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We consider the Bose-Hubbard model in a two-dimensional rotating optical lattice and investigate the
consequences of the effective magnetic field created by rotation. Using a Gutzwiller-type variational wave
function, we find an analytical expression for the Mott insulator �MI�–superfluid �SF� transition boundary in
terms of the maximum eigenvalue of the Hofstadter butterfly. The dependence of phase boundary on the
effective magnetic field is complex, reflecting the self-similar properties of the single particle energy spectrum.
Finally, we argue that fractional quantum Hall phases exist close to the MI-SF transition boundaries, including
MI states with particle densities greater than one.
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Experiments on ultracold atoms in optical lattices opened
up a new avenue to study correlated quantum states �1�. The
versatility of cold atom experiments hold promise for the
experimental realization of many models that were first in-
troduced for solid-state systems.

One such model is the study of particles moving in a tight
binding lattice under a magnetic field. When the magnetic
flux per plaquette of the lattice becomes of the order of a flux
quantum hc /e, the single particle energy spectrum forms a
complicated self-similar structure, known as the Hofstadter
butterfly �Fig. 1� �2�. It has not been possible to reach this
regime in ordinary condensed matter experiments due to the
required high magnetic fields. However, the ultracold atom
experiments are extremely flexible and it should be possible
to create required effective magnetic fields in optical lattice
experiments. A conceptually simple way of creating an effec-
tive magnetic field is to rotate the optical lattice, as demon-
strated in a recent experiment �3�. Other means of creating
effective magnetic fields have been discussed by a number of
authors �4–11�. Although the recent demonstration of a ro-
tating optical lattice was done for a shallow lattice, it should
be possible to drive the system into the Mott insulator �MI�
state by increasing the lattice depth.

In this paper, we study the Bose-Hubbard model under a
magnetic field. Particularly, we consider a two-dimensional
square lattice of spacing a with only nearest neighbor hop-
ping. The magnetic field �or the effective magnetic field�
strength can be expressed in terms of the dimensionless
quantity �, which is the magnetic flux quantum per plaquette
in the lattice �a2H / �hc /e�, H being the effective magnetic

field�. When the Landau gauge A� = �0,Hx ,0� is chosen, the
Hamiltonian for this system can be written as

H = − t�
�i,j�

ai
†aje

iAij +
U

2 �
i

n̂i�n̂i − 1� − ��
i

n̂i, �1�

where ai �ai
†� is the bosonic annihilation �creation� operator

at site i and n̂i=ai
†ai is the number operator. The tunneling

strength between nearest neighbor sites is given as t; U is the
on-site interaction strength, and � is the chemical potential.

Magnetic field affects the Hamiltonian through Aij, which is
equal to ±2�m�, if i and j have the same x coordinate ma
and is 0 otherwise, while the sign is determined by the hop-
ping direction.

We first review some of the properties of the single par-
ticle spectrum by setting U=0. This problem was first dis-
cussed by Hofstadter �2�. The energy spectrum is obtained
through the following difference equation �known as Harp-
er’s equation�:

cm+1 + cm−1 + 2 cos�2�m� − ky�cm =
E

t
cm,

where cm are the expansion coefficients of the wave function,
which has plane wave behavior along y in accordance with
the translational symmetry in this direction. If � is a rational
number p /q, the wave function satisfies the Bloch condition
cm+q=exp�ikxq�cm as a result of the symmetry under q-site
translation in the x direction. The allowed energies are then
found as the eigenvalues of the q�q tridiagonal matrix as
follows:

Aq�kx,ky� =�
· � · · e−ikxq

� � 1 · ·

· 1 2 cos�2�m� − ky� 1 ·

· · 1 � �

eikxq · · � ·
	 .

�2�

We call the matrix formed by setting kx=ky =0 in Eq. �2� Aq.
The maximum eigenvalue of Aq yields the maximum energy
of the system for a given �. We define this energy as f���,
which is a continuous but not differentiable function �Fig. 1�.
To prove that the maximum eigenvalue is obtained from Aq,
we investigate the characteristic equation for the matrix �2�,
which is of the following form:


E

t
�q

+ �
n=0

q−1

an
E

t
�n

− 2 cos�kxq� − 2 cos�kyq� = 0. �3�

Two pairs of �kx ,ky�, namely, �0,0� and �� /q ,� /q�, are suf-
ficient to determine the band edges �12�. The �0,0� pair gives
a smaller value for the kx- and ky-dependent terms. Since the
E-dependent part of Eq. �3� increases monotonically after a*oktel@fen.bilkent.edu.tr
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sufficiently large E, the greatest root is always obtained from
the �0,0� pair.

We now turn to the interacting case with the dimension-
less Hamiltonian as follows:

H̃ = − t̃�
�i,j�

ai
†aje

iAij +
1

2�
i

n̂i�n̂i − 1� − �̃�
i

n̂i, �4�

where t̃= t /U and �̃=� /U are the scaled hopping strength
and chemical potential.

When the hopping term is dominant t̃�1, one expects the
system to be in a SF state, while in the opposite limit of
strong interactions t̃�1, the system should go into the MI
state. In this paper, we investigate the transition boundary
between these two phases, and how this boundary is affected
by the external magnetic field. The effect of the magnetic
field on the transition boundary has been previously explored
by strong coupling expansion for small magnetic fields by
Niemeyer et al. �13�, and numerically within mean-field
theory by Oktel et al. �14�. Here we use a variational ap-
proach to provide an analytical expression for the transition
boundary.

We use a site-dependent Gutzwiller ansatz to describe the
system �15�. For the Bose-Hubbard model without magnetic
field, this ansatz �and equivalent mean-field theory �16–18��
gives an accurate description of the phase diagram. We in-
troduce the variational wave function at each site l,

�G�l = �l�n0 − 1�l + �n0�l + �l��n0 + 1�l. �5�

Since we investigate the behavior in the vicinity of the tran-
sition region, we consider small variations around the perfect
MI state with exactly n0 particles per site, allowing for only
one less or one more particle in a site. The variational pa-
rameters �l and �l� are assumed to be real, as complex �
values can only increase the energy of the variational state.
Total wave function is the direct product of these site wave
functions �	�=
i

N�G�i. Within the selected gauge, the mag-

netic Hamiltonian has translational invariance in the y direc-
tion. The translational invariance in the x direction is broken
by the magnetic field, but can be restored to a certain degree
if the flux per plaquette is a rational number. Thus, taking
�= p /q, where p and q are relatively prime integers, the
Hamiltonian is invariant under translation by q sites in the x
direction. This periodicity simplifies the calculation of the
expectation value of the energy when we work with a super-
cell of 1�q sites. Total wave function for such a supercell is
�	�s=
l=0

q−1�G�l. The expected value of the energy can then be
written as follows:

�	�H̃�	�
�	�	�

= Ns
s�	�H̃�	�s

s�	�	�s

� Ns
 , �6�

where Ns is the number of supercells.
Keeping terms up to second order in the variational pa-

rameters �, the energy of a supercell is calculated as

� = �
l=0

q−1 
− 2t̃�n0�l�l+1 + �n0�n0 + 1��l�l+1�

+ �n0�n0 + 1��l+1�l� + �n0 + 1��l��l+1�

+ cos
2�
p

q
l��n0�l

2 + 2�n0�n0 + 1��l�l�

+ �n0 + 1���l��
2�� +

1

2
�2�1 − n0��l

2 + 2n0��l��
2

+ n0�n0 − 1�� + �̃��l
2 − ��l��

2 − n0�� . �7�

If the system favors to be in the Mott insulator state, the total
energy of the system should be a minimum where all the
variational parameters vanish. Thus, we can find the phase
boundary as the point where the total energy ceases to be a
local minimum in �. As a result, we demand that the matrix
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FIG. 1. �Color online� Maximum energy of the Hofstadter but-
terfly f��� for a given �= p /q. This value is calculated as the maxi-
mum eigenvalue of the matrix Aq=Aq�kx=0,ky =0� �Eq. �2��.

FIG. 2. �Color online� The boundary of the Mott insulator phase
for the first three Mott lobes. The figure is periodic in �. Magnetic
field increases the critical value for t /U, as expected; however, this
increase is not monotonic. Transition boundary for two different
values of � /U are marked to display the complex structure of the
surface.
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composed of the second derivatives of � with respect to the
parameters ��2� /��i�� j ,�

2� /��i�� j� ,�2� /��i��� j�� be posi-
tive definite, i.e., all eigenvalues be positive. This matrix can
be written compactly as

F = − 2t̃
 n0Aq �n0�n0 + 1�Aq

�n0�n0 + 1�Aq �n0 + 1�Aq
�

+ 
2�1 − n0 + �̃�Iq 0

0 2�n0 − �̃�Iq
� ,

where Iq is the q�q identity matrix, and Aq was introduced
before �Eq. �2��.

If we denote the eigenvalues and eigenvectors of Aq by �


and 
� , and those of F by �u and u� , all �u can be expressed in
terms of �
 by taking

u� = 
a
�

b
�
� ,

due to the special block form of F. Then �u are obtained as

�u
� = 1 − �1 + 2n0�t̃�
 � ���1 + 2n0�t̃�
 − 1�2 − 4��n0 − �̃��1 − �n0 − �̃�� − t̃�1 + �̃��
� .

The positive definiteness of F leads us to take �u
− and set it to

zero in order to determine the critical t̃ value above which
the perfect insulator state is destroyed. We find the boundary
of the n0th Mott lobe to be

t̃c =
�n0 − �̃��1 − �n0 − �̃��

�1 + �̃�f���
, �8�

where n0−1��̃�n0. This boundary is plotted in Fig. 2 for
the first three Mott lobes. At �=0, this formula reproduces
the critical t̃ value found in �16,17�. Increasing the magnetic
field increases the critical hopping strength t̃c, however, this
increase is not monotonic. The complicated structure of the
single particle problem is reflected in the transition boundary.
Equation �8� is in excellent agreement with the numerical
mean-field work �14�.

We can comment on the accuracy of our variational ap-
proach. Our result is exact within mean-field theory. At zero
magnetic field the mean-field result for the transition bound-
ary is close to accurate Monte Carlo calculations �19�, but it
is not guaranteed that the mean-field description of the sys-
tem would be valid under magnetic field. Our variational
wave function �and mean-field theory� disregards the corre-
lations between fluctuations above the insulating state. Such
correlations would be expected to wash out the fine structure
of the transition boundary �Fig. 2�. Nevertheless, one can
expect a number of features of the mean-field boundary to
survive for the real system. The linear increase of the transi-
tion point for small magnetic fields, periodicity of the system
with �, and the central dip near �=0.5 should be qualita-
tively correct.

There is, however, one important way that the fluctuations
around the Mott insulating state can become correlated. The
Hamiltonian �4� supports bosonic fractional quantum Hall
�FQH� states as discussed in a number of recent papers
�7,20,21�. So far, such FQH states have been assumed to
appear only in the region of low density where the number of

particles per site is less than one. Here, we argue that states
similar to bosonic FQH states should be present near the MI
boundaries, even at higher densities.

It is instructive to think about the behavior of the Hamil-
tonian for constant particle density by disregarding the last
term. Let us assume that the particle density is equal to n
=n0+
, where n0 is an integer and 
�1 is the decimal part
of the density. With such an incommensurate particle num-
ber, the system never goes into the MI state, but will always
have a superfluid density. The chemical potential for this
state, plotted on the �̃ , t̃ plane, traces the outline of the Mott
lobe as the interaction is increased �Fig. 3�. However, if we
think of the same system under a magnetic field that is com-
mensurate with the excess particle density, another possibil-
ity presents itself. Specifically, considering a magnetic field
so that �=2
, it is possible for n0 particles to form a MI state
that is coexisting with a 
=1/2 bosonic Laughlin state of the
remaining 
 particles. At high enough interaction, such a
state would be preferable to a superfluid state as it avoids any
interaction between the “excess” particles. The wave func-
tion of such a state can be obtained by symmetrizing the
product of the Mott insulator state for n0 bosons with the 

=1/2 bosonic Laughlin state for 
 particles. In general, sepa-
rating the many particle wave function into two parts and
arguing that the overall properties can be deduced by think-
ing about the individual parts is not correct, as symmetriza-
tion may change the character of both parts considerably. In
this case, however, we can safely regard the excess particles
as forming a correlated state above the Mott insulator, due to
the full translational invariance of the MI state. One can
write down an effective Hamiltonian for the excess particles.
To the zeroth order, the change in the effective Hamiltonian
would be just to replace t by �n0+1�t, due to bosonic en-
hancement of the hopping. There will be higher order cor-
rections to t and new noncontact interaction terms between
the excess particles due to fluctuations in the MI state. Such
terms will be of higher order in �t /U�, and can be neglected
in the strongly interacting limit. One can also argue that as
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both the MI state and the bosonic Laughlin state are gapped,
it would not be energetically favorable to exchange particles
between the two parts of the wave function. Similarly, one
can argue that the overall state would be gapped in the
strongly interacting limit.

Treating such a state as a variational state, the energy
difference from the MI state can be written as

�E = �Un0 − � − t�n0 + 1�f����
 . �9�

To first order in t /U, the term in parentheses is the energy
needed to put one extra particle onto the Mott insulator.

Thus, when it is favorable to put one extra particle onto the
Mott state, it would be favorable to put more particles �up to

 per site� and organize them into a FQH state. One can then
expect the correlated state to exist within a band above the
MI lobe �see Fig. 3�. The same argument can be advanced for
holes in a MI state, creating a FQH of holes below the Mott
insulator. Detailed properties of these correlated states, as
well as other correlated states near the transition boundary
will be investigated elsewhere �22�.

The phase diagram in Fig. 3 has important implications
for the optical lattice experiments. Experimentally an overall
confining potential is always present, and the phase diagram
of the homogeneous system is valid only in the local density
approximation. Thus a trapped system samples a range of
local chemical potentials from the phase diagram. It is this
sampling which creates the “wedding cake” structure of al-
ternating SF-MI layers in an optical lattice with an external
potential. One can observe from Fig. 3 that, a rotating optical
lattice in an external confining potential still shows the wed-
ding cake structure; however, the density profile has extra
steps corresponding to FQH states.

In conclusion, we studied the phase boundary of the MI
state of bosons in a rotating optical lattice. Using a
Gutzwiller ansatz, we gave an analytical expression for the
phase boundary in terms of the maximum energy of the Hof-
stadter butterfly. We finally argued that analogs of FQH
states will be found close to the MI-SF transition boundary
including MI states with particle densities greater than one.
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FIG. 3. Schematic phase diagram near the n0th Mott lobe. Dot-
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strength for systems with constant density �n̂�=n0 and �n̂�=n0+�.
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