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Abstract
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1. Introduction

We let B be the unit ball of C
N and H(B) the space of holomorphic functions on B. When

N = 1, we have the unit disc D. Unless otherwise specified, our main parameters and their range
of values are

q ∈ R, 0 < p < ∞, s ∈ R, t ∈ R, 0 < r < ∞;

and given q and p, we often choose t to satisfy

q + pt > −1. (1)

Let ν be the volume measure on B normalized with ν(B) = 1. We define on B also the measures

dνq(z) = (
1 − |z|2)q

dν(z), (2)

which are finite only for q > −1, where |z|2 = 〈z, z〉 and 〈z,w〉 = z1w1 + · · · + zNwN . The
corresponding Lebesgue classes are L

p
q . We also let dμq(z) = (1 − |z|2)q dμ(z) for a general

measure μ on B.
Consider the linear transformation I t

s defined for f ∈ H(B) by

I t
s f (z) = (

1 − |z|2)t
Dt

sf (z),

where Dt
s is a bijective radial differential operator on H(B) of order t for any s, and every I 0

s is
the identity I . The following definition is known to be independent of s, t , where the term norm
is used even when 0 < p < 1; see [23, Theorem 4.1] or [11, Theorem 5.12(i)], for example.

Definition 1.1. The Besov space B
p
q consists of all f ∈ H(B) for which the function I t

s f belongs
to L

p
q for some s, t satisfying (1). The L

p
q norms of I t

s f are all equivalent. We call any one of
them the B

p
q norm of f and denote it by ‖f ‖B

p
q

.

So I t
s is an imbedding of B

p
q into L

p
q . The necessary background for B

p
q spaces is given in

Section 3. They are all complete, Banach spaces for p � 1, and Hilbert spaces for p = 2. They
include many known spaces as special cases.

Definition 1.2. We call a positive Borel measure μ on B a Carleson measure for B
p
q provided

some I t
s maps B

p
q into Lp(μ) continuously.

Now we are ready to state our main result. Here, the b(w, r) is the ball in the Bergman metric
with center w ∈ B and radius r , and an r-lattice is defined by Lemma 2.5. As is commonly used,
C is a finite positive constant whose value might be different at each occurrence. The context
makes it clear what each C depends on, but C never depends on the functions in the formula in
which it appears.

Theorem 1.3. Let q be fixed but unrestricted. Let p and r , and also s be given. The following
conditions are equivalent for a positive Borel measure μ on B.
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(i) There is a C such that

sup
w∈B

μ(b(w, r))

νq(b(w, r))
� C.

(ii) There is a C such that if {an} is an r-lattice in B, then

sup
n∈N

μ(b(an, r))

νq(b(an, r))
� C.

(iii) There is a C such that if t satisfies (1), then

∫
B

∣∣I t
s f

∣∣p dμ � C‖f ‖p

B
p
q

(
f ∈ B

p
q

)
.

(iv) There is a C such that if t satisfies (1), then

sup
w∈B

(
1 − |w|2)N+1+q+pt

∫
B

(1 − |z|2)pt

|1 − 〈z,w〉|(N+1+q+pt)2
dμ(z) � C.

Condition (iii) is the statement that μ is a Carleson measure for B
p
q .

As is common with Carleson-measure theorems, the property of being a Carleson measure is
independent of p or r , and now also of s, t as long as (1) holds, because (i) is true for any p,
s, t and (iii) is true for any r . However, all conditions depend on q . So for a fixed q , a Carleson
measure for one B

p
q with one suitable s, t is a Carleson measure for all B

p
q with the same q with

any other such s, t . And we conveniently call such a μ also a q-Carleson measure. So setting

qμ̂r (w) = μ(b(w, r))

νq(b(w, r))
(w ∈ B),

a q-Carleson measure is a positive Borel measure on B for which the averaging function qμ̂r is
bounded on B for some r . Thus Theorem 1.3 gives a full characterization of q-Carleson measures
for all real q .

We can draw some immediate conclusions from Theorem 1.3. Clearly the model q-Carleson
measure is νq . So Carleson measures need not be finite for q � −1. By Lemma 2.2, νq(b(w, r))

is of order (1 −|w|2)N+1+q . Thus by (i), any νq1 with q1 > q is also a q-Carleson measure while
no νq2 with q2 < q is. Further, by (i) again, any finite Borel measure is a q-Carleson measure for
q � −(N + 1). And for q = −(N + 1), q-Carleson measures are precisely those Borel measures
that are finite on Bergman balls of a fixed radius. On the question of finiteness, with w = 0 and
b = pt , (iv) immediately implies the following.

Corollary 1.4. If μ is a q-Carleson measure, then the measure μβ is finite for any β with
β + q > −1.

Theorem 1.3 is better appreciated when we restrict to q > −1. Then t = 0 satisfies (1) for
any p, and by Definition 1.1, the space B

p
q coincides with the weighted Bergman space A

p
q . In
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this case Theorem 1.3 becomes a well-known result, and Corollary 1.4 implies that a Carleson
measure must then be finite; see [14, Theorem 2.36] for N = 1. But it is possible to take t �= 0
also with q > −1 as long as t satisfies (1); then Theorem 1.3 extends known results for weighted
Bergman spaces by giving equivalences also with I t

s in place of the inclusion map.
Moreover, the space B2−1 is the Hardy space H 2. Now (1) requires a t > 0, no matter how

small. It follows that Definition 1.2 and Theorem 1.3 are about Carleson measures different from
the usual Carleson measures on H 2. However, as t → 0+, we show that we indeed obtain the
usual Carleson measures on H 2, and hence on Hp . Therefore we unify the theory of Carleson
measures on weighted Bergman, Besov, and Hardy spaces simultaneously.

Theorem 1.3 depends on an imbedding of B
p
q into a Lebesgue class via I t

s which involve
certain combinations of radial derivatives of functions in B

p
q . Using derivatives to imbed holo-

morphic function spaces into Lebesgue classes is not uncommon; see [4, Theorem 13], [27] and
its references, and [13]. On the other hand, descriptions of Carleson measures defined using the
inclusion map on Besov spaces are limited to certain values of q and p and to N = 1. For ex-
ample, q = −(N + 1) = −2 in [5] although their Besov spaces are defined with a more general
weight than 1 − |z|2. In other places, the equivalent conditions are not uniform over the values
of q , p considered; for example, see [36] for q + p > −1 with N = 1.

It is still possible to strengthen the characterization of q-Carleson measures by relaxing their
dependence on Besov spaces and weakening the condition in Theorem 1.3(iv) after a relabeling
of the parameters. The following result seems to be new in its generality also for Bergman-space
Carleson measures and even in the most classical case q = 0. Recalling that νq is the model
q-Carleson measure and in view of [32, Proposition 1.4.10], its conditions are as natural as can
be hoped for.

Theorem 1.5. Let μ be a positive Borel measure on B. If

Uα,β,qμ(w) = (
1 − |w|2)α

∫
B

(1 − |z|2)β
|1 − 〈z,w〉|N+1+α+β+q

dμ(z) (w ∈ B)

is bounded for some real α, β , and q , then μ is a q-Carleson measure. If μ is a q-Carleson
measure, α > 0, and β + q > −1, then Uα,β,qμ is bounded on B.

The idea of this theorem leads to a characterization of Hardy-space Carleson measures which
also seems new in its generality.

Theorem 1.6. Let μ be a positive Borel measure on B. If Uα,0,−1μ(w) is bounded on B for some
real α, then μ is a Hardy-space Carleson measure. If μ is a Hardy-space Carleson measure and
α > 0, then Uα,0,−1μ(w) is bounded on B.

Some of the results in this paper have been announced in [24].
All our results are valid when s and t are complex numbers too; we just need to replace them

with their real parts in inequalities as done in [17,23].
The proof of Theorem 1.3 is in Section 5 along with a discussion of related Berezin trans-

forms. The little oh version of this theorem that connects the compactness of I t
s to vanishing

Carleson measures is Theorem 5.3. This section contains also the proof of Theorem 1.5 and its
little oh version. An immediate application is given to separated sequences in B. We further give
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equivalent conditions for the imbedding I t
s :B2

q → L2(μ) to belong to the Schatten ideal Sc with
c � 2 in Theorem 5.12. Compact operators require a characterization of ultraweak convergence
in Besov spaces which is in Section 4. We next give examples of ultraweakly convergent families
in Besov spaces in Example 4.7 that are instrumental in the proof of the implication (iii) ⇒ (iv)
of Theorem 1.3. We gather some basic facts about Bergman geometry in Section 2, and review
Besov spaces in Section 3. Later in Section 6, we show how the Hardy-space Carleson measures
come into the picture as the order t of the derivative Dt

s tends to 0 when q = −1. The proof of
Theorem 1.6 is also here.

The remaining sections are for applications. In Section 7, we apply Theorem 1.5 to an analysis
of integral operators on L∞ inspired by Forelli–Rudin estimates. In Section 8, we characterize
functions in weighted Bloch and little Bloch spaces Bα and Bα

0 for all α ∈ R, which include the
Lipschitz classes and the growth spaces. In Section 9, we develop a finiteness criterion for pos-
itive Borel measures imbedding Bloch spaces into Lebesgue classes using I t

s , and we construct
Carleson measures from functions in Besov spaces, using gap series for both. In Section 10, we
generalize to Besov spaces two classical inequalities of Fejér–Riesz and Hardy–Littlewood for
Hardy spaces, which are reobtained in a limiting case. In Section 11, we investigate integration
operators companion to a Cesàro-type operator.

As for notation, if X is a set, then X denotes its closure and ∂X its boundary. The surface
measure on ∂B is denoted σ and normalized with σ(∂B) = 1. Bounded measurable and bounded
holomorphic functions on B are denoted by L∞ and H∞, and ‖f ‖H∞ = sup∂B |f |. Note that
L∞

q = L∞ for any q . We let C be the space of continuous functions on B and C0 its subspace
whose members vanish on ∂B.

We use the convenient Pochhammer symbol defined by

(x)y = �(x + y)

�(x)

when x and x + y are off the pole set −N of the gamma function �. For fixed x, y, Stirling
formula gives

�(c + x)

�(c + y)
∼ cx−y and

(x)c

(y)c
∼ cx−y (c → ∞), (3)

where x ∼ y means that |x/y| is bounded above and below by two positive constants that are
independent of any parameter present (c here).

We use multi-index notation in which λ = (λ1, . . . , λN) ∈ N
N is an N -tuple of nonnegative

integers, |λ| = λ1 + · · · + λN , λ! = λ1! · · ·λN !, zλ = z
λ1
1 · · · zλN

N , and 00 = 1.

2. Bergman geometry

We collect here some standard facts on balls in the Bergman metric, and prove some subhar-
monicity results with respect to these balls.

The biholomorphic automorphism group Aut(B) of the ball is generated by unitary mappings
of C

n and the involutive Möbius transformations ϕa that exchange 0 and a ∈ B. A most useful
property of ϕa is

1 − 〈
ϕa(z),ϕa(w)

〉 = (1 − |a|2)(1 − 〈z,w〉)
(a, z,w ∈ B); (4)
(1 − 〈z, a〉)(1 − 〈a,w〉)
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the real Jacobian of the transformation w = ϕa(z) is

JRϕa(z) =
(

1 − |a|2
|1 − 〈z, a〉|2

)N+1

; (5)

see [32, Section 2.2]. The Bergman metric on B is

d(z,w) = 1

2
log

1 + |ϕz(w)|
1 − |ϕz(w)| = tanh−1

∣∣ϕz(w)
∣∣,

where |ϕz(w)| = dψ(z,w) is the pseudohyperbolic metric on B. These metrics are invariant under
the automorphisms of B; that is, d(ψ(z),ψ(w)) = d(z,w) and dψ(ψ(z),ψ(w)) = dψ(z,w) for
ψ ∈ Aut(B).

The balls centered at w of radius r in the Bergman (hyperbolic), pseudohyperbolic, and
Euclidean metrics are denoted by b(w, r), bψ(w, r), and be(w, r), respectively. A pseudohy-
perbolic ball is a Bergman ball rescaled by the hyperbolic tangent, and a Euclidean ball is a
pseudohyperbolic ball translated by an automorphism of B, as explicitly displayed by the rela-
tions

b(w, r) = bψ(w, tanh r) = ϕw

(
be(0, tanh r)

)
, (6)

where 0 < tanh r < 1. The automorphism invariance of the two metrics d and dψ shows that
ϕa(b(w, r)) = b(ϕa(w), r) and ϕa(bψ(w, r)) = bψ(ϕa(w), r).

Lemma 2.1. Given r1 > 0 and w ∈ B, we have

1 − 〈z1, z2〉 ∼ 1 − |w|2

for all z1, z2 ∈ b(w, r) and r � r1. Hence

1 − |z|2 ∼ 1 − |w|2 and 1 − 〈z,w〉 ∼ 1 − |w|2

for all z ∈ b(w, r) and r � r1.

Proof. If zj ∈ b(w, r), then zj = ϕw(vj ) for some vj with |vj | < tanh r for j = 1,2 by (6). Then

1 − 〈z1, z2〉 = 1 − 〈
ϕw(v1), ϕw(v2)

〉 = (1 − |w|2)(1 − 〈v1, v2〉)
(1 − 〈v1,w〉)(1 − 〈w,v2〉) ∼ 1 − |w|2,

because the other factors are ∼ 1 since |vj | < tanh r � tanh r1, j = 1,2. �
Lemma 2.2. Given q and r1 > 0, we have

νq

(
b(w, r)

) ∼ (
1 − |w|2)N+1+q

(w ∈ B, r � r1).
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Proof. Computing using (6), (4), and (5),

νq

(
b(w, r)

) =
∫

b(w,r)

(
1 − |z|2)q

dν(z) =
∫

ϕw(be(0,tanh r))

(
1 − |z|2)q

dν(z)

=
∫

be(0,tanh r)

(
1 − ∣∣ϕw(z)

∣∣2)q
JRϕw(z) dν(z)

= (
1 − |w|2)N+1+q

∫
|z|<tanh r

(1 − |z|2)q
|1 − 〈z,w〉|2(N+1+q)

dν(z).

The last integral is equivalent to 1 since tanh r � tanh r1. �
Corollary 2.3. Given q and r1, r2, r3, r4, r5 > 0, we have

νq(b(z, r))

νq(b(w,ρ))
∼ 1

for all r � r1, ρ � r2, r3 � r/ρ � r4 and z,w ∈ B with d(z,w) � r5.

Definition 2.4. A sequence {an} in B is called separated (or uniformly discrete) if there is a
constant τ > 0, called the separation constant, such that d(an, am) � τ for all n �= m.

The disc version of the following covering lemma is in [9, Lemma 3.5]. A sequence {an}
satisfying its conditions is called an r-lattice in B in the literature.

Lemma 2.5. There is a positive integer M such that for any given r , there exists a sequence {an}
in B with |an| → 1 satisfying the following conditions:

(i) B = ⋃∞
n=1 b(an, r);

(ii) {an} is separated with separation constant r/2;
(iii) any point in B belongs to at most M of the balls b(an,2r).

It is common to use Carleson windows in theorems and proofs on Carleson measures. These
windows are extensions to D of arcs on ∂D, and their higher-dimensional generalizations. The
arcs are the balls of the natural metric on ∂D, which is the natural domain for the Hardy spaces.
However, when considering Bergman or Besov spaces on D and especially on B, it is much more
natural to use balls of the relevant metric, which is the Bergman metric. Certain details of proofs
using Carleson windows involve a decomposition of D into windows that get smaller as they get
closer to ∂D. As a matter of fact, they do so in such a way that their size in the Bergman metric
remain roughly fixed. In Lemma 2.5 instead, we use a decomposition of B into balls of a fixed
radius that does the same job in a much less complicated manner.

Lastly we obtain two generalized subharmonicity properties with respect to each of the mea-
sures νQ on Bergman balls. The proofs given in [42] for Q = 0 work equally well for other Q

too. A final use of Jensen inequality in the second extends the result to p �= 1.
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Lemma 2.6. Given Q ∈ R and r1 > 0, there is a constant C such that for all p, g ∈ H(B), w ∈ B,
and r � r1, we have

∣∣g(w)
∣∣p � C

νQ(b(w, r))

∫
b(w,r)

|g|p dνQ.

Lemma 2.7. Given q and r1 > 0, there is a constant C such that for all p, positive Borel measure
μ on B, w ∈ B, and r � r1, we have

μ
(
b(w, r)

)p � C

νq(b(w, r))

∫
b(w,r)

μ
(
b(z, r)

)p
dνq(z).

3. Besov spaces

There are several different ways to define Besov spaces on B. All require one kind of derivative
or another, but the easiest one to use is the radial derivative. The particular description started in
[22] and continued in [23] suits best our interests. We review their relevant points here. Another
major source of information is [11]. For comparison, our B

p
q space is their A

p

1+q+pt,t space.

Let f ∈ H(B) be given by its homogeneous expansion f = ∑∞
k=0 Fk , where Fk is a ho-

mogeneous polynomial of degree k. Then its radial derivative at z is Rf (z) = ∑∞
k=1 kFk(z).

In [23, Definition 3.1], for any s, t , the radial differential operator Dt
s is defined on H(B) by

Dt
sf = ∑∞

k=0
t
s dkFk , where

t
sdk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(N + 1 + s + t)k

(N + 1 + s)k
, if s > −(N + 1), s + t > −(N + 1);

(N + 1 + s + t)k(−(N + s))k+1

(k!)2
, if s � −(N + 1), s + t > −(N + 1);

(k!)2

(N + 1 + s)k(−(N + s + t))k+1
, if s > −(N + 1), s + t � −(N + 1);

(−(N + s))k+1

(−(N + s + t))k+1
, if s � −(N + 1), s + t � −(N + 1).

What is important is that

t
s dk �= 0 (k = 0,1,2, . . .) and t

s dk ∼ kt (k → ∞) (7)

for any s, t . It turns out that each Dt
s is a continuous invertible operator of order t on H(B) with

two-sided inverse

(
Dt

s

)−1 = D−t
s+t . (8)

Other useful properties are that D0
s is the identity for any s, D1−N = I + R, Du

s+tD
t
s = Du+t

s ,
Dt

s(1) = t
s d0 > 0, and Dt

s(z
λ) = t

s d|λ|zλ.
The next result, reproduced from [23, Theorem 4.1], justifies Definition 1.1. It is equivalent

to [11, Theorem 5.12(i)].
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Proposition 3.1. The space B
p
q is independent of the particular choice of s, t as long as (1)

holds. The L
p
q norms of I

t1
s1 f and I

t2
s2 f are equivalent as long as (1) is satisfied by t1 and t2.

So the norm in Definition 1.1 represents a whole family of equivalent norms. The same is true
in B2

q for the inner product

[f,g]q =
∫
B

I t
s f I t

s g dνq (9)

with s, t satisfying (1) with p = 2.
Each B2

q space is a reproducing kernel Hilbert space with reproducing kernel

Kq(z,w) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

(1 − 〈z,w〉)N+1+q
=

∞∑
k=0

(N + 1 + q)k

k! 〈z,w〉k, if q > −(N + 1);

2F1(1,1;1 − N − q; 〈z,w〉)
−N − q

=
∞∑

k=0

k!〈z,w〉k
(−N − q)k+1

, if q � −(N + 1),

where 2F1 is the hypergeometric function; see [11, p. 13]. Thus B2
q spaces are nothing but Dirich-

let spaces, B2−1 the Hardy space H 2, B2−N the Arveson space A (see [2,6]), and B2
−(N+1) the clas-

sical Dirichlet space D, the last due to the fact that K−(N+1)(z,w) = −〈z,w〉−1 log(1 − 〈z,w〉).
Monomials {zλ} form a dense orthogonal set in B2

q . Moreover, by (3),

Kq(z,w) ∼
∞∑

k=0

kN+q〈z,w〉k =
∑
λ

|λ|N+q |λ|!
λ! zλwλ (10)

for any q , because

〈z,w〉k =
∑
|λ|=k

k!
λ!z

λwλ. (11)

This shows that Kq is bounded for q < −(N + 1), and that for all q ,

∥∥zλ
∥∥2

B2
q
∼ λ!

|λ|N+q |λ|!
(
λ ∈ N

N
)
.

The reproducing property of Kq is that [f,Kq(·,w)]q = Cf (w) with any s, t satisfying (1).
Since Kq(·,w) ∈ B2

q for any w ∈ B, we also have

∥∥Kq(·,w)
∥∥2

B2
q
= [

Kq(·,w),Kq(·,w)
]
q

= CKq(w,w) (12)

with any s, t satisfying (1). Although the results on reproducing property follow directly from
considerations in reproducing kernel Hilbert spaces, they can be checked as well by using the
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integral forms of the inner product and the norm and [32, Proposition 1.4.10]. Differentiation in
the holomorphic variable z and the series expansion of Kq show that always

Dt
qKq(z,w) = Kq+t (z,w).

Almost as easily, we have the following for the spaces; but a proof can be found in [25, Proposi-
tion 3.1].

Proposition 3.2. For any q , p, s, t , Dt
s(B

p
q ) = B

p
q+pt is an isometric isomorphism under the

equivalence of norms.

Lemma 3.3. Given q , p, s, t , there is a constant C such that if f ∈ B
p
q , then for z ∈ B,

∣∣Dt
sf (z)

∣∣ � C‖f ‖B
p
q

⎧⎪⎨
⎪⎩

(1 − |z|2)−(N+1+q+pt)/p, if q > −(N + 1 + pt);
log(1 − |z|2)−1, if q = −(N + 1 + pt);
1, if q < −(N + 1 + pt).

Proof. See [11, Lemma 5.6]. �
Definition 3.4. Extended Bergman projections are the linear transformations

Psf (z) =
∫
B

Ks(z,w)f (w)dνs(w) (z ∈ B)

defined for suitable f and all s.

The following result is contained in [23, Theorem 1.2].

Theorem 3.5. For 1 � p < ∞, Ps is a bounded operator from L
p
q onto B

p
q if and only if

q + 1 < p(s + 1). (13)

Given an s satisfying (13), if t satisfies (1), then

(
Ps ◦ I t

s

)
f = N !

(1 + s + t)N
f

(
f ∈ B

p
q

)
.

Together (13) and (1) imply s + t > −1 so that 1 + s + t does not hit a pole of �. If q > −1,
we can take t = 0, and Theorem 3.5 reduces to the classical result on Bergman spaces. When
p = ∞ for fixed q , the inequalities (1) and (13) turn into

t > 0 and s > −1. (14)

Then the spaces B∞
q are all the same and called the Bloch space B, which is the space of all

f ∈ H(B) for which some I t
s f with t > 0 is bounded on B. Its subspace the little Bloch space
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B0 consists of those f ∈ B for which some I t
s f with t > 0 vanishes on ∂B. The norm on these

spaces is the Bloch norm

‖f ‖B = sup
B

∣∣I t
s f

∣∣

valid for any t > 0.

Theorem 3.6. The operator Ps maps L∞ boundedly onto B if and only if s > −1; and it maps
either of C or C0 boundedly onto B0 if and only if s > −1. Given such an s, if also t > 0, then
(Ps ◦ I t

s )f = Cf for f ∈ B, and hence for f ∈ B0.

Proof. See [25, Theorem 5.3]. �
A consequence of Bergman projections is that for 1 � p < ∞, the dual of B

p
q can be identified

with B
p′
q , where p′ = p/(p − 1) is the exponent conjugate to p, under each of the pairings

q [f,g]t,−q+s
s,q+t =

∫
B

I t
s f I

−q+s
q+t g dνq, (15)

where s, t satisfy (13) and (1), or (14), and f ∈ B
p
q , g ∈ B

p′
q . Similarly, the dual of B0 can be

identified with any B1
q under each of the same pairings with f ∈ B0, g ∈ B1

q . The details can be
found in [23, Section 7].

4. Compact operators and ultraweak convergence

This section has dual purpose. First we give a characterization of compact I t
s acting on Besov

spaces that leads to a little oh version of Theorem 1.3 for all p. Then we construct (ultra)weakly
convergent families in Besov spaces that makes the proof of Theorem 1.3 possible. These are
still normalized reproducing kernels, but the kernel and the normalization are of different spaces.

Definition 4.1. Let X and Y be F -spaces, that is, topological vector spaces whose topologies are
induced by complete translation-invariant metrics. A linear operator T :X → Y is called compact
if the images of balls of X under T have compact closures in Y .

Compactness of T is equivalent to that the image under T of a bounded sequence in X has a
subsequence convergent in Y . We also know that if X and Y be Banach spaces and X is reflexive,
a linear operator T : X → Y is compact if and only if fk → 0 weakly in X implies ‖Tfk‖Y → 0.

The only F -spaces we consider that are not Banach spaces are Lp(μ) and B
p
q for 0 < p < 1.

For the latter, we have a family of equivalent invariant metrics ‖f − g‖p

B
p
q

for each s, t satisfy-

ing (1).
Extending a concept defined in [45, p. 61], we make the following definition.

Definition 4.2. Let s, t satisfy (1). A sequence {fk} converges (s, t)-ultraweakly to 0 in B
p
q if

{‖fk‖B
p } is bounded and {I t

s fk} converges to 0 uniformly on compact subsets of B.

q
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The next result is essential for the proof of Theorem 5.3. A similar result holds for composition
operators on similar spaces too; see [14, Proposition 3.11] and [35, Lemmas 3.7 and 3.8].

Theorem 4.3. Let μ be a positive Borel measure on B, and let s, t satisfy (1). The operator
I t
s :Bp

q → Lp(μ) is compact if and only if for any sequence {fk} in B
p
q converging (s, t)-ultra-

weakly to 0, we have ‖I t
s fk‖Lp(μ) → 0.

Proof. Suppose I t
s is compact, and let {fk} converge (s, t)-ultraweakly to 0 in B

p
q . Assume

that there is an ε > 0 and a subsequence {fkj
} such that ‖I t

s fkj
‖p

Lp(μ) � ε for all j . By the
compactness of I t

s , there is another subsequence {fkjm
} such that I t

s fkjm
→ h in Lp(μ). And

there is a further subsequence {fkjml
} such that I t

s fkjml
(z) → h(z) a.e. in B. But I t

s fk(z) → 0 for

all z ∈ B by uniform convergence on compact subsets. Thus h(z) = 0 a.e. in B and I t
s fkjm

→ 0
in Lp(μ). This contradicts the assumption.

Conversely, suppose {‖fk‖p

B
p
q
} is bounded. By Lemma 3.3, for all k and R with 0 < R < 1,

we have sup{|Dt
sfk(z)|p: |z| � R} � C‖fk‖p

B
p
q

� C. Hence {Dt
sfk} is a normal family and has a

subsequence {fkj
} such that Dt

sfkj
converges uniformly on compact subsets of B to a function

in H(B) which we can take as Dt
sf for some f ∈ H(B). Then also I t

s fkj
→ I t

s f uniformly on
compact subsets of B. Then by Fatou lemma,

∫
B

∣∣I t
s f

∣∣p dνq =
∫
B

lim
j→∞

∣∣I t
s fkj

∣∣p dνq � lim inf
j→∞

∫
B

∣∣I t
s fkj

∣∣p dνq = lim inf
j→∞ ‖fkj

‖p

B
p
q

� C,

which implies f ∈ B
p
q . Thus {fkj

− f } is a sequence converging (s, t)-ultraweakly to 0 in B
p
q . It

follows that ‖I t
s (fkj

− f )‖p

Lp(μ) → 0 and {I t
s fkj

} converges in Lp(μ). �
Considering the characterization of compactness on reflexive spaces, the following result is

no surprise. It applies to weighted Bergman spaces by taking q > −1 and t = 0. But we can
take other s, t as long as they satisfy (13) and (1) also with q > −1. Thus we obtain some new
conditions for weak convergence on weighted Bergman spaces equivalent to the known ones.

Theorem 4.4. For 1 < p < ∞, a sequence {fk} converges to 0 weakly in B
p
q if and only if it

converges (s, t)-ultraweakly to 0 in B
p
q for some s, t satisfying (13) and (1).

Proof. Suppose {fk} converges (s, t)-ultraweakly to 0 with s, t of the form given. Then
Dt

sfk → 0 uniformly on compact subsets of B. Since functions with compact support are dense
in L

p
q , it suffices to consider the following. Let 0 < R < 1, χ be the characteristic function of

the Euclidean ball be(0,R), and g = Pq+tχ . Now (13) is satisfied with q + t and p′ replacing

s and p because of (1); hence g ∈ B
p′
q by Theorem 3.5. Then by (15), differentiation under the

integral, and Fubini theorem, we obtain

q [fk, g]t,−q+s
s,q+t =

∫
B

I t
s fkI

−q+s
q+t g dνq

=
∫

I t
s fk(z)

(
1 − |z|2)s

∫
(1 − |w|2)q+t χ(w)

(1 − 〈w,z〉)N+1+s+t
dν(w)dν(z)
B B
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=
∫
B

(
1 − |w|2)q+t

χ(w)

∫
B

(1 − |z|2)s+t

(1 − 〈w,z〉)N+1+s+t
Dt

sfk(z) dν(z) dν(w)

=
∫

|w|<R

(
1 − |w|2)q+t

Ps+tD
t
sfk(w)dν(w).

Now by Proposition 3.2, Dt
sfk ∈ B

p
q+pt = A

p
q+pt , and hence Ps+t (D

t
sfk) = CDt

sfk by Theo-
rem 3.5. Then

q [fk, g]t,−q+s
s,q+t = C

∫
|w|<R

(
1 − |w|2)q+t

Dt
sfk(w)dν(w) = C

∫
|w|<R

I t
s fk(w)dνq(w).

Thus |q [fk, g]t,−q+s
s,q+t | � C sup{|I t

s fk(w)|: |w| � R}, and fk → 0 weakly.
Suppose fk → 0 weakly in B

p
q , and s, t satisfy (13) and (1). Then {‖fk‖B

p
q
} is bounded.

Lemma 3.3 yields that sup{|Dt
sfk(z)|: |z| � R} � C‖fk‖B

p
q

� C for all k and R with 0 < R < 1.

Then {Dt
sfk} is a normal family and has a subsequence {Dt

sfkj
} that converges uniformly on

compact subsets. Putting hk = I t
s fk , this forces {hkj

} also to converge uniformly on compact
subsets, say, to h. But fkj

then converges weakly to f ≡ 0 and h = I t
s f . Hence h ≡ 0. If {hk}

had another subsequence {hkl
} that stayed bounded away from 0, then since fkl

→ 0 weakly,
this subsequence would in turn yield a subsubsequence {hklm

} as above that would converge
uniformly on compact subsets to 0, contradicting the defining property of {hkl

}. Therefore the
full sequence hk → 0 uniformly on compact subsets of B. �
Theorem 4.5. A sequence {gk} converges to 0 weak-∗ in B1

q = (B0)
∗ if and only if it converges

(s, t)-ultraweakly to 0 in B1
q for some s, t satisfying (13) and (1) with p = 1. A sequence {gk}

converges to 0 weak-∗ in B = (B1
q )∗ if and only if it converges (s, t)-ultraweakly to 0 in B for

some s, t satisfying (14).

Proof. The only differences from the proof of Theorem 4.4 are that we use a continuous χ for
the first statement and Theorem 3.6 for the second statement. �
Example 4.6. It is well known [43, Section 6.1] that if q > −1, then the normalized reproduc-
ing kernels gw(z) = Kq(z,w)/‖Kq(·,w)‖A2

q
converge to 0 weakly as |w| → 1 in the Bergman

spaces A2
q . More generally, g

2/p
w converges to 0 as |w| → 1 weakly in A

p
q for p > 1 and weak-∗

in A1
q .

In Besov spaces B
p
q with −(N + 1) < q � −1 when the associated reproducing kernel is

binomial, the same idea gives ultraweakly 0-convergent families. We show the details, because
derivatives have to be taken care of in the computations of norms. By (12) we have

gw(z) ∼
(

1 − |w|2
(1 − 〈z,w〉)2

)(N+1+q)/p

∼ (
1 − |w|2)(N+1+q)/p

∞∑
k(N+1+q)2/p−1〈z,w〉k (|w| → 1

)
.

k=0
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If s, t satisfy (1), then by (7) and (10),

I t
s gw(z) ∼ (

1 − |w|2)(N+1+q)/p(
1 − |z|2)t

∞∑
k=0

k(N+1+q)2/p−1+t 〈z,w〉k

∼ (1 − |w|2)(N+1+q)/p(1 − |z|2)t
(1 − 〈z,w〉)(N+1+q)2/p+t

(|w| → 1
)
.

So if |z| � R < 1, then |I t
s gw(z)| � C(1 − |w|2)(N+1+q)/p → 0 as |w| → 1. Further

‖gw‖p

B
p
q

=
∫
B

∣∣I t
s gw

∣∣p dνq ∼ (
1 − |w|2)N+1+q

∫
B

(1 − |z|2)q+pt

|1 − 〈z,w〉|(N+1+q)2+pt
dν(z)

∼ 1
(|w| → 1

)

by [32, Proposition 1.4.10]. Thus gw → 0 as |w| → 1 (s, t)-ultraweakly.
In particular, the normalized reproducing kernels of the Hardy space H 2 = B2−1 and the Arve-

son space A = B2−N are weakly 0-convergent families in their own spaces.
Even when q = −(N + 1), when the associated reproducing kernel is logarithmic and hence

unbounded, the same procedure gives weakly 0-convergent families in B
p

−(N+1), but seems
unlikely to work for q < −(N + 1) when the reproducing kernels are bounded. We need a mod-
ification.

Example 4.7. We now explicitly construct ultraweakly 0-convergent families in all Besov
spaces B

p
q . Our construction works in Bergman spaces too and gives us such families that are

not necessarily normalized reproducing kernels.
Fix q . Let t satisfy (1); then also N + 1 + q + pt > 0. Pick complex numbers ck such that

ck ∼ k(N+1+q+pt)2/p−1−t as k → ∞, and put

fw(z) =
∞∑

k=0

ck〈z,w〉k.

Similar to Example 4.6,

I t
s fw(z) ∼ (1 − |z|2)t

(1 − 〈z,w〉)(N+1+q+pt)2/p

(|w| → 1
)
. (16)

If |z| � R < 1, then |I t
s fw(z)| � C for any w ∈ B. Again similar to Example 4.6,

‖fw‖p

B
p
q

∼ 1

(1 − |w|2)N+1+q+pt
. (17)

Set gw(z) = fw(z)/‖fw‖B
p
q

so that each ‖gw‖B
p
q

= 1. Moreover, if |z| � R, then we have

|I t
s gw(z)| � C(1 − |w|2)(N+1+q+pt)/p → 0 as |w| → 1. The (s, t)-ultraweak convergence fol-

lows.
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Remark 4.8. Consider the case of a Hilbert space, p = 2, in Example 4.7. Let s satisfy (13) in
which case t = −q + s satisfies (1) since −q + 2s > −1. Then ck ∼ kN+s , and by (10) we can
take fw(z) = Ks(z,w) = D

−q+s
q Kq(z,w) in B2

q . Thus

gw(z) = Ks(z,w)

‖Ks(·,w)‖B2
q

=
√

(1 − q + 2s)N+1

N !
(
1 − |w|2)(N+1−q+2s)/2

Ks(z,w)

∼ Ks(z,w)√
K−q+2s(w,w)

∈ B2
q

is a normalized reproducing kernel indeed, but it is the kernel of B2
s normalized so that its B2

q

norm is 1, and is considered an element of B2
q . The second equality above follows from the proof

of [32, Proposition 1.4.10] using t = −q + s. It is interesting that

gw(z) = D
q−s

−q+2s

K−q+2s(z,w)

‖K−q+2s(·,w)‖B2−q+2s

.

It is possible to take s = q if and only if q > −1, the Bergman-space case. For q � −1, (13) re-
quires s > q . For such q , s = −q works for p � 1 and s = 0 works for all p.

Specifically, the Bergman kernel K0(·,w) is a weakly 0-convergent family in H 2 or A as
|w| → 1 when it is normalized by dividing it by its norm in H 2 or A.

It is easy to see that fw is the kernel in B2
q for the evaluation of the derivative D

−q+s
s f of

f ∈ B2
q at w ∈ B in the sense that [f,fw]q = CD

−q+s
s f (w), where C = N !/(1−q +2s)N when

[·,·]q = q [·,·]−q+s,−q+s
s,s , and gw is this kernel normalized in B2

q . A similar weak-convergence
result can be found in [14, Proposition 7.13].

Example 4.9. We lastly obtain weak-∗ 0-convergent families in the Bloch space B. Let s and
t satisfy (14), pick ck ∼ kt−1 as k → ∞, and define fw as in Example 4.7. Then we have
‖fw‖B � C(1 − |w|2)−2t . Setting gw(z) = fw(z)/‖fw‖B , we obtain that gw → 0 weak-∗ in B
as |w| → 1 by Theorem 4.5 as in Example 4.7. By taking t close to 0, we find families {gw} in B
that converge weak-∗ to 0 arbitrarily slowly.

5. Carleson measures and separated sequences

In this section we prove Theorems 1.3 and 1.5 and their little oh counterparts on vanishing
Carleson measures, and relate their conditions to Berezin transforms and averaging functions.
We also prove an associated result on Schatten ideal criteria for I t

s . Our results naturally extend
well-known results on q-Carleson measures for q > −1 on weighted Bergman spaces in two
directions; q � −1, and for q > −1, imbeddings that are not inclusion. They are readily applied
to separated sequences.

Lemma 5.1. Let q , r , also α,β ∈ R, and a positive Borel measure μ on B be given. Then

qμ̂r (w) � Uα,β,qμ(w) (w ∈ B),

where Uα,β,qμ is defined in Theorem 1.5.
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Proof. By Lemmas 2.2 and 2.1,

qμ̂r (w) ∼ 1

(1 − |w|2)N+1+q

∫
b(w,r)

dμ

∼ (
1 − |w|2)α

∫
b(w,r)

(1 − |z|2)β
|1 − 〈z,w〉|N+1+α+β+q

dμ(z)

�
(
1 − |w|2)α

∫
B

(1 − |z|2)β
|1 − 〈z,w〉|N+1+α+β+q

dμ(z) = Uα,β,qμ(w)

for every w ∈ B. �
After all the preparation, the proof of our main theorem goes very smoothly.

Proof of Theorem 1.3. (i) ⇒ (ii). There is nothing to prove.
(ii) ⇒ (iii). Suppose (ii) holds for some r . We start by applying Lemma 2.5(i) to an integral

of I t
s f .

∫
B

∣∣I t
s f

∣∣p dμ �
∞∑

n=1

∫
b(an,r)

∣∣I t
s f

∣∣p dμ

�
∞∑

n=1

μ
(
b(an, r)

)
sup

{∣∣I t
s f (w)

∣∣p: w ∈ b(an, r)
}
.

If w ∈ b(an, r), we apply Lemma 2.6 with g = Dt
sf and Q = q +pt bearing in mind Lemma 2.2

to obtain

(
1 − |w|2)pt ∣∣Dt

sf (w)
∣∣p � C

νq(b(w, r))

∫
b(w,r)

(
1 − |z|2)pt ∣∣Dt

sf (z)
∣∣p dνq(z).

Then by Corollary 2.3,

∣∣I t
s f (w)

∣∣p � C

νq(b(an, r))

νq(b(an, r))

νq(b(w, r))

∫
b(w,r)

∣∣I t
s f

∣∣p dνq

� C

νq(b(an, r))

∫
b(an,2r)

∣∣I t
s f

∣∣p dνq,

because b(w, r) ⊂ b(an,2r). The right-hand side is now independent of w ∈ b(an, r), and we can
take the supremum of the left-hand side on all such w. By assumption (ii) and Lemma 2.5(iii), it
follows that
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∫
B

∣∣I t
s f

∣∣p dμ � C

∞∑
n=1

μ(b(an, r))

νq(b(an, r))

∫
b(an,2r)

∣∣I t
s f

∣∣p dνq

� C

∞∑
n=1

∫
b(an,2r)

∣∣I t
s f

∣∣p dνq � CM

∫
B

∣∣I t
s f

∣∣p dνq,

and we obtain (iii).
(iii) ⇒ (iv). Suppose (iii) holds for some p. We obtain this implication by picking a special f ,

one for each w ∈ B, namely, f = gw of Example 4.7. Equations (16) and (17), and assumption
(iii) imply that

(
1 − |w|2)N+1+q+pt

∫
B

(1 − |z|2)pt

|1 − 〈z,w〉|(N+1+q+pt)2
dμ(z)

� C

∫
B

∣∣I t
s gw(z)

∣∣p dμ(z) � C‖gw‖p

B
p
q

� C,

which is (iv).
(iv) ⇒ (i). This is covered by Lemma 5.1 by picking α = N + 1 + q + pt and β = pt . �

Definition 5.2. We call a Carleson measure for B
p
q a vanishing Carleson measure for B

p
q when-

ever some I t
s mapping B

p
q into Lp(μ) is further compact.

Theorem 5.3. Let q be fixed. Let p and r , and also s be given. The following are equivalent for
a positive Borel measure μ on B.

(i) It holds that

lim|w|→1

μ(b(w, r))

νq(b(w, r))
= 0.

(ii) If {an} is an r-lattice in B, then

lim
n→∞

μ(b(an, r))

νq(b(an, r))
= 0.

(iii) The measure μ is a vanishing Carleson measure for B
p
q with respect to I t

s , where t satis-
fies (1).

(iv) If t satisfies (1), then

lim|w|→1

(
1 − |w|2)N+1+q+pt

∫
B

(1 − |z|2)pt

|1 − 〈z,w〉|(N+1+q+pt)2
dμ(z) = 0.
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Proof. (ii) ⇒ (iii). Suppose (ii) holds for some r . Let {fk} be a sequence in B
p
q converging

ultraweakly to 0. Then {‖fk‖B
p
q
} is bounded, and I t

s fk → 0 uniformly on compact subsets of B.
Let ε > 0. By assumption (ii), there is an n0 such that

μ(b(an, r))

νq(b(an, r))
< ε (n > n0).

Then as in the proof of the corresponding implication of Theorem 1.3, for all k,

∞∑
n=n0+1

∫
b(an,2r)

∣∣I t
s fk

∣∣p dμ � Cε

∞∑
n=n0+1

∫
b(an,2r)

∣∣I t
s fk

∣∣p dνq

� CMε

∫
B

∣∣I t
s fk

∣∣p dνq � CMε‖fk‖p

B
p
q

� CMε.

On the other hand,

lim
k→∞

n0∑
n=1

∫
b(an,2r)

∣∣I t
s fk

∣∣p dμ = 0

by uniform convergence on compact subsets. Then

lim
k→∞

∫
B

∣∣I t
s fk

∣∣p dμ = lim
k→∞

∥∥I t
s fk

∥∥p

Lp(μ)
� CMε

by Lemma 2.5(i). Since ε > 0 is arbitrary, this is (iii) by Theorem 4.3.
The proofs of the implications (iii) ⇒ (iv) ⇒ (i) are entirely similar to the proofs of the

corresponding implications of Theorem 1.3 and are omitted. �
So for fixed q , a vanishing Carleson measure is independent of p, r , the r-lattice, and s, t

satisfying (1). And we call such a μ also a vanishing q-Carleson measure. So a vanishing q-
Carleson measure is a positive Borel measure on B for which the averaging function qμr(w) has
limit 0 as |w| → 1 for some r . No νq or νq2 with q2 < q is a vanishing q-Carleson measure, but
any νq1 with q1 > q is by Lemma 2.2.

Remark 5.4. The discussion after Theorem 1.3 yields that I t
s :Bp

q → L
p
q1 with s, t satisfying (1)

is bounded if and only if q1 � q . The previous discussion now yields that I t
s :Bp

q → L
p
q1 with s,

t satisfying (1) is compact if and only if q1 > q . That I t
s :Bp

q → L
p
q cannot be compact is also

clear from the fact that it is an isometry and L
p
q is not finite-dimensional.

Corollary 5.5. A positive Borel measure μ on B is a q-Carleson (respectively, vanishing
q-Carleson) measure if and only if μQ is a (q + Q)-Carleson (respectively, vanishing (q + Q)-
Carleson) measure.
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Corollary 5.6. If μ is a q-Carleson (respectively, vanishing q-Carleson) measure, then μ is a
Q-Carleson (respectively, vanishing Q-Carleson) measure too for any Q � q . Equivalently, if
μ is a q-Carleson (respectively, vanishing q-Carleson) measure and Q � 0, then μQ is also a
q-Carleson (respectively, vanishing q-Carleson) measure.

Proof. Both corollaries follow from Theorems 1.3(i) and 5.3(i) and Lemma 2.2. �
Definition 5.7. We call an operator Bu

q that takes a function f on B to

Bu
qf (w) = (

1 − |w|2)N+1+u
∫
B

(1 − |z|2)−q+u

|1 − 〈z,w〉|(N+1+u)2
f (z) dνq(z) (w ∈ B)

or a measure μ on B to

Bu
qμ(w) = (

1 − |w|2)N+1+u
∫
B

(1 − |z|2)−q+u

|1 − 〈z,w〉|(N+1+u)2
dμ(z) (w ∈ B)

a Berezin transform.

The Berezin transform Bu
qf makes sense for f ∈ L1

u, for example. The Bα defined on func-
tions for α > −1 in [19, Section 2.1] is the Bα

α defined here. We use two parameters in order to
accommodate measures and values of q � −1.

Now Theorems 1.3 and 5.3 on Carleson measures can be reformulated in terms of Berezin
transforms and averaging functions.

Theorem 5.8. Fix q . Let r and an r-lattice {an} in B, p and s, t satisfying (1), and also u > −1
be given. The following conditions are equivalent for a positive Borel measure μ on B.

(i) The measure μ is a q-Carleson (vanishing q-Carleson, respectively) measure; that is, the
averaging function qμ̂r is bounded on B (in C0, respectively).

(ii) The sequence {qμ̂r (an)} is bounded (has limit 0, respectively).
(iii) The operator I t

s :Bp
q → Lp(μ) is bounded (compact, respectively).

(iv) The Berezin transform Bu
qμ is bounded on B (in C0, respectively).

Theorem 1.5 at first sight does not seem to offer anything new other than rewriting the equiv-
alence of (iv) and (i) of Theorem 1.3 using the new parameters α = N + 1 + q + pt and β = pt .
However, Theorem 1.3(iv) has the restriction α > N , and lowering this to α > 0 needs some
work.

Proof of Theorem 1.5. One direction is again covered by Lemma 5.1.
Conversely, suppose μ is a q-Carleson measure, that is, qμ̂r is bounded for some r . We follow

the proof of (ii) ⇒ (iii) of Theorem 1.3; only now it is simpler. We take p = N + 1 + α + β + q ,
Q = β + q , and recall that Lemma 2.6 applies to gw(z) = (1 − 〈z,w〉)−1 ∈ H(B) too. Note
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that p > 0. By Corollary 5.5, μβ is a (β + q)-Carleson measure. After doing the usual trick of
replacing this measure by νβ+q with the help of the open cover in Lemma 2.5, we obtain

∫
B

|gw|p dμβ � CM

∫
B

(1 − |ζ |2)β+q

|1 − 〈ζ,w〉|N+1+α+β+q
dν(ζ ) ∼ 1

(1 − |w|2)α

since α > 0, where we have used [32, Proposition 1.4.10], which requires β + q > −1. This is
equivalent to the boundedness of Uα,β,qμ. �
Corollary 5.9. Let μ be a positive Borel measure on B. If Uα,β,qμ(w) has limit 0 as |w| → 1 for
some real α,β , and q , then μ is a vanishing q-Carleson measure. If μ is a vanishing q-Carleson
measure, α > 0, and β + q > −1, then Uα,β,qμ(w) has limit 0 as |w| → 1.

Theorem 1.5 not only provides a general description of q-Carleson measures, but also gener-
alizes the case c > 0 of [32, Proposition 1.4.10] from the Lebesgue measure to arbitrary positive
Borel measures on B. See [33] for some other generalizations. Versions of Theorem 1.5 and
Corollary 5.9 using Carleson windows when N = 1 are in [31, Proposition 2.1] with additional
restrictions such as β > −1 and q > 0.

We give an early application to separated sequences. Here the counting function nZ
r (w) counts

the number of points of a sequence Z = {zn} that happens to fall in the ball b(w, r), and δa

denotes the unit point mass at a.

Theorem 5.10. Let q , r , α > 0, β with β + q > −1 be given. The following are equivalent for a
sequence Z = {zn} of distinct points in B.

(i) The sequence Z is a disjoint union of finitely many separated sequences.
(ii) The counting function nZ

r (w) is bounded in B.
(iii) The measure μ = ∑∞

n=1(1 − |zn|2)N+1+qδzn is a q-Carleson measure.
(iv) There is a constant C such that

sup
w∈B

(
1 − |w|2)α

∞∑
n=1

(1 − |zn|2)β
|1 − 〈zn,w〉|α+β

� C.

(v) There is a constant C such that

sup
m

(
1 − |zm|2)α

∞∑
m �=n=1

(1 − |zn|2)β
|1 − 〈zn, zm〉|α+β

� C.

This theorem is contained in [21, Lemma 4.1] to a large extent. What is new here is that we
remove restrictions such as q > −1 and weaken others such as β > N present in this reference.
We also aim to show that the proof requires almost no extra effort once we have strong results
for q-Carleson measures for all q . As usual, the equivalences are independent of the values of q ,
r , α, β under the conditions in the statement of the theorem, and also of the values of parameters
like p, s, t under (1) that would come from the equivalences in Theorem 1.3.
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Proof. (i) ⇒ (iii). Let first Z be one separated sequence with separation constant τ . Let f ∈ B
p
q .

As in the proof of (ii) ⇒ (iii) of Theorem 1.3, applying Lemma 2.6 with the choice g = Dt
sf and

Q = q + pt > −1 on the disjoint balls b(zn, τ/2) gives

(
1 − |zn|2

)N+1+q+pt ∣∣Dt
sf (zn)

∣∣p � C

∫
b(zn,τ/2)

(
1 − |z|2)pt ∣∣Dt

sf (z)
∣∣p dνq(z).

Summing on n yields

∞∑
n=1

∣∣I t
s f (zn)

∣∣pμ(zn) � C‖f ‖p

B
p
q
.

In general, if Z is a union of finitely many separated sequences, we add them on the left and
reach the same conclusion.

(iii) ⇒ (iv). This is one direction of Theorem 1.5 applied to our measure μ.
(iv) ⇒ (v). This is obvious.
(v) ⇒ (ii). Take an arbitrary b(w, r). By assumption and Lemma 2.1, we have

C � sup
zm∈b(w,r)

(
1 − |zm|2)α

∑
zn∈b(w,r)

(1 − |zn|2)β
|1 − 〈zn, zm〉|α+β

∼
∑

zn∈b(w,r)

1 = nZ
r (w).

(i) ⇔ (ii). This is in [16, Section 2.11]. �
Separated sequences can be viewed as one way of constructing q-Carleson measures for any q .

Here is another construction.

Example 5.11. Suppose μ is a positive Borel measure on B and μβ is finite for some real β .

Assume that the monomials zλ1 and zλ2 are orthogonal in the space L2(μβ) for λ1 �= λ2. Rotation
invariance of μ would imply this for example. Put κ = (N + 1 + α + β + q)/2 and assume also
κ > 0 for some real α and q . (The case κ � 0 can likewise be investigated.) Then using an
expansion like the one in (10), the orthogonality assumption, and (11), we have

Uα,β,qμ(w)

(1 − |w|2)α =
∫
B

dμβ(z)

|(1 − 〈z,w〉)κ |2 =
∑
λ

((κ)|λ|)2

(λ!)2

∣∣wλ
∣∣2

∫
B

∣∣zλ
∣∣2

dμβ(z)

=
∞∑

k=0

((κ)k)
2

(k!)2

∑
|λ|=k

(k!)2

(λ!)2

∣∣wλ
∣∣2

∫
B

∣∣zλ
∣∣2

dμβ(z)

�
∞∑

k=0

((κ)k)
2

(k!)2
|w|2k

∑
|λ|=k

k!
λ!

∫ ∣∣zλ
∣∣2

dμβ(z) =
∞∑

k=0

((κ)k)
2

(k!)2
mk|w|2k, (18)
B
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where mk = ∫
B

|z|2k dμβ(z) is the (k, k) “moment” of μβ . Assume further, for some real η, that
mk � C k−(N+β+q+η). Then by (3), (18) is

∼
∞∑

k=1

k2κ−2k−(N+β+q+η)|w|2k ∼
∞∑

k=1

kα−η−1|w|2k. (19)

If one of the three pairs of inequalities 0 � η < α, 0 < η = α, 0 � η > α is satisfied, then Uα,β,qμ

is bounded by (10). Note that (19) is binomial in the first case, logarithmic in the second, and
bounded in the third. Therefore μ is a q-Carleson measure by Theorem 1.5.

For the model q-Carleson measure νq , we have η = 0 by [23, Proposition 2.1], and we could
choose α = β + q = −1/2 to get κ > 0. So this example is instructive in showing that the
sufficiency part of Theorem 1.5 can hold as stated without the conditions on α or β required by
the proof of the necessity part.

Our final purpose in this section is to investigate the conditions under which the Hilbert space
operator I t

s :B2
q → L2(μ) belongs to the Schatten–von Neumann ideal Sc. We refer to [29, Chap-

ter 16] for definitions and basic properties of singular numbers and Schatten ideals of operators
from one Hilbert space into another. Recall that ν−(N+1) is the Möbius-invariant measure on B;
see [32, Section 2.2].

Theorem 5.12. Fix q . Let r and an r-lattice {an} in B, t satisfying (1) with p = 2, u > −1, and
also 1 � c < ∞ be given. The following conditions are equivalent for a q-Carleson measure μ

on B.

(i) The averaging function qμ̂r belongs to Lc
−(N+1).

(ii) The sequence {qμ̂r (an)} belongs to �c.
(iii) The operator I t

q+t :B2
q → L2(μ) belongs to S2c.

(iv) The Berezin transform Bu
qμ belongs to Lc

−(N+1).

Proof. Let the singular number sequence of I t
q+t be {sn}. By [29, Proposition 16.3], this is

equivalent to saying that {s2
n} is the singular number sequence of the operator (I t

q+t )
∗I t

q+t on
B2

q . But this composite operator is the generalized Toeplitz operator q+t Tμ on B2
q as shown in [3,

Theorem 4.6]. Thus I t
q+t belongs to S2c if and only if q+t Tμ belongs to Sc. Then the equivalence

of (i), (iii), and (iv) follows immediately from the corresponding equivalence involving positive
Toeplitz operators proved independently in [3, Theorem 6.13]. It is now clear why we need I t

q+t

in S2c rather than in Sc.
(i) ⇒ (ii). Lemma 2.7 with w = an, p = c, and q = −(N + 1), and once again Lemma 2.1

yield

(
qμ̂r (an)

)c � C

∫
(qμ̂r )

c dν−(N+1).
b(an,r)



H.T. Kaptanoğlu / Journal of Functional Analysis 250 (2007) 483–520 505
Then

∞∑
n=1

(
qμ̂r (an)

)c � C

∞∑
n=1

∫
b(an,r)

(qμ̂r )
c dν−(N+1) � CM

∫
B

(qμ̂r )
c dν−(N+1)

by Lemma 2.5(iii).
(ii) ⇒ (i). Repeated use of Lemmas 2.1, 2.5, and that b(w, r) ⊂ b(an,2r) for w ∈ b(an, r)

yield

∫
B

(qμ̂r )
c dν−(N+1) � C

∞∑
n=1

∫
b(an,r)

μ(b(w, r))c

(1 − |w|2)N+1+(N+1+q)c
dν(w)

� C

∞∑
n=1

1

(1 − |an|2)N+1+(N+1+q)c

∫
b(an,r)

μ
(
b(an,2r)

)c
dν

∼
∞∑

n=1

(1 − |an|2)N+1

(1 − |an|2)N+1+(N+1+q)c
μ

(
b(an,2r)

)c

∼
∞∑

n=1

μ(b(an,2r))c

νq(b(an,2r))c
∼

∞∑
n=1

(
qμ̂r (an)

)c
,

because qμ̂r (an) and qμ̂2r (an) are equivalent by the proof of Theorem 1.3. �
It is clear that the equivalences in Theorems 5.8 and 5.12 are independent of p, u, s, t , r , and

{an} under the stated conditions. These theorems for q = 0 and t = 0 are in [19, Theorems 2.15
and 2.16] and partly in [43, Exercise 6.7].

Remark 5.13. By Lemma 5.1 once again, if Uα,β,qμ lies in Lc
−(N+1) for some d with 0 < d < ∞,

then so does qμ̂r . It is also easy to show the reverse implication for d = 1, but we do not have it
for d > 1.

6. Hardy-space limit

Our aim is to show that (−1)-Carleson measures reduce to Hardy-space Carleson measures
in an appropriate limit. But let us first highlight the important case of (−N)-Carleson measures
covered by Theorem 1.3.

Corollary 6.1. Let q = −N and p = 2, whence B2−N = A, the Arveson space. The following
conditions are equivalent for a positive Borel measure μ on B, called a Carleson measure for A.

(i) Given r > 0, there is a C such that

μ
(
b(w, r)

)
� C

(
1 − |w|2) (w ∈ B).
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(ii) Given r > 0, there is a C such that if {an} is an r-lattice in B, then

μ
(
b(an, r)

)
� C

(
1 − |an|2

)
(n ∈ N).

(iii) There is a C such that for all s and t with −N + 2t > −1, we have

∫
B

(
1 − |z|2)2t ∣∣Dt

sf (z)
∣∣2

dμ(z) � C

∫
B

(
1 − |z|2)−N+2t ∣∣Dt

sf (z)
∣∣2

dν(z) (f ∈A).

(iv) There is a C such that for all t with −N + 2t > −1, we have

∫
B

(
(1 − |z|2)t

|1 − 〈z,w〉|1+2t

)2

dμ(z) � C
(
1 − |w|2)−(1+2t)

(w ∈ B).

Analogous statements can be obtained for the Dirichlet space D = B2
−(N+1)

or for vanishing
Carleson measures.

Now let N = 1, when the Arveson space is the Hardy space H 2 on D. Then Corollary 6.1
seems contrary to what is known for usual Carleson measures for Hardy spaces, because powers
in (iv) do not seem right, and we have a characterization of Carleson measures on a Hardy space
using Bergman discs in (i); cf. [43, Section 8.2.1]. But (iii) depends on an imbedding of H 2

in L2−1 by way of I t
s as described in Definition 1.1 in contrast to the usual imbedding of H 2

in L2(∂D) by way of inclusion. The imbedding I t
s and the equivalent norm

‖f ‖2
B2−1

=
∫
D

(
1 − |z|2)−1+2t ∣∣Dt

sf (z)
∣∣2

dν(z) (t > 0)

for H 2 in (iii) require a positive-order radial derivative, where ν now is the area measure. Thus
the Carleson measures defined here are different from the usual Carleson measures for Hardy
spaces.

Remark 6.2. However, we indeed obtain the usual Hardy-space Carleson measures by taking
limits as t → 0+ in the case q = −1 for all N and p in Theorem 1.3(iii) and (iv). The limit of
the norm on the right-hand side of (iii) does not exist even for polynomials. But let us replace the
right-hand side of (iii) by the equivalent quantity

(pt)N

N ! ‖ · ‖p

B
p
−1

, (20)

where the role of the coefficient is to normalize the measure ν−1+pt in ‖ · ‖p

B
p
−1

with weight 1.

Using weak-∗ convergence of measures, it is noted in [11, Section 0.3] and a detailed proof is
given in [25, Section 3] that

lim
t→0+

(pt)N

N ! ‖f ‖p

B
p
−1

= ‖f ‖p
Hp =

∫
|f |p dσ

(
f ∈ B

p

−1

)
.

∂B
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Hence the limit of (iii) is the definition of a usual Carleson measure on Hp . More importantly,
by Fatou lemma, (iv) becomes equivalent to being a usual Carleson measure on Hp as t → 0+;
see [43, Corollary 8.2.3] for N = 1. Although B

p

−1 �= Hp for p �= 2 (see [10, p. 840]), the above
holds also for f ∈ Hp , because B2−1 = H 2, and Carleson measures of either type do not depend
on p.

Analogously, the limiting case of parts (iii) and (iv) of Theorem 5.3 as t → 0+ is [43, Theo-
rem 8.2.5].

We finish this section by a proof of Theorem 1.6.

Proof of Theorem 1.6. The basic ideas are in the standard proofs of theorems on Hardy-space
Carleson measures. We outline the few differences for N � 1 and more general α.

If μ is a Carleson measure, then the inclusion map imbeds H 2 into L2(μ). As in the proof of
the implication (iii) ⇒ (iv) of Theorem 1.3, we use the function

gw(z) = (1 − |w|2)α/2

(1 − 〈z,w〉)(N+α)/2
,

which lies in H 2 with norm ∼ 1 by [32, Proposition 1.4.10] for α > 0.
For the converse, we recall that the Carleson windows in B are the nonisotropic balls

W(ζ,ρ) = {z ∈ B: |1 − 〈z, ζ 〉| < ρ} for |ζ | = 1 and 0 < ρ < 1 whose intersections with ∂B

have surface measure ∼ ρN ; see [14, pp. 42–43]. It is easy to see that if w0 ∈ W(ζ,ρ), then
1 − |w0|2 ∼ ρ and 1 − 〈z,w0〉 ∼ ρ for z ∈ W(ζ,ρ), which gives rise to a result much like
Lemma 5.1. �
Corollary 6.3. Let μ be a positive Borel measure on B. If Uα,0,−1μ(w) has limit 0 as |w| → 1
for some real α, then μ is a Hardy-space vanishing Carleson measure. If μ is a Hardy-space
vanishing Carleson measure and α > 0, then Uα,0,−1μ(w) has limit 0 as |w| → 1.

7. Forelli–Rudin operators

Theorem 1.5 and Corollary 5.9 suggest a consideration of the operators

V
μ
α,β,γ f (w) = (

1 − |w|2)α
∫
B

(1 − |z|2)β
(1 − 〈w,z〉)N+1+α+β+γ

f (z) dμ(z) (w ∈ B).

Although Uα,β,q and V
μ
α,β,γ for γ = q are almost the same operators, the emphasis on each is

different. The former, Uα,β,q , is more a transform of the variable measure μ, while the latter,
V

μ
α,β,γ , for fixed μ is more an operator that acts on a suitable variable function f .

Theorem 7.1. Let α > 0 and β + q > −1. The operator V
μ
α,β,q :L∞(μ) → L∞ is bounded if

and only if μ is a q-Carleson measure. Further, if μ is a vanishing q-Carleson measure, then
V

μ
α,β,q :L∞(μ) → L∞ is compact.

Proof. The type of kernels studied in [11, Section 4] shows that replacing the integrand of V
μ
α,β,q

by its modulus has no effect on our results. Then the claim on boundedness is an immediate
consequence of Theorem 1.5.
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Next suppose μ is a vanishing q-Carleson measure. Clearly V
μ
α,β,q is bounded by the first part.

Take a bounded sequence {fk} in L∞(μ). By Corollary 5.9,

∣∣V μ
α,β,qfk(w)

∣∣ � C
(
1 − |w|2)α

∫
B

(1 − |z|2)β
|1 − 〈z,w〉|N+1+α+β+q

dμ(z),

and the right-hand side tends to 0 as |w| → 0 uniformly in k; that is, given ε > 0, there is an
R < 1 such that for |w| > R and all k, we have |V μ

α,β,qfk(w)| < ε. In particular, every fk ∈ C0.

Define Yf (w) = (1 − |w|2)−αV
μ
α,β,qf (w). Then Yfk ∈ H(B) and Yfk(w) = o((1 − |w|2)−α) as

|w| → 1 uniformly in k by the above discussion. So {Yfk} is uniformly bounded on each compact
subset of B and a normal family. Thus there exists a subsequence {Yfkj

} converging uniformly on
compact subsets of B to g ∈ H(B). Since α > 0, also V

μ
α,β,qfkj

(w) → h(w) = (1 − |w|2)αg(w)

uniformly on compact subsets of B, and h ∈ C. So given a compact E ⊂ B and ε > 0, there is a
j0 such that for j > j0 and all w ∈ E, we have |V μ

α,β,qfkj
(w) − h(w)| < ε. If it were the case

that h(w) �= o(1) as |w| → 1, there would be points {wl} in B with |wl | → 1 and an η > 0 such
that |h(wl)| � η for all l. Taking ε = η/2, |wl0 | > R, E = {wl0}, and j > j0, we would get

∣∣h(wl0)
∣∣ �

∣∣h(wl0) − V
μ
α,β,qfkj

(wl0)
∣∣ + ∣∣V μ

α,β,qfkj
(wl0)

∣∣ < ε + ε = η,

contradicting what was just assumed on the order of growth of g. Then h ∈ C0, and |h(w)| < ε

for |w| > R, picking a larger R than the one above if necessary. Now let E = {w: |w| � R} and
j > j0. Therefore

sup
w∈B

∣∣V μ
α,β,qfkj

(w) − h(w)
∣∣ � sup

w∈E

∣∣V μ
α,β,qfkj

(w) − h(w)
∣∣

+ sup
|w|>R

∣∣V μ
α,β,qfkj

(w)
∣∣ + sup

|w|>R

∣∣h(w)
∣∣ < 3ε,

meaning that the subsequence {V μ
α,β,qfkj

} converges to h in L∞. Thus V
μ
α,β,q is compact. �

Special cases of V
μ
α,β,γ include the Berezin transforms (take α = N + 1 + u, β = −q + u,

γ = q , μ = νq , and compare to Definition 5.7), certain cases of Bergman projections (take α = 0,
β = 0, γ = s, μ = νs with s > −(N + 1), and compare to Definition 3.4), and their commonly
used simpler version V ν

α,β,0 with γ = 0 and μ = ν.

The boundedness of the operators V ν
α,β,γ with μ = ν on L

p
q for 1 � p < ∞ are characterized

in [26], but the case p = ∞ is missing. We fill in this gap now.

Theorem 7.2. The operator V ν
α,β,γ :L∞ → L∞ is bounded if and only if either α > 0, β > −1,

γ � 0, or, α = 0, β > −1, γ < 0. Further, if α > 0, β > −1, and −(β + 1) < γ < 0, then
V ν

α,β,γ :L∞ → L∞ is compact.

Proof. As noted in the proof of Theorem 7.1, replacing the integrand by its modulus makes no
difference.
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The measure μ = ν is a 0-Carleson measure. If α > 0, β > −1, and γ � 0, then
|1 − 〈z,w〉|N+1+α+β+γ � |1 − 〈z,w〉|N+1+α+β . This reduces the problem to the case q = 0
of Theorem 7.1, and V ν

α,β,γ is bounded. If α = 0, β > −1, and γ < 0, then

∣∣V ν
α,β,γ f (w)

∣∣ � ‖f ‖L∞
∫
B

(1 − |z|2)β
|1 − 〈z,w〉|N+1+β+γ

dν(z),

which is bounded by [32, Proposition 1.4.10].
Conversely suppose V ν

α,β,γ is bounded. First take f ≡ 1. For the integral in V ν
α,β,γ to converge,

β > −1 is necessary. With the same f , using the same machinery as in the proof of the if part of
Theorem 1.5, we have

∥∥V ν
α,β,γ

∥∥ �
(
1 − |w|2)α

∫
b(w,r)

(1 − |z|2)β
|1 − 〈z,w〉|N+1+α+β+γ

dν(z) ∼ 1

(1 − |w|2)γ

for any w ∈ B and r by Lemmas 2.1 and 2.2. This forces γ � 0. Next take f (z) = (1 − |z|2)η
with η > 0 so large that α + γ − η < 0. Then ‖f ‖L∞ = 1, and

∥∥V ν
α,β,γ

∥∥ �
(
1 − |w|2)α

∫
B

(1 − |z|2)β+η

|1 − 〈z,w〉|N+1+α+β+γ
dν(z) ∼ (

1 − |w|2)α

by [32, Proposition 1.4.10]. We must have α � 0. Finally, using f ≡ 1 once again in the case
α = 0, we are led to conclude that γ < 0 by [32, Proposition 1.4.10].

Under the conditions stated in the last claim, −γ > 0 so that μ = ν−γ is a vanishing 0-
Carleson measure, and β + γ > −1. Then the operator V

μ
α,β+γ,0 is compact on L∞ by the case

q = 0 of Theorem 7.1 since now L∞(μ) = L∞. This operator is just V ν
α,β,γ . �

Corollary 7.3. The operator V ν
α,β,0 :L∞ → L∞ is bounded if and only if α > 0 and β > −1.

This corollary also provides the converse to the if part that has already been shown in [44,
Theorem 9]. For 0 < p < 1, there is a partial result in [23, Theorem 2.4(b)]. We do not know
of any earlier results in the literature on the compactness of the operators V

μ
α,β,γ on Lebesgue

classes.

8. Weighted Bloch, Lipschitz, and growth spaces

This section is for descriptions of weighted Bloch, Lipschitz, and growth spaces in terms of
Carleson measures. As corollaries, we obtain that these spaces can be described using any radial
derivative whose order is sufficiently high, and how differentiation transforms one of these spaces
to another. We start with the usual Bloch space.

Theorem 8.1. A function h ∈ H(B) lies in the Bloch space B if and only if dμ = |Iu
s h|p dνq is

a q-Carleson measure for some q , p, s, and u > 0. Such an h lies in the little Bloch space B0 if
and only if μ is a vanishing q-Carleson measure.
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Proof. First suppose h ∈ B. Then for any s and u > 0, |Iu
s h|p is bounded, say, by C by (14).

Choose α > 0 and β with β + q > −1. Then

Uα,β,qμ(w) � C
(
1 − |w|2)α

∫
B

(1 − |z|2)β+q

|1 − 〈z,w〉|N+1+α+β+q
dν(z) (w ∈ B).

Then Uα,β,qμ is bounded by [32, Proposition 1.4.10], and consequently μ is a q-Carleson mea-
sure by Theorem 1.5.

Conversely, suppose μ is a q-Carleson measure for some u > 0. Then Uα,β,qμ is bounded
on B by Theorem 1.5. Taking w = 0 gives

∫
B

(
1 − |z|2)β ∣∣Iu

s h(z)
∣∣p dνq(z) < ∞

for some β with β + q > −1, that is, (Du
s h)p belongs to A1

Q since Q = q + pu + β > −1. The

reproducing property of the Bergman kernel KQ on A1
Q yields

(
Du

s h
)p

(w) = C

∫
B

(1 − |z|2)q+pu+β

(1 − 〈w,z〉)N+1+q+pu+β

(
Du

s h
)p

(z) dν(z) (w ∈ B).

Thus

∣∣Iu
s h(w)

∣∣p � C
(
1 − |w|2)pu

∫
B

(1 − |z|2)β
|1 − 〈z,w〉|N+1+pu+β+q

dμ(z) (w ∈ B).

The right-hand side is bounded by assumption. This shows h ∈ B.
The second statement is proved similarly using Corollary 5.9 instead. �
The special case q > 0, p = 2, N = 1 of Theorem 8.1 is contained in [7, Theorem 2.2] with

u = 1 and in [8, Theorem 5] with u a positive integer. The special case q > −1, p = 2, u = 1 of
Theorem 8.1 with any N is essentially in [38,39]. The p of all four sources corresponds to our
(N + 1 + q)/N , and the Bloch space is obtained when it exceeds 1. See also [12] for a similar
result.

Theorem 8.1 can be generalized to cover functions in weighted Bloch spaces with parame-
ter α. These spaces of holomorphic functions f are usually defined on D for α > 0 by requiring
that (1 − |z|2)α|f ′(z)| is bounded on D. It is also known that (1 − |z|2)f ′(z) can be replaced by
(1 − |z|2)kf (k)(z). In the ball, we replace f ′ by its radial derivative, better yet, by D1

s f . Then it
is easy to see that the weighted Bloch space is the limiting case as p → ∞ of the space B

p

p(α−1).
Since the lower index of a Besov space can be any real number, now it is clear that the positiv-
ity restriction on α is superfluous. For uniformity of notation with Besov spaces, we change the
parameter α to α + 1 since Du

s f (z) goes hand in hand with (1 − |z|2)u.

Definition 8.2. For any α ∈ R, we define the weighted Bloch space Bα to consist of all f ∈ H(B)

for which

(
1 − |z|2)α

Iu
s f (z) (21)
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is bounded on B for some s, u satisfying

α + u > 0. (22)

The weighted little Bloch space Bα
0 is the subspace of Bα consisting of those f for which the

quantity in (21) vanishes on ∂B for some s, u satisfying (22).

With this labeling of parameters, the usual Bloch and little Bloch spaces are B0 and B0
0.

We show below the independence of Definition 8.2 of s, u satisfying (22). Note the similar-
ity of (22) to the first inequality in (14). By [45, Theorems 7.17 and 7.18], the spaces Bα

and Bα
0 for α < 0 are the holomorphic Lipschitz spaces Λ−α and Λ−α,0 of the ball. By (22),

when α > 0, no derivative is required to define these spaces. Thus the spaces Bα for α > 0
are the so-called growth spaces A−α ; see [19, Definition 4.13]. However, for the usual Bloch
space and all Lipschitz spaces, as |α| increases, increasingly higher order derivatives are re-
quired.

The following characterization of these spaces extends Theorem 8.1 and is proved along the
same lines. The α here must not be confused with the α of Theorem 1.5.

Theorem 8.3. A function h ∈ H(B) lies in Bα if and only if dμ = |Iu
s h|p dνα+q is a q-Carleson

measure for some q,p, s, and u satisfying (22). Such an h lies in Bα
0 if and only if μ is a vanishing

q-Carleson measure.

Corollary 8.4. Definition 8.2 is independent of s, u satisfying (22).

Proof. Theorem 8.3 does not depend on s or u as long as (22) is fulfilled. �
Thus the L∞ norms of the quantities (1 − |z|2)αIu

s f (z) for different values of s, u satisfying
(22) are equivalent, and we put

‖f ‖Bα = ‖f ‖Bα
0

= sup
z∈B

(
1 − |z|2)α∣∣Iu

s f (z)
∣∣.

This fact allows us to pass between different weighted Bloch spaces by taking derivatives or
integrals as in Proposition 3.2.

Corollary 8.5. For any α, s, t , Dt
s(Bα) = Bα+t and Dt

s(Bα
0 ) = Bα+t

0 are isometric isomorphisms
under the equivalence of norms.

Corollary 8.6. Suppose α,q,p are related by q −αp > −1. Then Bα ⊂ B
p
q , and the inclusion is

continuous.

Proof. We recall that the Bloch space B lies in every Bergman space A
p
Q for which Q > −1,

take derivatives of order α, and use Corollary 8.5 and Proposition 3.2. �
Corollary 8.7. Suppose α, q , p are related by q − αp = −(N + 1). Then B

p
q ⊂ Bα , and the

inclusion is continuous.
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Proof. This time, we recall that each Besov space B
p

−(N+1) lies in the Bloch space B and proceed
as in the previous corollary. �

In particular, when α > 0, the last two corollaries give inclusion relations between Besov
spaces and growth spaces A−α , and between Besov spaces and Lipschitz spaces Λ−α when
α < 0. In fact, precisely the case α < 0 of Corollary 8.7 is proved in [11, Theorem 5.14(i)] by
other means.

9. Connections with gap series

In this section, gap series are the common thread. We first decide which Borel measures on the
ball are finite in terms of the same imbedding we have used in characterizing Carleson measures.
We go ahead with constructing Carleson measures from holomorphic functions under some con-
ditions easily entailed by gap series in Besov spaces. We then see that Carleson measures made
with holomorphic functions give rise to Besov functions.

Definition 9.1. Let f = ∑
k Fk ∈ H(B), where Fk is a homogeneous polynomial of degree nk .

The series f is said to have Hadamard gaps and we write f ∈ HG if there is an ω > 1 such that
nk+1/nk � ω for all k.

When N = 1, of course Fk(z) = ckz
nk and ‖Fk‖H∞ = ‖Fk‖Hp = ck .

Lemma 9.2. If f = ∑
k Fk ∈ HG and ‖Fk‖H∞ � C nα

k , where nk is the degree of Fk , then
f ∈ Bα .

Proof. This is really a combination of the techniques of [37, Theorem 1] and [34, Proposi-
tion 4.16]. Although the former reference considers only α > −1, its proof is valid word by word
for the case α � −1 too. �

Our first theorem helps identify those Carleson measures that are finite.

Theorem 9.3. A positive Borel measure μ on B is finite if and only if some Iu
s with (22) satisfied

maps the weighted Bloch space Bα into Lp(μαp) for some p continuously.

Proof. The idea of the proof is in [4, Theorem 16]. If μ is a finite measure, then trivially∫
B

|Iu
s f |p dμαp � ‖f ‖p

Bα

∫
B

dμ < ∞. Conversely, assume

∫
B

∣∣Iu
s f

∣∣p dμαp � C ‖f ‖p

Bα

(
f ∈ Bα

)
(23)

for some p, s,u satisfying (22). Pick multi-indices λk with |λk| = nk , where nk is as in Defini-
tion 9.1, such that the components λkj

, j = 1, . . . ,N , are all nonzero, and let Fk(z) = nα
k zλk .

Then f = ∑
k Fk ∈ HG ∩ Bα by Lemma 9.2. The nonzero condition assures that we have

|Fk(z)| � Cnα
k |z|nk for some C and all z ∈ B. By homogeneity and (7),

Du
s f

(
eiθ z

) =
∑

u
s dnk

Fk

(
eiθ z

) ∼
∑

nu
ke

inkθFk(z).
k k
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If we replace f (z) by f (eiθ z) on the left-hand side of (23), integrate with respect to θ , then apply
Fubini theorem and [46, Theorem V.8.20], we obtain

‖f ‖p

Bα � C

∫
B

(
1 − |z|2)αp+pu 1

2π

2π∫
0

∣∣∣∣
∑

k

nu
kFk(z)e

inkθ

∣∣∣∣
p

dθ dμ(z)

∼
∫
B

(
1 − |z|2)αp+pu

(∑
k

n2u
k

∣∣Fk(z)
∣∣2

)p/2

dμ(z)

� C

∫
B

(
1 − |z|2)αp+pu

(∑
k

n2α+2u
k |z|2nk

)p/2

dμ(z)

� C

∫
B

(
1 − |z|2)αp+pu

(∑
k

k2α+2u−1|z|2k

)p/2

dμ(z)

∼
∫
B

(
1 − |z|2)αp+pu 1

(1 − |z|2)αp+pu
dμ(z) = μ(B)

after some obvious inequalities and a binomial expansion. �
If α = 0 and q > −1, then B ⊂ B

p
q = A

p
q and ‖f ‖A

p
q

� C‖f ‖B . Then (23) is satisfied auto-
matically for any q-Carleson measure μ and any f ∈ B by Theorem 1.3(iii). Thus we recapture
the fact that Bergman-space Carleson measures are finite.

An equivalent statement to Theorem 9.3 is this. Given a positive Borel measure μ on B, the
measure μ−αp is finite if and only if some Iu

s with (22) satisfied maps Bα into Lp(μ) continu-
ously. In this form, the particular case N = 1, α > −1, and positive integer t of Theorem 9.3 is
in [31, Theorem 3.2].

We next give some conditions on functions in Besov spaces that generate q-Carleson mea-
sures. Let J (k) = {j ∈ N: 2k � j < 2k+1} = {j ∈ N: j/2 < 2k � j} for k = 0,1,2, . . . . The
following result is in [25, Theorem 4.2].

Lemma 9.4. A power series f (z) = ∑
k Fk ∈ HG belongs to B

p
q if and only if∑

k n
−(1+q)
k ‖Fk‖p

Hp < ∞, where nk is the degree of Fk .

Lemma 9.5. Let q , p, t be related by (1). Let f (z) = ∑
k Fk ∈ H(B) be given by its homogeneous

expansion. Suppose that

∞∑
k=0

2−(1+q)k

( ∑
j∈J (k)

‖Fj‖H∞
)p

< ∞.

Then dμ = |I t
s f |p dν1+2q is a q-Carleson measure.

Proof. Let z = Rζ ∈ B, where ζ ∈ ∂B, and put Mk = ‖Fk‖H∞ for simplicity. Then we have
|Fk(Rζ)| = Rk|Fk(ζ )| � RkMk , and |Dt

sf (z)| �
∑

k
t
s dkMkR

k � C
∑

k ktMkR
k by (7). Take a

u satisfying (1) when substituted for t . Then the left-hand side of Theorem 1.3(iv) is
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= sup
w∈B

(
1 − |w|2)N+1+q+pu

∫
B

(1 − R2)1+2q+pt+pu

|1 − 〈Rζ,w〉|(N+1+q+pu)2

∣∣Dt
sf (Rζ)

∣∣p dν(z)

� C sup
w∈B

(
1 − |w|2)N+1+q+pu

1∫
0

(
1 − R2)1+2q+pt+pu

R2N−1
(∑

k

ktMkR
k

)p

×
∫
∂B

1

|1 − 〈ζ,Rw〉|(N+1+q+pu)2
dσ(ζ ) dR

� C sup
w∈B

(
1 − |w|2)N+1+q+pu

1∫
0

(1 − R2)1+2q+pt+pu

(1 − R2|w|2)N+(1+q+pu)2

(∑
k

ktMkR
k

)p

dR

� C

1∫
0

(
1 − R2)q+pt

(∑
k

ktMkR
k

)p

dR � C

∞∑
k=0

2−(1+q+pt)k

( ∑
j∈J (k)

j tMj

)p

� C

∞∑
k=0

2−(1+q+pt)k2ptk

( ∑
j∈J (k)

Mj

)p

< ∞,

where we have used [32, Proposition 1.4.10], [28, Theorem 1], and the definition of J (k). �
Corollary 9.6. If f = ∑

k Fk ∈ B
p
q ∩ HG and the sequence {‖Fk‖H∞/‖Fk‖Hp } is bounded, then

dμ = |I t
s f |p dν1+2q is a q-Carleson measure.

Note that the boundedness condition is automatic for N = 1 since then the sequence constantly
is 1. It is also satisfied if each Fk is a function of a single variable that may vary with k.

Proof. Let f have parameter ω of Definition 9.1. It is well known that for this kind of f the
number of nk in J (k) is at most 1 + �logω 2� independently of k. Coupled with Lemma 9.4 and
the way J (k) is defined, this yields

∞ >

∞∑
k=0

n
−(1+q)
k ‖Fk‖p

Hp ∼
∞∑

k=0

2−(1+q)k

( ∑
j∈J (k)

‖Fj‖Hp

)p

> C

∞∑
k=0

2−(1+q)k

( ∑
j∈J (k)

‖Fj‖H∞
)p

.

We are done by Lemma 9.5. �
We have a partial converse.

Proposition 9.7. Let f ∈ H(B), q , p, t be related by (1), and dμ = |I t
s f |p dν1+2q . If μ is a

q-Carleson measure, then f ∈ B
p for any Q > q .
Q
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Proof. Pick u such that Q = 1 + 2q + pu. Then (1) is satisfied with u in place of t . By Corol-
lary 1.4, μpu is a finite measure. This just means f ∈ B

p
Q. �

There are similar results in [18, Section 3] using Hardy-space Carleson measures and func-
tions in B

p

−1 when N = 1.

10. Fejér–Riesz and Hardy–Littlewood inequalities

We obtain two kinds of inequalities on the behavior of the derivatives of functions in Besov
spaces on lower-dimensional subspaces and spheres. They are interesting and new in their own
right, even for Bergman spaces. They also reduce to two classical inequalities of Hardy spaces in
the limit of a special case, thereby providing simple and direct proofs of them without resorting
to interpolation.

First some notation. Write C
N = C1 × · · · × CN and Cm = Rm × iRm. Put

Lj,k = R1 × · · · × Rj × Cj+1 × · · · × Cj+k × {0} × · · · × {0}

for j = 1, . . . ,N and k = 0, . . . ,N − j . Put also L0,k = C1 × · · · × Ck × {0} × · · · × {0} for
k = 1, . . . ,N . Denote the normalized Lebesgue measure on Lj,k by νj,k , and the one on L0,k

by ν0,k . This notation should not be confused with our basic notation νq of (2).

Theorem 10.1. Given q and j , k as above, there is a constant C such that for all p, s and t

satisfying (1), we have

∫
Lj,k∩B

(
1 − |z|2)N+1+q−(1+j+2k)/2∣∣I t

s f (z)
∣∣p dνj,k(z) � C‖f ‖p

B
p
q

(
f ∈ B

p
q

)

and

∫
L0,k∩B

(
1 − |z|2)N+1+q−(1+k)∣∣I t

s f (z)
∣∣p dν0,k(z) � C‖f ‖p

B
p
q

(
f ∈ B

p
q

)
.

Proof. First let dμ(z) = (1 − |z|2)N+1+q−(1+j+2k)/2 dνj,k(z). By Lemma 2.1 and (6), we have

μ
(
b(w, r)

) =
∫

b(w,r)

(
1 − |z|2)N+1+q−(1+j+2k)/2

dνj,k(z)

∼ (
1 − |w|2)N+1+q−(1+j+2k)/2

νj,k
(
bψ(w, tanh r)

)

for fixed r . It is explained in [32, Section 2.2.7] that bψ(w, tanh r) is an ellipsoid whose intersec-
tion with the complex line [w] is a disc of radius ∼ (1 − |w|2) and whose intersection with the
real (2N − 2)-dimensional space perpendicular to [w] is a ball of radius ∼ √

1 − |w|2. Then
νj,k(bψ(w, tanh r)) � C(1 − |w|2)(√1 − |w|2 )j−1+2k and μ(b(w, r)) � C(1 − |w|2)N+1+q .
Therefore μ is a q-Carleson measure and the first inequality follows by the equivalence of The-
orem 1.3(i) and (iii).
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Analogously, we obtain ν0,k(bψ(w, tanh r)) � C(1 − |w|2)2(
√

1 − |w|2 )2k−2. Then letting
dμ(z) = (1 − |z|2)N+1+q−(1+k) dν0,k(z) and arguing as above yield the second inequality. �

For k = 1, . . . ,N , let Bk denote the unit ball of C
k imbedded in C

N in the same way as L0,k

is imbedded in C
N . Clearly L0,k ∩B = Bk . Let also σk denote the normalized Lebesgue measure

on ∂Bk .

Corollary 10.2. The restriction to Bk imbeds B
p
q continuously into B

p
N−k+q(Bk).

Before stating the next result, for k = 1, . . . ,N , let us define the generalized integral means
of an f ∈ H(B) by

Mp(f, k,R) =
( ∫

∂Bk

∣∣f (Rζ,0′)
∣∣p dσ k(ζ )

)1/p

(0 < R < 1, 0 < p < ∞),

where 0′ is an (N − k)-tuple of zeros.

Theorem 10.3. Let q , 0 < p � p1 < ∞, and k = 1, . . . ,N be given. Put

q1 = p1

(
N + 1 + q

p
− k + 1

p1

)
.

Then there is a constant C such that for all s, t with q + pt > −1, we have

1∫
0

(
1 − R2)q1+p1tMp1

p1

(
Dt

sf, k,R
)
dR � C‖f ‖p

B
p
q

(
f ∈ B

p
q

)
. (24)

Proof. We have q1 � q and q1 + p1t > −1 too. Clearly ν
0,k
q1 is a q1-Carleson measure on Bk ,

and Theorem 1.3(iii) implies (24) with C‖f ‖p1

B
p1
q1 (Bk)

instead on the right-hand side. By Corol-

lary 10.2, this quantity is � C‖f ‖p1

B
p1−N+k+q1

.

But (N + 1 + q)/p = (N + 1 + (−N + k + q1))/p1, which is precisely the condition to be
satisfied for [11, Theorem 5.13] translated to our notation by the correspondence A

p

1+q+pt,t = B
p
q

between their labeling of spaces and ours. Hence B
p
q is continuously included in B

p1
−N+k+q1

, and
this completes the proof. �
Remark 10.4. Now we take q = −1, replace the norm ‖ · ‖B2−1

by (20), and then let t → 0+ in

Theorem 10.1 as we did in Remark 6.2. This results in the case c = 1 of the two inequalities for
Hardy spaces of the ball in [30, Theorem 1]. Further letting N = 1 in the resulting first inequality,
which forces j = 1 and k = 0, we arrive at the classical Fejér–Riesz inequality for Hardy spaces.
When k = N in the second inequality, we cannot let t → 0+ without an extra requirement such
as c > 1 in [30, Theorem 1(2)].

Doing the same norm replacement and taking the same limit for q = −1 in Theorem 10.3 give
[30, Theorem 4] in the case λ = q , which is our p1. Further letting N = 1, which forces k = 1,
we find a classical inequality of Hardy and Littlewood for Hardy spaces; see [15, p. 146].
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Although we cannot obtain sharp constants in the classical inequalities, it is worth noting that
our proofs follow very easily from Theorem 1.3.

Let Q = q + pt > −1 and g = Dt
sf in the last two theorems; then g ∈ A

p
Q, a Bergman space,

and ‖f ‖B
p
q

= ‖g‖A
p
Q

. From this point of view, Theorems 10.1 and 10.3 are results for Bergman

spaces. In this form, the case k = N of Theorem 10.3 can be found in [11, Theorem 3.2(iii)] more
generally with one extra free parameter, yet less generally only for 1 < p < ∞. All other cases of
these two theorems, including the cases without derivatives, seem to be new for Bergman spaces
too.

11. Cesàro operators

In [1], the authors consider two operators defined through differentiation, multiplication, and
then integration. One of them is a generalization of the Cesàro operator, and they analyze it on
weighted Bergman spaces on D. This operator is later generalized to mixed norm spaces on B

using first-order radial derivatives; see [20]. The other (companion) operator is investigated on
weighted Bloch and weighted BMOA spaces in [40,41].

Here we generalize this companion operator to arbitrary-order radial differentiation and inte-
gration, and analyze it on Besov spaces, hence also on weighted Bergman spaces. We also prove
that the exponential of a holomorphic function lies in Bergman spaces if the function gives rise
to a Carleson measure.

Let s, t be arbitrary, g ∈ H(B), and define

Tgf = D−t
s+tMgD

t
sf

(
f ∈ H(B)

)
,

where Mg represents the operator of multiplication by g. The two radial differential operators
are inverses of each other by (8).

This operator, for certain values of s, t , shows up as a generalized Toeplitz operator with a
holomorphic symbol on Arveson and general Dirichlet spaces in [3, Section 4]. Ordinarily, a
Toeplitz operator with a holomorphic symbol is just a multiplication operator, but the generaliza-
tion to all Dirichlet spaces requires the introduction of derivatives, and when g is holomorphic,
the new Toeplitz operators reduce to Tg . This connection has already been predicted in [1, p. 338],
where they call their Sg a “distant cousin of Toeplitz operators,” which is essentially our Tg with
t = 1, and not distant at all.

More interesting is the fact that Tg is the link between the weakly convergent families of
functions in B2

q spaces in Remark 4.8 and the Berezin transforms of functions in B2
q . So given q

and p = 2, let s satisfy (13), set t = −q + s, and put

Hq(z,w) = Ks(z,w)√
K−q+2s(w,w)

∈ B2
q .

Recall that Hq is some kind of a normalized kernel. Using (9) and (8) we have

[
TgHq(·,w),Hq(·,w)

]
q

= (
1 − |w|2)N+1−q+2s[

I
−q+s
s D

q−s

−q+2sMgD
−q+s
s Ks(·,w), I

−q+s
s Ks(·,w)

]
L2
q
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= (
1 − |w|2)N+1−q+2s[(

1 − |z|2)(−q+s)2
g(z)K−q+2s (z,w),K−q+2s (z,w)

]
L2

q

= B−q+2s
q g(w)

(
g ∈ H(B)

)

since −q + 2s > −1 and t = −q + s. This identity is in accord with the classical definition of
the Berezin symbol of an operator. For further applications of this idea, see [3, Section 5].

Theorem 11.1. Given q , p, pick s, t satisfying (1), and let dμ = |g|p dνq , where g ∈ H(B).
The operator Tg :Bp

q → B
p
q defined using the selected s, t is bounded (respectively, compact)

if and only if μ is a q-Carleson (respectively, vanishing q-Carleson) measure. For 1 � c < ∞,
the operator Tg :B2

q → B2
q belongs to the Schatten ideal S2c if and only if the Berezin transform

Bu
qμ belongs to Lc

−(N+1) for u > −1.

Proof. Consider I t
s :Bp

q → Lp(μ), which is the main operator in Section 5. Let f ∈ B
p
q .

All three claims follow at once from the equality ‖I t
s f ‖Lp(μ) = ‖Tgf ‖B

p
q

and Theorems 5.8
and 5.12. It also follows that ‖Tg‖ � ‖g‖H∞ . �

It is important that the proof would not go through if we did not have our characterization of
Carleson measures using I t

s as an imbedding.

Corollary 11.2. Given q and g ∈ H(B), suppose that |g|p dνq is a q-Carleson measure. Then
eg ∈ ⋂

Q>−1 A2
Q.

Proof. We follow the proof of [1, Corollary 4] and show little detail. By assumption, Tg with
q + 2t > 0 is bounded on B2

q by Theorem 11.1. It is easily computed that Tg(1) = t
s d0D

−t
s+t (g)

and T k
g (1) = t

s d0D
−t
s+t (g

k) for k = 1,2, . . . , where 1 is the constant function. Put also T 0
g = I .

Then the series

1
t
s d0

∞∑
k=0

T k
g (1)

k! = D−t
s+t

∞∑
k=0

gk

k!

converges in the operator norm topology and has sum D−t
s+t (e

g) ∈ B2
q by Proposition 3.2. There-

fore eg ∈ Dt
s(B

2
q ) = A2

q+2t . But t can be chosen so that Q = q + 2t > −1 is arbitrary. �
One way that the measure μ in Theorems 8.3 and 11.1 is the same is by having g = Du

s h and
α + u = 0. But the second equality contradicts (22). In view of Corollary 8.5, we conclude that
the g in Corollary 11.2 need not belong to any of the weighted Bloch spaces.
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[21] M. Jevtić, X. Massaneda, P.J. Thomas, Interpolating sequences for weighted Bergman spaces of the ball, Michigan

Math. J. 43 (1996) 495–517.
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[28] M. Mateljević, M. Pavlović, Lp behavior of power series with positive coefficients and Hardy spaces, Proc. Amer.

Math. Soc. 87 (1983) 309–316.
[29] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxf. Grad. Texts Math., vol. 2, Oxford Univ. Press, New

York, 1997.
[30] N. Mochizuki, Inequalities of Fejér–Riesz and Hardy–Littlewood, Tohoku Math. J. 40 (1988) 77–86.
[31] F. Pérez-González, J. Rättyä, Forelli–Rudin estimates, Carleson measures and F(p,q, s)-functions, J. Math. Anal.

Appl. 315 (2006) 394–414.
[32] W. Rudin, Function Theory in the Unit Ball of C

n , Grundlehren Math. Wiss., vol. 241, Springer, New York, 1980.
[33] K. Stroethoff, Generalizations of the Forelli–Rudin estimates, J. Math. Anal. Appl. 252 (2000) 936–950.
[34] R.M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980) 241–267.



520 H.T. Kaptanoğlu / Journal of Functional Analysis 250 (2007) 483–520
[35] M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003) 4683–4698.
[36] Z. Wu, Carleson measures and multipliers for Dirichlet spaces, J. Funct. Anal. 169 (1999) 148–163.
[37] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980) 31–36.
[38] W. Yang, Carleson type measure characterization of Qp spaces, Analysis 18 (1998) 345–349.
[39] W. Yang, Vanishing Carleson type measure characterization of Qp,0, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999)

1–5.
[40] R. Yoneda, Pointwise multipliers from BMOAα to BMOAβ , Complex Var. Theory Appl. 49 (2004) 1045–1061.
[41] R. Yoneda, Multiplication operators, integration operators, and companion operators on weighted Bloch space,

Hokkaido Math. J. 34 (2005) 135–147.
[42] K. Zhu, Positive Toeplitz operators on weighted Bergman spaces of symmetric domains, J. Operator Theory 20

(1988) 329–357.
[43] K. Zhu, Operator Theory in Function Spaces, Monogr. Textbooks Pure Appl. Math., vol. 139, Dekker, New York,

1990.
[44] K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, Q. J. Math. 46 (1995) 239–256.
[45] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math., vol. 226, Springer, New York,

2005.
[46] A. Zygmund, Trigonometric Series I and II, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988.


