a crash
that drives these results. VIX measure is also considered to be a fear
indicator among the professionals. High VIX levels are associated with a
pessimistic market sentiment and conversely a low level of VIX is con-
sidered to be a sign of optimistic market sentiment. The relatively low
levels of VIX measure for the second period studied might indicate that
investors are optimistic about the market and hence lead the volatility
betas to be insignificant for this period. Altogether, these results should
be further investigated because the period studied here covers only one
peak and one trough, which makes it hard to reconcile our findings with
that of the business cycle literature.

CONCLUSION

The notion that volatility risk is priced in options markets is now widely
documented. However, until recently, very few studies focused on the ques-
tion of whether volatility risk is priced in the securities market. The answer
to this question has important implications for asset pricing, portfolio and
risk management, and hedging strategies.

The empirical findings presented in this article suggest that volatility
risk explains a significant amount of variation in securities returns,
especially during high-volatility periods. In addition, the findings suggest
that options are nonredundant securities during those periods. Investors
use straddle returns when forming their expectations about securities
returns. This implies that straddle returns can be used to price volatility risk.

The findings also indicate different patterns for different classes
of firms. For example, during high-volatility periods, small firms and value
firms are more prone to downside market risk; hence, they are associated
with negative volatility coefficients. Thus, at times of high volatility,
investors see value firms and small firms riskier than their growth and big
counterparts and price this risk in their returns via an important factor,
volatility risk. Furthermore, investors see big-growth firms as hedges
against volatility, regardless of the level of volatility in the market. This
could be a potential explanation as to why growth firms underperform
value firms.

In conclusion, we present clear evidence that volatility risk, proxied
by straddle returns, is an important factor in asset pricing because it
helps capture time variation in the stochastic discount factor. Thus,
options play an important role in pricing securities, and allocation of
wealth among agents in the economy.
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