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THE INTEGER KNAPSACK COVER POLYHEDRON∗

HANDE YAMAN†

Abstract. We study the integer knapsack cover polyhedron which is the convex hull of the set of
vectors x ∈ Z

n
+ that satisfy CT x ≥ b, with C ∈ Z

n
++ and b ∈ Z++. We present some general results

about the nontrivial facet-defining inequalities. Then we derive specific families of valid inequalities,
namely, rounding, residual capacity, and lifted rounding inequalities, and identify cases where they
define facets. We also study some known families of valid inequalities called 2-partition inequalities
and improve them using sequence-independent lifting.

Key words. integer knapsack cover polyhedron, valid inequalities, facets, sequence-independent
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1. Introduction. The purpose of this paper is to study the integer knapsack
cover polyhedron. Let N = {1, 2, . . . , n}. Item i ∈ N has capacity ci. We would like
to cover a demand of b using integer amounts of items in N . We assume that b and
ci for i ∈ N are positive integers.

We are interested in the integer knapsack cover set

X =

{
x ∈ Z

n
+ :

∑
i∈N

cixi ≥ b

}
(1)

and its convex hull PX = conv(X). The constraint
∑

i∈N cixi ≥ b is called the cover
constraint.

Set X is a relaxation of the feasible sets of many optimization problems in-
volving demands that may be covered with different types of items. Pochet and
Wolsey [15] study a special case to derive valid inequalities for a network design
problem. Mazur [11] uses the polyhedral results on PX to generate strong valid in-
equalities for the multifacility location problem. Yaman [18] uses the same relaxation
to strengthen formulations for the heterogeneous vehicle routing problem, which gen-
eralizes the well-known capacitated vehicle routing problem by introducing the choice
between different vehicle types. Yaman and Sen [19] arrive at the same relaxation in
the context of the manufacturer’s mixed pallet design problem, where each customer
can buy integer numbers of pallets with different configurations to satisfy its demand.
Knowledge about polyhedral properties of PX can be used in deriving strong formu-
lations for these problems. For recent work in understanding the structure of simple
mixed integer and integer sets, see, e.g., [3, 7, 12, 13, 15].

There has been a lot of work on the polytope of the 0/1 knapsack problem (e.g., [5,
8, 9, 16, 17, 20]). The situation is different for the integer knapsack cover polyhedron.
Despite the many application areas where set X may appear as a relaxation, the
literature on the polyhedral properties of its convex hull is quite limited.

Pochet and Wolsey [15] study the special case where ci+1 is an integer multiple
of ci for all i = 1, 2, . . . , n − 1. They derive the partition inequalities and show that
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552 HANDE YAMAN

these inequalities define the convex hull together with the nonnegativity constraints.
They derive conditions under which these inequalities are valid in the general case.

Mazur [11] and Mazur and Hall [12] study the general case. They show that
dim(PX) = n, xi ≥ 0 defines a facet of PX for i ∈ N , and if

∑
i∈N αixi ≥ α0 is

a nontrivial facet-defining inequality of PX, then αi > 0 for all i ∈ N and α0 > 0.
Let c

′

1, . . . , c
′

m be the distinct ci values that are less than b. An important result by
Mazur [11] is that, if one knows the description of conv({x ∈ Z

m
+ :

∑m
i=1 c

′

ixi ≥ b}),
it is trivial to obtain the description of PX. The inequality

∑
i∈N αixi ≥ α0 is a

nontrivial facet-defining inequality for PX if and only if αi = αj for all i, j ∈ N

with ci = cj , αi = α0 for all i ∈ N with ci ≥ b, and
∑m

i=1 α
′

ixi ≥ α0 is a nontrivial

facet-defining inequality for conv({x ∈ Z
m
+ :

∑m
i=1 c

′

ixi ≥ b}), where α
′

i = αj if c
′

i = cj
for i = 1, · · · ,m and j ∈ N . So interesting instances satisfy c1 < c2 < · · · < cn < b.

Mazur and Hall [12] also study the integer capacity cover polyhedron defined as
the convex hull of the set {(y, x) ∈ {0, 1}q × Z

n
+ :

∑
i∈N cixi ≥

∑q
i=1 yi}. They

use simultaneous lifting to derive facet-defining inequalities for this polyhedron using
those of the integer knapsack cover polyhedron. They remark that little is known
about the polyhedral properties of the latter polyhedron, and it is difficult to identify
its facets.

Atamturk [1] presents a family of facet-defining inequalities and lifting results for
the polytope conv(X ∩ {x ∈ Z

n : x ≤ u}) for u ∈ Z
n
++.

In this paper, we derive several families of valid inequalities and discuss when they
define facets of PX. We investigate the domination relations between these families of
valid inequalities. Most of our results on facet-defining inequalities are for the special
case where c1 = 1.

This work is motivated by the results of Mazur and Hall [12], where valid in-
equalities for the integer knapsack cover polyhedron are lifted to valid inequalities for
a more complicated polyhedron, the integer capacity cover polyhedron. We are also
motivated by the positive results in [18, 19], which demonstrate the use of simple valid
inequalities based on the integer knapsack cover relaxation in closing the duality gap
for complicated mixed integer programming problems studied in these papers.

The paper is organized as follows. In section 2, we give the general properties
of nontrivial facet-defining inequalities of PX. In sections 3–6, we introduce four
families of valid inequalities, namely, rounding, residual capacity, lifted rounding, and
lifted 2-partition inequalities. We compare their relative strengths and give conditions
under which they define facets of PX. In section 7, we investigate the use of lifted
rounding and lifted 2-partition inequalities in solving the manufacturer’s mixed pallet
design problem introduced by Yaman and Sen [19]. We conclude in section 8.

2. General results on facet-defining inequalities. In this section, we derive
general properties of nontrivial facet-defining inequalities of PX.

In the sequel, we assume that c1, . . . , cn and b are positive integers and that they
satisfy c1 < c2 < · · · < cn < b (this assumption is made without loss of generality due
to the result of Mazur [11] mentioned above). Let c be the greatest common divisor
of ci’s. We replace ci with ci

c for each i ∈ N and b with
⌈
b
c

⌉
. This does not change

the set X but strengthens the cover constraint. Let ei denote the n-dimensional unit
vector with 1 at the ith place and 0 elsewhere.

Proposition 1. Let
∑

i∈N αixi ≥ α0 be a nontrivial facet-defining inequality for
PX. Then

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ α0 ≤ min
i∈N

αi

⌈
b

ci

⌉
.
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THE INTEGER KNAPSACK COVER POLYHEDRON 553

Proof. Suppose that
∑

i∈N αixi ≥ α0 is a nontrivial facet-defining inequality for
PX. The fact that αi > 0 for i = 0, 1, . . . , n is proved in [11, 12].

Let j and l be such that j < l and x ∈ PX be such that
∑

i∈N αixi = α0, with

xj ≥ 1. Consider x
′

= x − ej + el. As cl > cj , x
′ ∈ PX. Then

∑
i∈N αix

′

i ≥ α0,
implying that αl ≥ αj . So α1 ≤ α2 ≤ · · · ≤ αn.

Let x ∈ PX be such that
∑

i∈N αixi = α0, with xn ≥ 1. Then αnxn ≤ α0 and,
as xn ≥ 1, αn ≤ α0.

For i ∈ N , x =
⌈

b
ci

⌉
ei is in PX, and so αi

⌈
b
ci

⌉
≥ α0. Thus α0 ≤ mini∈N

αi

⌈
b
ci

⌉
.

We have a necessary condition for a nontrivial inequality to be facet-defining.
Theorem 1. Let

∑
i∈N αixi ≥ α0 be a nontrivial facet-defining inequality for

PX. Let j ∈ arg maxi∈N
ci
αi

. Then (α0 − αi)
cj
αj

+ ci ≥ b for all i ∈ N \ {j}.
Proof. Assume that there exists l ∈ N \{j} such that (α0−αl)

cj
αj

+cl < b. Let x ∈
X be such that

∑
i∈N αixi = α0. Then xj =

α0−
∑

i∈N\{j} αixi

αj
. The left-hand side of

the cover constraint evaluated at x is
∑

i∈N cixi =
∑

i∈N\{j}(ci−
cj
αj

αi)xi+
cj
αj

α0. This

is less than or equal to (cl− cj
αj

αl)xl+
cj
αj

α0, since ci− cj
αj

αi ≤ 0 for all i ∈ N \{j}. Now

as (α0 −αl)
cj
αj

+ cl < b and cl − cj
αj

αl ≤ 0, whenever xl ≥ 1, (cl − cj
αj

αl)xl +
cj
αj

α0 < b.

This proves that, for any x ∈ X such that
∑

i∈N αixi = α0, we have xl = 0.
Next, we give necessary and sufficient conditions for some inequalities to be

facet-defining. Later, we use this result to identify specific families of facet-defining
inequalities.

Theorem 2. Let
∑

i∈N αixi ≥ α0 be a valid inequality for PX, with αi > 0 and
integer for all i ∈ N ∪ {0} and α1 = 1. Let j be the largest index, with αj = 1. If
αi ≥ ci

cj
for all i = j + 1, . . . , n, then the inequality

∑
i∈N αixi ≥ α0 is facet-defining

for PX if and only if (α0−αi)cj + ci ≥ b for i = j+1, . . . , n and (α0−1)cj + c1 ≥ b.
Proof. If the conditions of the theorem are satisfied, then α0ej , (α0 − 1)ej + ei

for i = 1, . . . , j − 1, and (α0 − αi)ej + ei for i = j + 1, . . . , n are in PX; they
satisfy

∑
i∈N αixi = α0 and are affinely independent. This proves that the inequality∑

i∈N αixi ≥ α0 is facet-defining for PX.
The necessity of the conditions are implied by Theorem 1.
To conclude this section, we investigate when the cover constraint is facet-defining

for PX. If cj divides b for all j ∈ N , then the nonnegativity constraints and the cover
constraint describe the polyhedron PX, i.e., PX = {x ∈ R

n
+ :

∑
j∈N cjxj ≥ b}.

Using Theorem 2, we identify another case where the cover constraint is facet-
defining.

Corollary 1. If c1 = 1, then the cover constraint is facet-defining for PX.
The conclusion of Theorem 1 is trivially satisfied for the cover constraint. But

the cover constraint is not necessarily facet-defining for PX. The following simple
example proves this statement.

Example 1. Let X1 = {x ∈ Z
2
+ : 3x1 + 4x2 ≥ 14}. The polyhedron conv(X1) =

{(x1, x2) ∈ R
2
+ : x1 + x2 ≥ 4, 2x1 + 3x2 ≥ 10}.

3. Rounding inequalities. In this section, we derive a family of valid inequal-
ities, called the rounding inequalities, and identify some cases where they are facet-
defining for PX.

For λ > 0, the rounding inequality∑
i∈N

⌈
ci
λ

⌉
xi ≥

⌈
b

λ

⌉
(2)
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554 HANDE YAMAN

is a valid inequality for PX. It is obtained using the well-known Chvatal–Gomory
procedure (see, e.g., Nemhauser and Wolsey [14]). These inequalities have been used
by Yaman [18]. Here we investigate under which conditions these inequalities are facet-
defining for PX. The inequality for λ = cn is

∑
i∈N xi ≥

⌈
b
cn

⌉
. Mazur [11] proves

that this inequality is facet-defining for PX if and only if b ≤
(⌈

b
cn

⌉
− 1

)
cn + c1.

Inequality (2) for any λ > cn is dominated by the corresponding inequality for cn. So
we are interested in λ < cn.

The result below is a corollary to Theorem 2.
Corollary 2. Let λ be such that cj ≤ λ < cj+1 for some j ∈ {1, . . . , n− 1}. If⌈

ci
λ

⌉
≥ ci

cj
for all i = j + 1, . . . , n, then inequality (2) is facet-defining if and only if(⌈

b
λ

⌉
− 1

)
cj + c1 ≥ b and

(⌈
b
λ

⌉
−
⌈
ci
λ

⌉)
cj + ci ≥ b for all i = j + 1, . . . , n.

Proof. As
⌈
ci
λ

⌉
for i ∈ N and

⌈
b
λ

⌉
are positive integers,

⌈
c1
λ

⌉
= 1, j is the largest

index with coefficient 1 in inequality (2), and
⌈
ci
λ

⌉
≥ ci

cj
for all i = j + 1, . . . , n,

Theorem 2 applies.
We have a necessary condition as a corollary to Theorem 1.
Corollary 3. Let λ > 0. If there exists j ∈ N such that cj is divisible by λ

and if inequality (2) is facet-defining for PX, then (
⌈
b
λ

⌉
−

⌈
ci
λ

⌉
)λ + ci ≥ b for all

i ∈ N \ {j}.
Proof. For i ∈ N , ci⌈

ci
λ

⌉ ≤ λ. So, if j ∈ N is such that λ divides cj , j ∈

arg maxi∈N
ci⌈
ci
λ

⌉ , and we can apply Theorem 1.

We consider the subset of inequalities (2) defined by λ equal to c1, . . . , cn. In the
following corollary, we generalize the result by Mazur [11].

Corollary 4. For j ∈ N , the inequality

∑
i∈N

⌈
ci
cj

⌉
xi ≥

⌈
b

cj

⌉
(3)

is facet-defining for PX if and only if
(⌈

b
cj

⌉
−1

)
cj+c1 ≥ b and

(⌈
b
cj

⌉
−
⌈
ci
cj

⌉)
cj+ci ≥ b

for all i = j + 1, . . . , n.
Proof. Take λ = cj . As

⌈
ci
cj

⌉
≥ ci

cj
for all i = j + 1, . . . , n, we apply Corollary 2 to

obtain the result.
Atamturk [1] studies the polytope conv(X ∩ {x ∈ Z

n : x ≤ u}) for u ∈ Z
n
++ and

proves that inequality (3) for j ∈ N such that ujcj ≥ b is facet-defining if and only if
the conditions of Corollary 4 are satisfied.

We go back to Example 1 and see if rounding inequalities are facet-defining.
Example 2. Consider set X1 defined in Example 1. The rounding inequality for

λ = c1 is not facet-defining since
(⌈

14
3

⌉
−

⌈
4
3

⌉)
3 + 4 = 13 < 14 = b. The inequality is

x1 +2x2 ≥ 5 and is dominated by 2x1 +3x2 ≥ 10. We can obtain the latter inequality
by lifting inequality x1 ≥ 5, which is a rounding inequality when x2 = 0 with variable
x2 (see section 5).

The rounding inequality for λ = c2 is facet-defining since
(⌈

14
4

⌉
− 1

)
4 + 3 = 15 ≥

14 = b. This is the inequality x1 + x2 ≥ 4.
The convex hull of X1 is described by the nonnegativity constraints, a rounding

inequality (x1 + x2 ≥ 4), and a lifted rounding inequality (2x1 + 3x2 ≥ 10).
In the next example, we see two sets that are defined by parameters which differ

only in the right-hand side of the cover constraint. The rounding inequalities for
λ = c2, c3, . . . , cn are facet-defining for the polyhedron when the right-hand side is b,
and none are facet-defining when the right-hand side is b + 1.

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE INTEGER KNAPSACK COVER POLYHEDRON 555

Example 3. Consider the set X2 = {x ∈ Z
4
+ : x1 + 4x2 + 5x3 + 6x4 ≥ 61}.

The convex hull of X2 is described by the nonnegativity constraints and the following
inequalities (these results are obtained using PORTA [6]):

x1 + 4x2 + 5x3 + 6x4 ≥ 61,(4)

x1 + 2x2 + 3x3 + 3x4 ≥ 31,(5)

x1 + x2 + 2x3 + 2x4 ≥ 16,(6)

x1 + x2 + x3 + 2x4 ≥ 13,(7)

x1 + x2 + x3 + x4 ≥ 11.(8)

Inequality (4) is the cover constraint. By Corollary 1, as c1 = 1, we know that the
cover constraint is facet-defining. Inequalities (6)–(8) are rounding inequalities. It is
easy to verify that the conditions of Corollary 4 are satisfied. Note that inequality (5)
is the rounding inequality for λ = 2, and the conditions of Corollary 3 are satisfied.

Now consider the set X3 = {x ∈ Z
4
+ : x1 + 4x2 + 5x3 + 6x4 ≥ 62}. The following

inequalities together with the nonnegativity constraints describe the convex hull of
X3:

x1 + 4x2 + 5x3 + 6x4 ≥ 62,(9)

x1 + 2x2 + 3x3 + 4x4 ≥ 32,(10)

x1 + 2x2 + 2x3 + 3x4 ≥ 26,(11)

x1 + 2x2 + 2x3 + 2x4 ≥ 22.(12)

The cover constraint (9) is facet-defining, but the rounding inequalities for λ =
c2, c3, c4 do not define facets. Inequality (10) dominates the rounding inequality for
λ = c2, which is x1 + x2 + 2x3 + 2x4 ≥ 16, (11) dominates inequality x1 + x2 +
x3 + 2x4 ≥ 13, which is the rounding inequality for λ = c3, and (12) dominates
x1 + x2 + x3 + x4 ≥ 11, which is the rounding inequality for λ = c4. In the following
section, we will identify these inequalities (10)–(12).

4. Residual capacity inequalities. Residual capacity inequalities are intro-
duced by Magnanti, Mirchandani, and Vachani [10] for the single arc design problem.
Here we present inequalities that are based on a similar idea.

Assume that the demand b is covered using some item j ∈ N . Then at least � b
cj
�

units of item j need to be used. If � b
cj
� − 1 units are used to full capacity, then the

capacity of the last unit to be used is rj = b− (� b
cj
� − 1)cj . If only � b

cj
� − 1 units of

item j are used, then the remaining items should cover a demand equal to rj . This is
expressed in the following valid inequality.

For j ∈ N , define Nj = {1, 2, . . . , j} and N
′

j = {i ∈ Nj : ci ≥ rj}. For N0 ⊂ N

and N1 = N \N0, let Xh(N1) = {x ∈ Z
n
+ :

∑
i∈N cixi ≥ h, xi = 0 for all i ∈ N0}.

Theorem 3. For j ∈ N , the inequality

j∑
i=1

min{ci, rj}xi +

n∑
i=j+1

cixi ≥ rj

⌈
b

cj

⌉
(13)

is valid for PX.
Proof. If

∑
i∈N

′
j
xi = � b

cj
�, then the inequality is satisfied. If

∑
i∈N

′
j
xi = � b

cj
�−p

for some p ≥ 1, then the feasibility of x implies
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 cixi ≥
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556 HANDE YAMAN

b−
∑

i∈N
′
j
cixi ≥ b− cj

∑
i∈N

′
j
xi = rj + (p− 1)cj . As rj + (p− 1)cj ≥ rjp, inequality

(13) is satisfied.
For j ∈ N , if rj = cj , then b is divisible by cj and inequality (13) is the same as

the cover constraint.
Theorem 4. If c1 = 1 for j ∈ N , the inequality

j∑
i=1

min{ci, rj}xi ≥ rj

⌈
b

cj

⌉
(14)

is facet-defining for conv(Xb(Nj)).

Proof. Let F = {x ∈ Xb(Nj) :
∑j

i=1 min{ci, rj}xi = rj
⌈

b
cj

⌉
}. Assume that all

x ∈ F satisfy
∑j

i=1 αixi = α0. As
⌈

b
cj

⌉
ej ∈ F , we need α0 =

⌈
b
cj

⌉
αj . For i ∈ N

′

j ,

(
⌈

b
cj

⌉
−1)ej+ei ∈ F , implying that αi = αj . As c1 = 1, we have (

⌈
b
cj

⌉
−1)ej+rje1 ∈ F .

So α1 =
αj

rj
. Finally, for i ∈ Nj \ (N

′

j ∪ {1}), (
⌈

b
cj

⌉
− 1)ej + ei + (rj − ci)e1 ∈ F .

Hence, αi =
αjci
rj

. Then
∑j

i=1 αixi = α0 is a
αj

rj
multiple of

∑j
i=1 min{ci, rj}xi =

rj
⌈

b
cj

⌉
.

For j ∈ N , if rj = 1, then inequality (14) is
∑j

i=1 xi ≥
⌈

b
cj

⌉
and is the same as the

rounding inequality for λ = cj for conv(Xb(Nj)). By Corollary 4, it is facet-defining
since

(⌈
b
cj

⌉
− 1

)
cj + c1 = b− rj + c1 ≥ b.

For j = n, conv(Xb(Nn)) = PX, and the following result can be deduced from
Theorem 4.

Corollary 5. If c1 = 1, inequality (13) for j = n is facet-defining for PX.
Example 4. Consider the set X3 given in Example 3. For item 2, r2 = 2 and⌈

b
c2

⌉
= 16. Inequality (13) for item 2 is x1 + 2x2 + 5x3 + 6x4 ≥ 32 and is dominated

by inequality (10). For item 3, r3 = 2 and
⌈

b
c3

⌉
= 13. The corresponding inequality

(13) is x1 + 2x2 + 2x3 + 6x4 ≥ 26 and is dominated by inequality (11). For item 4,
r4 = 2 and

⌈
b
c4

⌉
= 11. Inequality (13) is x1 + 2x2 + 2x3 + 2x4 ≥ 22 and is the same

as inequality (12). In the remaining of this section, we will try to identify inequalities
(10) and (11).

We can generalize inequality (13) as follows.

Theorem 5. For j ∈ N , let μ ≥ 0 be such that
⌈ rj(rj+μ)

cj
+μ

⌉
≥ rj and rj+μ ≤ cj.

The inequality

j∑
i=1

min{ci, rj}xi +

n∑
i=j+1

⌈
ci(rj + μ)

cj

⌉
xi ≥ rj

⌈
b

cj

⌉
(15)

is valid for PX.
Proof. If

∑
i∈N

′
j
xi = � b

cj
�, then the inequality is satisfied. If

∑
i∈N

′
j
xi = � b

cj
�−1,

then inequality (15) simplifies to
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rj . By

feasibility, we need to have
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 cixi ≥ rj . Using coefficient

reduction, we obtain
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 rjxi ≥ rj . As

⌈ ci(rj+μ)
cj

⌉
≥ rj for all

i = j + 1, . . . , n, inequality (15) is satisfied.
If

∑
i∈N

′
j
xi = � b

cj
� − p for some p ≥ 2, then inequality (15) simplifies to∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rjp. The feasibility of x implies that∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1 cixi ≥ rj + (p− 1)cj . We multiply this inequality with

rj+μ
cj

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE INTEGER KNAPSACK COVER POLYHEDRON 557

and obtain
∑

i∈Nj\N ′
j
ci

rj+μ
cj

xi +
∑n

i=j+1 ci
rj+μ
cj

xi ≥ rj(rj+μ)
cj

+ (p− 1)(rj + μ). Now,

as rj + μ ≤ cj and so
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥

∑
i∈Nj\N ′

j
ci

(rj+μ)
cj

xi +∑n
i=j+1 ci

(rj+μ)
cj

xi, we have
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rj(rj+μ)

cj
+

(p− 1)(rj + μ). Since the left-hand side is always an integer, we round up the right-

hand side and get
⌈ rj(rj+μ)

cj
+ (p − 1)μ

⌉
+ (p − 1)rj . As

⌈ rj(rj+μ)
cj

+ μ
⌉
≥ rj , μ ≥ 0,

and p ≥ 2, we obtain
∑

i∈Nj\N ′
j
cixi +

∑n
i=j+1

⌈ ci(rj+μ)
cj

⌉
xi ≥ rjp. So x satisfies

inequality (15).
For μ = cj − rj , inequality (15) is the same as inequality (13).
As μ increases, inequality (15) gets weaker. So for given j ∈ N , we are interested

in inequality (15) defined by the smallest μ that satisfies the condition
⌈ rj(rj+μ)

cj
+μ

⌉
≥

rj . Let ε > 0 be very small. We take μj =
cj(rj−1)−r2

j

rj+cj
+ ε, if

⌈ r2
j

cj

⌉
< rj , and μj = 0,

otherwise.
Observe that nondominated residual capacity inequalities (15) are defined per

item, so there are O(n) of them.
Example 5. Consider again the set X3 of Example 3. For item 2, r2 = 2. As⌈ r2

2

c2

⌉
= 1 < 2 = r2, μ2 = 4(2−1)−4

2+4 + ε = ε. The corresponding inequality (15) is
x1 + 2x2 + 3x3 + 4x4 ≥ 32 and is the same as inequality (10). For item 3, r3 = 2. As⌈ r2

3

c3

⌉
= 1 < 2 = r3, μ3 = 5(2−1)−4

2+5 + ε = 1
7 + ε. The corresponding inequality (15) is

x1 + 2x2 + 2x3 + 3x4 ≥ 26 and is the same as inequality (11).
If rj = 1, then μj = 0 and inequality (15) is the same as the rounding inequality

(3) for λ = cj .
If rj = cj , then again μj = 0. This time inequality (15) is the same as the cover

constraint.
We have a necessary condition for inequality (15) to be facet-defining.
Corollary 6. For j ∈ N , if inequality (15) is facet-defining for PX and rj < cj,

then ci +
⌈

b
cj

⌉
cj − cj

rj

⌈ ci(rj+μj)
cj

⌉
≥ b for all i = j + 1, . . . , n.

Proof. As ci− cj
rj

min{ci, rj} ≤ 0 for all i = 1, . . . , j−1 and
(
ci− cj

rj

⌈ ci(rj+μj)
cj

⌉)
≤ 0

for all i = j+1, . . . , n, we apply Theorem 1. So, if inequality (15) is facet-defining for

PX, then
⌈

b
cj

⌉
cj−min{ci, rj} cj

rj
+ci ≥ b for i = 1, . . . , j−1 and

⌈
b
cj

⌉
cj− cj

rj

⌈ ci(rj+μj)
cj

⌉
+

ci ≥ b for all i = j + 1, . . . , n.
For i ∈ N

′

j , the condition is
⌈

b
cj

⌉
cj − cj + ci ≥ b. The left-hand side is equal to⌊

b
cj

⌋
cj + ci ≥

⌊
b
cj

⌋
cj + rj = b. For i ∈ Nj \N

′

j , the condition is
⌈

b
cj

⌉
cj − ci

cj
rj

+ ci ≥
b. The left-hand side is equal to b − rj + cj − ci

cj−rj
rj

= b + (cj − rj)
(rj−ci)

rj
≥ b

since cj ≥ rj and rj ≥ ci. So the conditions of Theorem 1 are always satisfied for
i ∈ Nj .

5. Lifted rounding inequalities. In this section, we derive valid inequalities
using lifting. For N0 ⊂ N and N1 = N \N0, let

∑
i∈N1 αixi ≥ α0 be a valid inequality

for Xb(N
1).

Suppose we lift inequality
∑

i∈N1 αixi ≥ α0, with xl with l ∈ N0. The optimal
lifting coefficient of xl is

αl = max
α0 −

∑
i∈N1 αixi

xl

s.t. xl ≥ 1

x ∈ Xb(N
1 ∪ {l}).
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558 HANDE YAMAN

Consider the case where αi = 1 for all i ∈ N1, j = arg maxi∈N1 ci, and α0 = � b
cj
�.

For l ∈ N0, the nonlinear lifting problem simplifies to

αl = max
xl∈Z++

� b
cj
� −

⌈ (b−clxl)
+

cj

⌉
xl

.

Clearly, a maximizing xl cannot be larger than
⌈

b
cl

⌉
. Hence, we obtain

αl = max
xl∈{1,2,...,� b

cl
�}

� b
cj
� −

⌈ (b−clxl)
+

cj

⌉
xl

,

and we can compute αl by enumeration.
Example 6. Consider the set X1 defined in Example 1. Inequality x1 ≥ 5 is facet-

defining for conv(X1∩{x ∈ Z
2
+ : x2 = 0}). We lift inequality x1 ≥ 5 with variable x2.

The optimal lifting coefficient α2 = maxx2∈{1,2,3,4}
5−

⌈
(14−4x2)+

3

⌉
x2

= max{1, 3
2 ,

4
3 ,

5
4} =

3
2 . The corresponding inequality is 2x1 +3x2 ≥ 10 and is facet-defining for conv(X1).

Computation of the optimal lifting coefficients of variables that are lifted in later
in the sequence may become harder. So we are interested in sequence-independent
lifting.

Atamturk [4] studies sequence-independent lifting for mixed integer programming.
The following can be derived from his results. Consider the lifting function Φ(a) =
α0 −minx∈Xb−a(N1)

∑
i∈N1 αixi. If this function is subadditive, i.e., if Φ(a) + Φ(d) ≥

Φ(a + d) for all a, d ∈ R, then the lifting is sequence-independent. In this case, the
inequality

∑
i∈N1 αixi +

∑
i∈N0 Φ(ci)xi ≥ α0 is a valid inequality for PX. In the

general case, let Θ be a subadditive function, with Θ ≥ Φ. Then the inequality∑
i∈N1 αixi +

∑
i∈N0 Θ(ci)xi ≥ α0 is a valid inequality for PX. If the inequality∑

i∈N1 αixi ≥ α0 is facet-defining for conv(Xb(N
1)) and Θ(ci) = Φ(ci) for all i ∈ N0,

then inequality
∑

i∈N1 αixi +
∑

i∈N0 Θ(ci)xi ≥ α0 is facet-defining for PX.
Theorem 6. Let N1 ⊂ N and

∑
i∈N1 αixi ≥ α0 be a valid inequality for Xb(N

1).
If there exists j ∈ N1 such that αi ≥ αj� ci

cj
� for all i ∈ N1 \ {j}, then the lifting

function is

Φ(a) = α0 − αj

⌈
(b− a)+

cj

⌉
.

Proof. Suppose there exists j ∈ N1 such that αi ≥ αj� ci
cj
� for all i ∈ N1 \

{j}. The lifting function is Φ(a) = α0 − minx∈Xb−a(N1)

∑
i∈N1 αixi. Let x be an

optimal solution to the minimization problem. Consider x = x −
∑

i∈N1\{j} xiei +⌈∑
i∈N1\{j} cixi

cj

⌉
ej . Clearly, x ∈ Xb−a(N

1). The objective function evaluated at x is

equal to

∑
i∈N1

αixi =
∑
i∈N1

αixi −
∑

i∈N1\{j}
αixi + αj

⌈∑
i∈N1\{j} cixi

cj

⌉

≤
∑
i∈N1

αixi −
∑

i∈N1\{j}
αixi + αj

∑
i∈N1\{j}

⌈
ci
cj

⌉
xi.

As αi ≥ αj� ci
cj
� for all i ∈ N1 \ {j},

∑
i∈N1 αixi ≤

∑
i∈N1 αixi, and so x is also

optimal. Hence
⌈ (b−a)+

cj

⌉
ej is also optimal and the optimal value is αj

⌈ (b−a)+

cj

⌉
.

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE INTEGER KNAPSACK COVER POLYHEDRON 559

2 5 7 10 12 15 17 20 22

-10 -8 -5 -3 1
2
3
4
5

-1
-2
-3

Φ(  )a

a

a

Θ(  )

Fig. 1. Lifting function Φ and subadditive function Θ for b = 17 and cj = 5.

Suppose there exists j ∈ N1 such that αi ≥ αj� ci
cj
� for all i ∈ N1 \ {j}, αj =

1, and α0 = � b
cj
�. The lifting function for the inequality

∑
i∈N1 αixi ≥ � b

cj
� is

Φ(a) =
⌈

b
cj

⌉
−

⌈ (b−a)+

cj

⌉
. The function Φ is not subadditive. An example where

b = 17 and cj = 5 is depicted in Figure 1. Here for a = 11 and d = 6, we have
� b
cj
� − � b−a

cj
� + � b

cj
� − � b−d

cj
� = 4 − 2 + 4 − 3 = 3 < � b

cj
� − � b−a−d

cj
� = 4 − 0 = 4.

For j ∈ N and a ∈ R, define

ρj(a) = a−
⌊
a

cj

⌋
cj .

Lemma 1. For j ∈ N , if ρj(b) > 0, the function Θ(a) = 
 a
cj
�+min{ρj(a)

ρj(b)
, 1} (see

Figure 1) is subadditive.

Proof. Let a, d ∈ R. Then Θ(a) + Θ(d) = 
 a
cj
� + min{ρj(a)

ρj(b)
, 1} + 
 d

cj
� +

min{ρj(d)
ρj(b)

, 1}. There are two cases: (i) ρj(a) + ρj(d) = ρj(a + d) and (ii) ρj(a) +

ρj(d) = ρj(a + d) + cj . In case (i), since ρj(a) + ρj(d) = ρj(a + d), we have


 a
cj
� + 
 d

cj
� = 
a+d

cj
�. If min{ρj(a)

ρj(b)
, 1} = 1 or min{ρj(d)

ρj(b)
, 1} = 1, then Θ(a) + Θ(d) ≥


a+d
cj

� + 1 ≥ Θ(a + d). Otherwise, min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

and min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

.

Then Θ(a) + Θ(d) = 
a+d
cj

�+
ρj(a)
ρj(b)

+
ρj(d)
ρj(b)

= 
a+d
cj

�+
ρj(a+d)
ρj(b)

≥ Θ(a+ d). In case (ii),

as ρj(a) + ρj(d) = ρj(a + d) + cj , 
 a
cj
� + 
 d

cj
� = 
a+d

cj
� − 1. If min{ρj(a)

ρj(b)
, 1} = 1 and

min{ρj(d)
ρj(b)

, 1} = 1, then Θ(a) + Θ(d) = 
a+d
cj

�+ 1 ≥ Θ(a+ d). If min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

and min{ρj(d)
ρj(b)

, 1} = 1, then Θ(a) + Θ(d) = 
a+d
cj

� +
ρj(a)
ρj(b)

. Since ρj(d) ≤ cj ,

ρj(a) ≥ ρj(a+d). So 
a+d
cj

�+
ρj(a)
ρj(b)

≥ Θ(a+d). The case where min{ρj(a)
ρj(b)

, 1} = 1 and

min{ρj(d)
ρj(b)

, 1} =
ρj(d)
ρj(b)

is similar. Finally, if min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

and min{ρj(a)
ρj(b)

, 1} =
ρj(a)
ρj(b)

, Θ(a) + Θ(d) = 
a+d
cj

� − 1 +
ρj(a)
ρj(b)

+
ρj(d)
ρj(b)

= 
a+d
cj

� − 1 +
ρj(a+d)
ρj(b)

+
cj

ρj(b)
. Since

cj ≥ ρj(b), 
a+d
cj

� − 1 +
ρj(a+d)
ρj(b)

+
cj

ρj(b)
≥ 
a+d

cj
� +

ρj(a+d)
ρj(b)

≥ Θ(a + d). This proves

that Θ is subadditive.
Now we will lift the inequality

∑
i∈N1 αixi ≥ � b

cj
� using the function Θ.

Theorem 7. Let N0 ⊂ N , N1 = N \ N0, and
∑

i∈N1 αixi ≥ α0 be a valid
inequality for Xb(N

1). If there exists j ∈ N1 such that αj = 1, αi ≥ � ci
cj
� for all
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560 HANDE YAMAN

i ∈ N1 \ {j}, α0 = � b
cj
�, and ρj(b) > 0, then the inequality

∑
i∈N1

ρj(b)αixi +
∑
i∈N0

(
ρj(b)

⌊
ci
cj

⌋
+ min{ρj(ci), ρj(b)}

)
xi ≥ ρj(b)

⌈
b

cj

⌉
(16)

is a valid inequality for PX.
Proof. The inequality

∑
i∈N1 αixi ≥ � b

cj
� is valid for Xb(N1). Consider the

subadditive function Θ(a) = 
 a
cj
� + min{ρj(a)

ρj(b)
, 1} given in Lemma 1. We will show

that Θ ≥ Φ. If a < b and ρj(a) < ρj(b), then ρj(b − a) = ρj(b) − ρj(a) > 0. So

Φ(a) =
⌈

b
cj

⌉
−

⌈
b−a
cj

⌉
=

b−ρj(b)+cj
cj

− b−a−ρj(b)+ρj(a)+cj
cj

=
a−ρj(a)

cj
=

⌊
a
cj

⌋
≤ Θ(a).

If a < b and ρj(a) ≥ ρj(b), then Θ(a) =
⌈

a
cj

⌉
≥

⌈
b
cj

⌉
−

⌈
b−a
cj

⌉
= Φ(a). If a ≥ b,

then Φ(a) =
⌈

b
cj

⌉
. If

⌈
a
cj

⌉
=

⌈
b
cj

⌉
, then ρj(a) ≥ ρj(b). So Θ(a) =

⌈
a
cj

⌉
= Φ(a). If⌈

a
cj

⌉
≥

⌈
b
cj

⌉
+ 1, then Θ(a) ≥

⌊
a
cj

⌋
≥

⌈
b
cj

⌉
= Φ(a). So the inequality

∑
i∈N1 αixi +∑

i∈N0

(

 ci
cj
�+min{ρj(ci)

ρj(b)
, 1}

)
xi ≥ � b

cj
� is a valid inequality for PX. Multiplying both

sides with ρj(b), we obtain inequality (16).
Some of the inequalities (16) are dominated by others. Indeed, as given in the

following proposition, the number of nondominated inequalities (16) is polynomial.
Proposition 2. For j ∈ N with ρj(b) > 0, the inequality

j∑
i=1

min{ci, ρj(b)}xi +

n∑
i=j+1

(
ρj(b)

⌊
ci
cj

⌋
+ min{ρj(ci), ρj(b)}

)
xi ≥ ρj(b)

⌈
b

cj

⌉
(17)

is valid and dominates inequality (16) for N0 ⊂ N , N1 = N \N0 such that j ∈ N1,
αj = 1, αi ≥ � ci

cj
� for all i ∈ N1 \ {j} and α0 = � b

cj
�.

Proof. Inequality (17) is valid since it is the same as inequality (16) for N1 = {j}.
Let N0 ⊂ N , N1 = N\N0 such that j ∈ N1, αj = 1, αi ≥ � ci

cj
� for all i ∈ N1\{j},

and α0 = � b
cj
�. For i ∈ N1, ρj(b)

⌊
ci
cj

⌋
+ min{ρj(ci), ρj(b)} ≤ ρj(b)

⌈
ci
cj

⌉
≤ ρj(b)αi. So

the coefficient of xi in (17) is less than or equal to its coefficient in (16). The coefficients
of xi for i ∈ N0 and the right-hand sides are the same in both inequalities. Hence
inequality (17) dominates inequality (16).

We call inequalities (17) lifted rounding inequalities. The number of lifted round-
ing inequalities that are not dominated is O(n).

It is interesting to note that even though inequalities (16) are not, inequalities
(17) are special cases of the multifacility cut-set inequalities derived by Atamturk [2]
for the single commodity-multifacility network design problem.

For j ∈ N such that ρj(b) > 0, consider the inequality xj ≥ � b
cj
�, which is facet-

defining for conv(Xb({j})). If c1 ≥ ρj(b), then, for i < j, ci ≥ ρj(b). So Φ(ci) =
Θ(ci) = 1. For i > j, if ρj(ci) = 0 or ρj(ci) ≥ ρj(b), then Φ(ci) = Θ(ci) = � ci

cj
�. By

Theorem 5 in Atamturk [4], the resulting inequality

j∑
i=1

xi +

n∑
i=j+1

⌈
ci
cj

⌉
xi ≥

⌈
b

cj

⌉
(18)

is facet-defining for PX. Notice that this is the same inequality as the rounding
inequality (2) for λ = cj . The condition c1 ≥ ρj(b) implies that

(⌈
b
cj

⌉
− 1

)
cj + c1 ≥ b.

For i < j, if ρj(ci) = 0, then
(⌈

b
cj

⌉
−

⌈
ci
cj

⌉)
cj + ci =

⌈
b
cj

⌉
cj ≥ b. If ρj(ci) ≥ ρj(b),
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then
(⌈

b
cj

⌉
−
⌈
ci
cj

⌉)
cj + ci =

( b+cj−ρj(b)
cj

− ci+cj−ρj(ci)
cj

)
cj + ci = b− ρj(b) + ρj(ci) ≥ b.

As a result, the conditions stated above are the same as the conditions of Corollary
4. However, Corollary 4 is a stronger result, since it states that these conditions are
both necessary and sufficient.

Now we compare inequalities (17) and (3). The two following propositions are
easy to prove.

Proposition 3. For j ∈ N with ρj(b) = 1, inequalities (17) and (3) are the
same.

Proposition 4. For j ∈ N with ρj(b) ≥ 2, inequality (17) dominates inequality
(3).

If, for j ∈ N , ρj(b) > 0 (or, equivalently, rj < cj), then ρj(b) = rj . So residual
capacity inequalities (15) and inequalities (17) look very similar. Coefficients of vari-
ables xi, with i ∈ {1, . . . , j}, are the same in both inequalities. The right-hand sides
are also the same. Only coefficients of variables xi, with i ∈ {j + 1, . . . , n}, may be
different.

Proposition 5. For j ∈ N , if rj < cj and
⌈ r2

j

cj

⌉
≥ rj, then inequality (15) for

μ = 0 and inequality (17) are the same.

Proof. If
⌈ r2

j

cj

⌉
≥ rj , then the coefficient of xi, with i ∈ {j + 1, . . . , n}, is

⌈ cirj
cj

⌉
in

inequality (15) with μ = 0. This is equal to⌈ (
⌊
ci
cj

⌋
cj + ρj(ci))rj

cj

⌉
=

⌊
ci
cj

⌋
rj +

⌈
ρj(ci)rj

cj

⌉
.

Since ρj(ci) ≤ cj and rj ≤ cj ,
⌈ρj(ci)rj

cj

⌉
≤ min{ρj(ci), rj}. So the coefficient of xi in

(15) is less than or equal to its coefficient in (17).

If ρj(ci) ≥ rj , then
⌈ρj(ci)rj

cj

⌉
≥

⌈ r2
j

cj

⌉
≥ rj . Now assume that ρj(ci) < rj and⌈ρj(ci)rj

cj

⌉
< ρj(ci). Then ρj(ci)rj ≤ (ρj(ci) − 1)cj . This is equivalent to cj ≤ (cj −

rj)ρj(ci). Since
⌈ r2

j

cj

⌉
≥ rj , r

2
j > (rj − 1)cj . So cj > (cj − rj)rj > (cj − rj)ρj(ci). This

contradicts cj ≤ (cj − rj)ρj(ci). Hence if ρj(ci) < rj , then
⌈ρj(ci)rj

cj

⌉
≥ ρj(ci). So the

coefficients of variable xi in inequalities (15) and (17) are the same.

Proposition 6. For j ∈ N , if
⌈ r2

j

cj

⌉
< rj, then inequality (17) dominates in-

equality (15) for μ = μj.

Proof. If
⌈ r2

j

cj

⌉
< rj , then the coefficient of xi, with i > j, in (15) for μ = μj

is
⌈ ci(rj+μj)

cj

⌉
=

⌊
ci
cj

⌋
rj +

⌈⌊
ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
. If ρj(ci) ≥ rj , then

⌈⌊
ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
≥

⌈⌊
ci
cj

⌋
μj +

rj(rj+μj)
cj

⌉
. Since ci ≥ cj ,

⌈⌊
ci
cj

⌋
μj +

rj(rj+μj)
cj

⌉
≥

⌈
μj +

rj(rj+μj)
cj

⌉
≥ rj .

Assume that ρj(ci) < rj and
⌈⌊

ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
< ρj(ci). Then ρj(ci)(rj +

μj) ≤ cj(ρj(ci) − 1 −
⌊
ci
cj

⌋
μj) or, equivalently, cj ≤ ρj(ci)(cj − rj) − μjci. Since

rj(rj+μj)
cj

+μj > rj − 1, we have that cj > rj(cj − rj −μj)−μjcj , and now, since rj >

ρj(ci), cj > ρj(ci)(cj−rj−μj)−μjcj . Putting together with cj ≤ ρj(ci)(cj−rj)−μjci,
we obtain ρj(ci)(cj − rj) − μjci > ρj(ci)(cj − rj − μj) − μjcj . This is equivalent
to ρj(ci) + cj > ci since μj > 0. But this is impossible. So if ρj(ci) < rj , then⌈⌊

ci
cj

⌋
μj +

ρj(ci)(rj+μj)
cj

⌉
≥ ρj(ci). This proves that the coefficient of xi in (15) is

greater than or equal to its coefficient in (17).
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562 HANDE YAMAN

These four propositions show that, for j ∈ N with ρj(b) > 0, the lifted rounding
inequality (17) dominates the rounding inequality (2) for λ = cj and the residual
capacity inequality (15) for μ = μj . For a special case, these inequalities (17) are
facet-defining for PX.

Theorem 8. For j ∈ N such that ρj(b) > 0, if c1 = 1, then inequality (17) is
facet-defining for PX.

Proof. Suppose that ρj(b) > 0 and c1 = 1. Assume that all points in X which
satisfy inequality (17) at equality also satisfy

∑n
i=1 αixi = α0. The point

⌈
b
cj

⌉
ej is in

X and satisfies inequality (17) at equality. So α0 = αj

⌈
b
cj

⌉
.

Notice that, if we remove one item j, the remaining demand to be covered is
ρj(b). For i < j, if ci > ρj(b), then consider the point ei + (

⌈
b
cj

⌉
− 1)ej . It is easy to

verify that this point is also in X and that inequality (17) is tight at this point. Then
we have αi = αj .

For i < j, if ci ≤ ρj(b), then the point ei+(
⌈

b
cj

⌉
−1)ej +(ρj(b)−ci)e1 is in X and

inequality (17) is tight at this point. So αi = αj−(ρj(b)−ci)α1. Since c1 = 1 ≤ ρj(b),
we obtain α1 =

αj

ρj(b)
. Then αi = ci

αj

ρj(b)
. Hence for i < j, αi = min{ci, ρj(b)} αj

ρj(b)
.

For i > j, if ρj(ci) = 0, consider point ei + (
⌈

b
cj

⌉
− ci

cj
)ej . The left-hand side

of inequality (17) at this point is equal to ρj(b)
ci
cj

+ (
⌈

b
cj

⌉
− ci

cj
)ρj(b) =

⌈
b
cj

⌉
ρj(b).

So inequality (17) is tight. The left-hand side of the cover constraint is equal to
ci + (

⌈
b
cj

⌉
− ci

cj
)cj = � b

cj

⌉
cj ≥ b. Thus this point is in X. Then we have αi = αj

ci
cj

.

Finally, for i > j, with ρj(ci) > 0, consider ei+(
⌈

b
cj

⌉
−
⌈
ci
cj

⌉
)ej+(ρj(b)−ρj(ci))

+e1.

The left-hand side of inequality (17) evaluated at this point is equal to ρj(b)
⌊
ci
cj

⌋
+

min{ρj(ci), ρj(b)}+(
⌈

b
cj

⌉
−
⌈
ci
cj

⌉
)ρj(b)+(ρj(b)−ρj(ci))

+ = ρj(b)
⌊
ci
cj

⌋
+ρj(b)+(

⌈
b
cj

⌉
−⌈

ci
cj

⌉
)ρj(b). Since ρj(ci) > 0, this is equal to ρj(b) + (

⌈
b
cj

⌉
− 1)ρj(b) =

⌈
b
cj

⌉
ρj(b),

showing that inequality (17) is tight at this point. The left-hand side of the cover
constraint is equal to

ci +

(⌈
b

cj

⌉
−
⌈
ci
cj

⌉)
cj + (ρj(b) − ρj(ci))

+.(19)

If ρj(ci) > ρj(b), then (19) is equal to ci +(
⌈

b
cj

⌉
−
⌈
ci
cj

⌉
)cj = ci +(

⌈
b
cj

⌉
−
⌊
ci
cj

⌋
−1)cj =

ρj(ci) + (
⌈

b
cj

⌉
− 1)cj > ρj(b) + (

⌈
b
cj

⌉
− 1)cj = b. If ρj(ci) ≤ ρj(b), then (19) is equal

to ci + (
⌈

b
cj

⌉
−

⌈
ci
cj

⌉
)cj + ρj(b) − ρj(ci) = ci + (

⌊
b
cj

⌋
−

⌊
ci
cj

⌋
)cj + ρj(b) − ρj(ci) =

b. So this point is in X. This proves that αi = αj

⌈
ci
cj

⌉
− (ρj(b) − ρj(ci))

+α1 =

αj

⌈
ci
cj

⌉
− (ρj(b) − ρj(ci))

+ αj

ρj(b)
. If ρj(b) ≤ ρj(ci), then αi = αj

⌈
ci
cj

⌉
= αj(

⌊
ci
cj

⌋
+ 1).

If ρj(b) > ρj(ci), then αi = αj

⌈
ci
cj

⌉
− (ρj(b) − ρj(ci))

αj

ρj(b)
= αj(

⌊
ci
cj

⌋
+ 1) − αj +

ρj(ci)
αj

ρj(b)
= αj(

⌊
ci
cj

⌋
+

ρj(ci)
ρj(b)

). So, for i < j, αi = αj(
⌊
ci
cj

⌋
+ min{ρj(ci)

ρj(b)
, 1}) =

αj

ρj(b)
(
⌊
ci
cj

⌋
ρj(b) + min{ρj(ci), ρj(b)}).

Hence
∑n

i=1 αixi = α0 has the form

j−1∑
i=1

min{ci, ρj(b)}
αj

ρj(b)
xi+αjxj+

n∑
j+1

αj

ρj(b)

(⌊
ci
cj

⌋
ρj(b)+min{ρj(ci), ρj(b)}

)
xi =αj

⌈
b

cj

⌉
.

This is
αj

ρj(b)
times

∑j
i=1 min{ci, ρj(b)}xi+

∑n
i=j+1

(
ρj(b)

⌊
ci
cj

⌋
+min{ρj(ci), ρj(b)}

)
xi =

ρj(b)
⌈

b
cj

⌉
.
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Example 7. Consider the set X4 = {x ∈ Z
7
+ : x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 +

7x7 ≥ 38}. The convex hull of X4 is described by the nonnegativity constraints and
the following inequalities (obtained using PORTA [6]):

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 ≥ 38,(20)

2x1 + 2x2 + 4x3 + 4x4 + 5x5 + 6x6 + 6x7 ≥ 34,(21)

x1 + 2x2 + 3x3 + 3x4 + 4x5 + 5x6 + 5x7 ≥ 28,(22)

x1 + 2x2 + 2x3 + 3x4 + 4x5 + 4x6 + 5x7 ≥ 26,(23)

x1 + 2x2 + 3x3 + 3x4 + 3x5 + 4x6 + 5x7 ≥ 24,(24)

x1 + 2x2 + 2x3 + 2x4 + 3x5 + 4x6 + 4x7 ≥ 20,(25)

x1 + 2x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7 ≥ 18,(26)

x1 + x2 + 2x3 + 2x4 + 2x5 + 3x6 + 3x7 ≥ 16,(27)

x1 + 2x2 + 2x3 + 2x4 + 2x5 + 2x6 + 3x7 ≥ 14,(28)

x1 + x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 ≥ 12.(29)

As c1 = 1, the cover constraint (20) is facet-defining for conv(X4). None of the
rounding inequalities for items λ = c2, . . . , c7 is facet-defining for conv(X4). For item
2, ρ2(38) = 0. For item 3, ρ3(38) = 2. Inequality (17) for 3, x1+2x2+2x3+3x4+4x5+
4x6 +5x7 ≥ 26, is a valid inequality and is facet-defining since c1 = 1 and ρ3(38) > 0.
Indeed, it is the same as inequality (23). For item 4, ρ4(38) = 2. Inequality (17) reads
x1 +2x2 +2x3 +2x4 +3x5 +4x6 +4x7 ≥ 20 and is a valid inequality. This is the same
as inequality (25) and is facet-defining. Note here that μ4 = ε and inequality (15) for
item 4, x1 + 2x2 + 2x3 + 3x4 + 3x5 + 4x6 + 4x7 ≥ 20, is dominated by inequality (25).
For item 5, ρ5(38) = 3. Inequality (17), x1 + 2x2 + 3x3 + 3x4 + 3x5 + 4x6 + 5x7 ≥ 24,
is the same as inequality (24). For item 6, ρ6(38) = 2. The corresponding inequality
(17) is x1 +2x2 +2x3 +2x4 +2x5 +2x6 +3x7 ≥ 14 and is the same as inequality (28).
For item 7, ρ7(38) = 3. The inequality x1 + 2x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7 ≥ 18
is valid and facet-defining for conv(X4). This is the same as inequality (26).

6. Lifted 2-partition inequalities. Pochet and Wolsey [15] derive partition
inequalities for PX where ci divides ci+1 for all i = 1, . . . , n − 1. Then they prove
that these inequalities are valid for PX in general under some conditions. Let
(i1, . . . , j1), . . . , (ip, . . . , jp) be a partition of N such that i1 = 1, jp = n, and it =

jt−1 + 1 for all t = 2, . . . , p. Let βp = b. For t = p, . . . , 1, compute κt =
⌈

βt

cit

⌉
and

βt−1 = βt − (κt − 1)cit . The inequality

p∑
t=1

(
t−1∏
s=1

κs

)
jt∑

j=it

min

{⌈
cj
cit

⌉
, κt

}
xj ≥

p∏
s=1

κs(30)

is called the partition inequality. Pochet and Wolsey [15] prove that the partition
inequality is valid for PX if κt−1 ≤

⌊ cit
cit−1

⌋
for all t = 2, . . . , p. If ci divides ci+1 for

all i = 1, . . . , n − 1, then the partition inequalities are valid without any condition,
and they describe PX together with nonnegativity constraints.

Consider the case where i1 = 1 and j1 = n. Then inequality (30) reduces to the
inequality

∑n
j=1 min

{⌈ cj
c1

⌉
, κ1

}
xj ≥ κ1. This is the same as the rounding inequality

(2) for λ = c1 since κ1 =
⌈

b
c1

⌉
and cj < b for all j ∈ N .

The next special case is when i1 = 1, j1 = j − 1, i2 = j, and j2 = n. Then
κ2 =

⌈
b
cj

⌉
, β1 = b− (

⌈
b
cj

⌉
− 1)cj . Notice that β1 = rj . Finally, κ1 =

⌈ rj
c1

⌉
. Inequality
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564 HANDE YAMAN

(30) becomes

j−1∑
i=1

min

{⌈
ci
c1

⌉
,

⌈
rj
c1

⌉}
xi +

⌈
rj
c1

⌉ n∑
i=j

⌈
ci
cj

⌉
xi ≥

⌈
rj
c1

⌉⌈
b

cj

⌉
(31)

and is valid if
⌈ rj
c1

⌉
≤

⌊ cj
c1

⌋
. We refer to these inequalities as 2-partition inequalities.

Proposition 7. For j ∈ N , if c1 = 1, inequality (31) is dominated by the cover
constraint or inequality (17).

Proof. If c1 = 1, then the inequality simplifies to

j∑
i=1

min{ci, rj}xi + rj

n∑
i=j+1

⌈
ci
cj

⌉
xi ≥ rj

⌈
b

cj

⌉
(32)

and is always valid. If, moreover, rj = cj , then the inequality becomes
∑j

i=1 cixi +∑n
i=j+1 cj

⌈
ci
cj

⌉
xi ≥ b and is dominated by the cover constraint. If rj < cj , then rj =

ρj(b) and ρj(b) > 0. For i > j, if ci is divisible by cj , then rj
⌈
ci
cj

⌉
= ρj(b)

⌊
ci
cj

⌋
+ρj(ci)

since ρj(ci) = 0. If ci is not divisible by cj , then rj
⌈
ci
cj

⌉
= ρj(b)

⌊
ci
cj

⌋
+ ρj(b). So the

coefficient of xi in (32) is greater than or equal to its coefficient in inequality (17). For
i ≤ j, the variable xi has the same coefficient in (32) and (17). Also, the right-hand
sides of (32) and (17) are the same. Hence if c1 = 1 and rj < cj , inequality (17)
dominates inequality (32).

If
⌈
ci
c1

⌉
≥

⌈ rj
c1

⌉
for all i < j, then inequality (31) simplifies to

∑j
i=1 xi +∑n

i=j+1

⌈
ci
cj

⌉
xi ≥

⌈
b
cj

⌉
, which is the rounding inequality (2) for λ = cj .

Now we will improve the 2-partition inequalities (31) using lifting. Let N0 ⊂ N ,
N1 = N \ N0, jmin = arg mini∈N1 ci, and j ∈ N1, with jmin �= j. The 2-partition
inequality for the partition N− = {i ∈ N1 : i < j} and N+ = {i ∈ N1 : i ≥ j} is

∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi ≥

⌈
rj

cjmin

⌉⌈
b

cj

⌉
(33)

and is valid when xi = 0 for all i ∈ N0 if
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
.

The lifting function for inequality (33) is

β(a) =

⌈
rj

cjmin

⌉⌈
b

cj

⌉

− min
x∈Xb−a(N1)

( ∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi

)
.

Lemma 2. If rj ≤ cj − 1 and
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
, for a ∈ R,

β(a) =

⎧⎪⎪⎨
⎪⎪⎩

⌈ rj
cjmin

⌉⌈
a
cj

⌉
−
⌈ρj(b−a)

cjmin

⌉
if a < b and 0 < ρj(a) < rj,⌈ rj

cjmin

⌉⌈
a
cj

⌉
if a < b and ρj(a) ≥ rj or ρj(a) = 0,⌈ rj

cjmin

⌉⌈
b
cj

⌉
if a ≥ b.

Proof. For d ∈ R, let

z(d) = min
x∈Xd(N1)

( ∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi

)
.
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If d ≤ 0, then z(d) = 0. If d > 0, Pochet and Wolsey [15] prove that there exists
an optimal solution where xi = 0, for i �= jmin and i �= j, and xjmin ≤

⌈ rj
cjmin

⌉
− 1.

Consider such optimal solutions. If d < cj , then ej or
⌈

d
cjmin

⌉
ejmin

is optimal. Hence

z(d) = min{
⌈ rj
cjmin

⌉
,
⌈

d
cjmin

⌉
}. If d ≥ cj , then xj ≥

⌊
d
cj

⌋
since otherwise xjmin ≥⌈ cj

cjmin

⌉
. So

⌊
d
cj

⌋
ej +

⌈ ρj(d)
cjmin

⌉
ejmin or

⌈
d
cj

⌉
ej is optimal, and z(d) = min{

⌈ rj
cjmin

⌉⌊
d
cj

⌋
+⌈ ρj(d)

cjmin

⌉
,
⌈ rj
cjmin

⌉⌈
d
cj

⌉
}. So if a < b, then

β(a) =

⌈
rj

cjmin

⌉⌈
b

cj

⌉
−
⌈

rj
cjmin

⌉⌊
b− a

cj

⌋
− min

{⌈
rj

cjmin

⌉
,

⌈
ρj(b− a)

cjmin

⌉}
.

Consider a < b. If ρj(b− a) = ρj(b) − ρj(a) and ρj(a) > 0, then

β(a) =

⌈
rj

cjmin

⌉(⌈
b

cj

⌉
−
⌊
b− a

cj

⌋)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b− a)

cj

)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b) + ρj(a)

cj

)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉(
a− ρj(a) + cj

cj

)
−
⌈
ρj(b− a)

cjmin

⌉

=

⌈
rj

cjmin

⌉⌈
a

cj

⌉
−
⌈
ρj(b− a)

cjmin

⌉
.

If ρj(b− a) = ρj(b) − ρj(a) + cj , then

β(a) =

⌈
rj

cjmin

⌉(⌈
b

cj

⌉
−
⌊
b− a

cj

⌋)
−
⌈

rj
cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b− a)

cj
− 1

)

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b) + ρj(a) − cj

cj
− 1

)

=

⌈
rj

cjmin

⌉
a− ρj(a) + cj

cj

=

⌈
rj

cjmin

⌉⌈
a

cj

⌉
.

If ρj(a) = 0, then

β(a) =

⌈
rj

cjmin

⌉(⌈
b

cj

⌉
−
⌊
b− a

cj

⌋)
−
⌈

rj
cjmin

⌉

=

⌈
rj

cjmin

⌉(
b− ρj(b) + cj

cj
− b− a− ρj(b)

cj
− 1

)

=

⌈
rj

cjmin

⌉
a

cj
.

Function β is not subadditive in general. Consider b = 18, cj = 5, and cjmin = 2.
Let a = 2.5 and b = 5.5. Then β(2.5) = 1, β(5.5) = 2, and β(8) = 4. So, β(2.5) +
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566 HANDE YAMAN

β(5.5) < β(8). So, to do lifting, we need a subadditive function which is greater than
or equal to β. We first study the case where cjmin divides rj . Notice that, in this
case,

⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
is always satisfied.

Theorem 9. Let N0 ⊂ N , N1 = N \ N0, jmin = arg mini∈N1 ci, j ∈ N1,
with jmin < j, rj ≤ cj − 1, and ρjmin

(rj) = 0, N− = {i ∈ N1 : i < j}, and
N+ = {i ∈ N1 : i ≥ j}. The inequality

∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

rj
cjmin

}
xi +

rj
cjmin

∑
i∈N+

⌈
ci
cj

⌉
xi

+
∑
i∈N0

(
rj

cjmin

⌊
ci
cj

⌋
+ min

{
ρj(ci)

cjmin

,
rj

cjmin

})
xi ≥

rj
cjmin

⌈
b

cj

⌉
(34)

is valid for PX.

Proof. Consider the function σ(a) =
rj

cjmin

⌊
a
cj

⌋
+ min{ ρj(a)

cjmin
,

rj
cjmin

}. Notice that

σ(a) =
rj

cjmin
Θ(a) for all a ∈ R. Since Θ is subadditive (see Lemma 1) and

rj
cjmin

> 0,

σ is subadditive. So, to prove the validity of (34), we need to show that σ(a) ≥ β(a)
for all a ∈ R.

If a ≥ b and
⌈

a
cj

⌉
=

⌈
b
cj

⌉
, then ρj(a) ≥ ρj(b). So σ(a) =

rj
cjmin

⌈
a
cj

⌉
= β(a). If

a > b and
⌈

a
cj

⌉
≥

⌈
b
cj

⌉
+1, then σ(a) ≥ rj

cjmin

⌊
a
cj

⌋
≥ β(a). If a < b and 0 < ρj(a) < rj ,

then σ(a) =
rj

cjmin

⌊
a
cj

⌋
+

ρj(a)
cjmin

and β(a) =
rj

cjmin

⌈
a
cj

⌉
−
⌈ρj(b−a)

cjmin

⌉
=

rj
cjmin

⌈
a
cj

⌉
− rj

cjmin
−⌈−ρj(a)

cjmin

⌉
=

rj
cjmin

⌊
a
cj

⌋
+

⌊ ρj(a)
cjmin

⌋
≤ σ(a). If a < b and ρj(a) ≥ rj or ρj(a) = 0, then

σ(a) = β(a). Hence σ(a) ≥ β(a) for all a ∈ R.
These inequalities are not useful as they are dominated by the lifted rounding

inequalities.
Proposition 8. For j ∈ N with rj ≤ cj−1, inequality (17) dominates inequality

(34) for all choices of N0 ⊂ N , N1 = N \ N0, with j ∈ N1, jmin = arg mini∈N1 ci,
jmin �= j, and ρjmin(rj) = 0.

Proof. Let N0 ⊂ N , N1 = N \N0, with j ∈ N1, jmin = arg mini∈N1 ci, jmin �= j,
and ρjmin(rj) = 0. If we divide inequality (17) by cjmin

, we obtain

j∑
i=1

min

{
ci

cjmin

,
rj

cjmin

}
xi +

n∑
i=j+1

(
rj

cjmin

⌊
ci
cj

⌋
+ min

{
ρj(ci)

cjmin

,
rj

cjmin

})
xi

≥ rj
cjmin

⌈
b

cj

⌉
.(35)

In inequality (34), variable xi has the coefficient min
{⌈

ci
cjmin

⌉
,

rj
cjmin

}
≥ min

{
ci

cjmin
,

rj
cjmin

}
if i ∈ N−. For i ∈ N+, the variable xi has the coefficient

rj
cjmin

⌈
ci
cj

⌉
≥ rj

cjmin

⌊
ci
cj

⌋
+

min
{ρj(ci)

cjmin
,

rj
cjmin

}
. The coefficient of xi for i ∈ N0 and the right-hand sides are equal

in inequalities (17) and (34).
Now we are interested in cases where cjmin does not divide rj .
Lemma 3. If rj ≤ cj−1,

⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
, and ρjmin(rj) > 0, then the function

γ(a) =

⌈
rj

cjmin

⌉⌊
a

cj

⌋
+ min

{
ρj(a)

ρjmin(rj)
,

⌈
rj

cjmin

⌉}

for a ∈ R is subadditive.
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Proof. For a, d ∈ R, if ρj(a) + ρj(d) = ρj(a + d), then
⌊

a
cj

⌋
+

⌊
d
cj

⌋
=

⌊
a+d
cj

⌋
. If

min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
or min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, then γ(a)+

γ(d) ≥
⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+
⌈ rj
cjmin

⌉
≥ γ(a+ d). Otherwise, γ(a)+ γ(d) =

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a+d)
ρjmin

(rj)
≥ γ(a+ d). If ρj(a) + ρj(d) = ρj(a+ d) + cj , then

⌊
a
cj

⌋
+
⌊

d
cj

⌋
=

⌊
a+d
cj

⌋
− 1.

If min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, then

γ(a) + γ(d) =
⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

⌈ rj
cjmin

⌉
≥ γ(a + d). If min

{ ρj(a)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

ρj(a)
ρjmin

(rj)
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, then γ(a) + γ(d) =

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a)
ρjmin

(rj)
≥

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a+d)
ρjmin

(rj)
≥ γ(a + d). The case where min

{ ρj(a)
ρjmin

(rj)
,⌈ rj

cjmin

⌉}
=

⌈ rj
cjmin

⌉
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

ρj(d)
ρjmin

(rj)
is similar. Finally, if we

have min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

ρj(a)
ρjmin

(rj)
and min

{ ρj(d)
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
=

ρj(d)
ρjmin

(rj)
,

then γ(a) + γ(d) =
⌈ rj
cjmin

⌉(⌊
a+d
cj

⌋
− 1

)
+

ρj(a+d)+cj
ρjmin

(rj)
. Since

⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
and

cj
ρjmin

(rj)
≥ cj

cjmin
≥

⌊ cj
cjmin

⌋
, γ(a) + γ(d) ≥

⌈ rj
cjmin

⌉⌊
a+d
cj

⌋
+

ρj(a+d)
ρjmin

(rj)
≥ γ(a + d). So

γ is subadditive.
Using function γ, we will lift inequality (33).
Theorem 10. Let N0 ⊂ N , N1 = N \N0, jmin = arg mini∈N1 ci, j ∈ N1, with

jmin < j, rj ≤ cj − 1, ρjmin(rj) > 0, and
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
, N− = {i ∈ N1 : i < j},

and N+ = {i ∈ N1 : i ≥ j}. The lifted 2-partition inequality∑
i∈N−

min

{⌈
ci

cjmin

⌉
,

⌈
rj

cjmin

⌉}
xi +

⌈
rj

cjmin

⌉ ∑
i∈N+

⌈
ci
cj

⌉
xi

+
∑
i∈N0

(⌈
rj

cjmin

⌉⌊
ci
cj

⌋
+ min

{
ρj(ci)

ρjmin
(rj)

,

⌈
rj

cjmin

⌉})
xi ≥

⌈
rj

cjmin

⌉⌈
b

cj

⌉
(36)

is valid for PX.
Proof. To prove the validity of (36), we need to show that γ(a) ≥ β(a) for all

a ∈ R. For a < b, with 0 < ρj(a) < rj , if min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

ρj(a)
ρjmin

(rj)
, then

γ(a) − β(a) =
⌈ rj
cjmin

⌉⌊ a

cj

⌋
+

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉⌈ a

cj

⌉
+
⌈ρj(b− a)

cjmin

⌉
=

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉
+
⌈ρj(b− a)

cjmin

⌉
=

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉
+
⌈rj − ρj(a)

cjmin

⌉
=

ρj(a)

ρjmin
(rj)

−
⌈ rj
cjmin

⌉
+
⌈rj − ρjmin(rj) + cjmin − ρj(a) + ρjmin(rj) − cjmin

cjmin

⌉
=

ρj(a)

ρjmin(rj)
+
⌈−ρj(a) + ρjmin(rj) − cjmin

cjmin

⌉
.

If ρj(a) < ρjmin(rj), then
⌈−ρj(a)+ρjmin

(rj)−cjmin

cjmin

⌉
= 0 and γ(a)− β(a) =

ρj(a)
ρjmin

(rj)
≥

0. If ρj(a) ≥ ρjmin(rj), then γ(a) − β(a) =
ρj(a)

ρjmin
(rj)

− 1 +
⌈−ρj(a)+ρjmin

(rj)

cjmin

⌉
≥

ρj(a)−ρjmin
(rj)

cjmin
−
⌊ρj(a)−ρjmin

(rj)

cjmin

⌋
≥ 0.
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568 HANDE YAMAN

If min
{ ρj(a)

ρjmin
(rj)

,
⌈ rj
cjmin

⌉}
=

⌈ rj
cjmin

⌉
, γ(a) =

⌈ rj
cjmin

⌉⌈
a
cj

⌉
≥ β(a). For a < b,

with ρj(a) = 0, γ(a) =
⌈ rj
cjmin

⌉⌊
a
cj

⌋
= β(a). For a < b, with ρj(a) ≥ rj ,

ρj(a)

ρjmin(rj)
−
⌈ rj
cjmin

⌉
=

ρj(a)

ρjmin(rj)
− rj − ρjmin

(rj) + cjmin

cjmin

=
ρj(a)cjmin − ρjmin(rj)(rj − ρjmin(rj) + cjmin)

ρjmin
(rj)cjmin

≥ rjcjmin − ρjmin(rj)(rj − ρjmin(rj) + cjmin)

ρjmin(rj)cjmin

=
rj(cjmin − ρjmin

(rj)) − ρjmin(rj)(−ρjmin(rj) + cjmin)

ρjmin(rj)cjmin

=
(rj − ρjmin(rj))(cjmin − ρjmin(rj))

ρjmin(rj)cjmin

≥ 0.

So γ(a) =
⌈ rj
cjmin

⌉⌈
a
cj

⌉
= β(a). For a ≥ b, if

⌈
a
cj

⌉
=

⌈
b
cj

⌉
, then ρj(a) ≥ rj and

γ(a) =
⌈ rj
cjmin

⌉⌈
a
cj

⌉
= β(a). Otherwise,

⌈
a
cj

⌉
=

⌈
b
cj

⌉
+ 1, and so γ(a) ≥ β(a). Hence

γ(a) ≥ β(a) for all a ∈ R.
As in the case of lifted rounding inequalities, the lifted 2-partition inequalities are

also dominated by a subset of them which is polynomial in size.
Proposition 9. Let {jmin, j} ⊆ N , with jmin < j, rj ≤ cj − 1, ρjmin(rj) > 0,

and
⌈ rj
cjmin

⌉
≤

⌊ cj
cjmin

⌋
. The inequality

jmin−1∑
i=1

min

{
ci

ρjmin(rj)
,

⌈
rj

cjmin

⌉}
xi +

j−1∑
i=jmin

min

{⌈
ci

cjmin

⌉
,

ci
ρjmin

(rj)
,

⌈
rj

cjmin

⌉}
xi

+

n∑
i=j

(⌈
rj

cjmin

⌉⌊
ci
cj

⌋
+ min

{
ρj(ci)

ρjmin(rj)
,

⌈
rj

cjmin

⌉})
xi ≥

⌈
rj

cjmin

⌉⌈
b

cj

⌉
(37)

is valid and dominates inequality (36) for N0 ⊂ N , N1 = N \N0, with {jmin, j} ⊂ N1

and jmin = arg mini∈N1 ci.
Proof. Let {jmin, j} ⊆ N , with jmin < j, rj ≤ cj − 1, ρjmin(rj) > 0, and⌈ rj

cjmin

⌉
≤

⌊ cj
cjmin

⌋
. Consider N− = {jmin ≤ i < j :

⌈
ci

cjmin

⌉
≤ ci

ρjmin
(rj)

}, N+ = {j},
N1 = N− ∪N+, and N0 = N \N1. For this choice of subsets, inequality (36) is the
same as inequality (37).

Let N1 ⊂ N , with {jmin, j} ⊂ N1 and jmin = arg mini∈N1 ci. In inequality (36),
for i ∈ N1, if i < j, then xi has the coefficient min

{⌈
ci

cjmin

⌉
,
⌈ rj
cjmin

⌉}
, and if i ∈ N0,

then it has the coefficient min
{

ci
ρjmin

(rj)
,
⌈ rj
cjmin

⌉}
. In both cases, its coefficient in

inequality (36) is greater than or equal to its coefficient in inequality (37). If i > j
and i ∈ N1, then the coefficient of xi in inequality (36) is

⌈ rj
cjmin

⌉⌈
ci
cj

⌉
and is greater

than or equal to its coefficient in inequality (37). Other variables have the same
coefficients in both inequalities. As the right-hand sides are also the same, we can
conclude that inequality (37) dominates inequality (36).

The number of lifted 2-partition inequalities that are not dominated is O(n2).

7. Preliminary computational results. We mentioned in the introduction
that the inequalities presented in this paper could be used to solve some hard mixed
integer programming problems such as the heterogeneous vehicle routing problem (see
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[18]) and the manufacturer’s mixed pallet design problem (MPD) (see [19]). Some
preliminary results with the rounding inequalities and the lifted rounding inequalities
are presented in [18] and [19], respectively.

In this section, we investigate the effect of the lifted rounding inequalities and the
lifted 2-partition inequalities in solving the MPD instances. The rounding inequalities
for λ = cj for some j ∈ N and the residual capacity inequalities are not included in
this study as they are the same as or dominated by the lifted rounding inequalities.

We first give a brief definition of the MPD. For details, we refer the reader to [19].
Let C be the set of customers, N be the set of products, and T = {1, 2, . . . , τ} be the
set of periods. Each customer k ∈ C has a demand of dkit units for product i ∈ N
in period t ∈ T . Products are of identical dimensions and are sold in pallets. Each
pallet has Q1 rows, and, in each row, there are Q2 units of a product. A pallet which
contains more than one product type is called a mixed pallet. Let P denote the set
of potential mixed pallet designs and qij denote the number of rows of product i ∈ N
in pallet design j ∈ P . The manufacturer also offers full pallets for each product
i ∈ N , which consists of Q1Q2 units of product i. We denote by hkit and πkit the
unit inventory holding cost and the unit backlogging cost, respectively, for product
i ∈ N and customer k ∈ C at the end of period t ∈ T . No backlogging is permitted
at the end of period τ . The problem is to select at most m mixed pallet designs from
set P to minimize the sum of customers’ inventory holding and backlogging costs in
periods 1, 2, . . . , τ .

Let pj be 1, if mixed pallet design j ∈ P is offered, and 0, otherwise. Let Pk

denote the set of mixed pallets that customer k ∈ C can buy. Define ykjt to be the
number of pallets of type j ∈ Pk that customer k ∈ C buys in period t ∈ T and fkit to
be the number of full pallets of product type i ∈ N that customer k ∈ C buys in period
t ∈ T . In addition, define Ikit and Bkit to be the amount of product i ∈ N that remains
in inventory and that is backlogged at the end of period t ∈ T for customer k ∈ C,
respectively. Let M be a very large number. The MPD is formulated as follows in [19]:

min
∑
k∈C

∑
i∈N

∑
t∈T

(πkitBkit + hkitIkit)

(38)

s.t.
∑
j∈P

pj ≤ m,

(39)

Ikit−1 −Bkit−1 + Q1Q2fkit +
∑
j∈Pk

Q2qijykjt = dkit + Ikit −Bkit

∀k ∈ C, i ∈ N, t ∈ T,(40)

ykjt ≤ Mpj ∀k ∈ C, j ∈ Pk, t ∈ T,(41)

Iki0 = Bki0 = Bkiτ = 0 ∀k ∈ C, i ∈ N,(42)

Ikit, Bkit ≥ 0 ∀k ∈ C, i ∈ N, t ∈ T,(43)

fkit ≥ 0 and integer ∀k ∈ C, i ∈ N, t ∈ T,(44)

ykjt ≥ 0 and integer ∀k ∈ C, j ∈ Pk, t ∈ T,(45)

pj ∈ {0, 1} ∀j ∈ P.(46)

The objective function (38) is the sum of inventory holding and backlogging costs
over all periods. At most m mixed pallet designs can be offered due to constraint (39).
Constraints (40) are the balance equations. Constraints (41) ensure that customers do

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



570 HANDE YAMAN

Table 1

Results with and without valid inequalities.

Model1 Model2 Model3

Problem Nodes CPU (17) % gap Nodes CPU (37) Nodes CPU
1 1040094 168.38 33 96.57 84039 15.06 4 49348 10.05
2 3158201 662.17 39 97.18 189635 40.64 53 67257 16.24
3 29531186 6774.68 43 97.53 621224 159.62 59 248578 68.50
4 25242255 5800.38 48 95.43 600664 152.93 65 266693 76.80
5 2008508 1535.85 54 97.96 42476 34.12 77 87575 75.31
6 7650540 6310.95 58 98.30 395894 329.14 83 175031 150.45
7 110344292 7751.75 63 96.65 148494 121.37 89 48285 45.20

not buy mixed pallets that are not offered. Constraints (42) are beginning and ending
conditions. Constraints (43)–(46) are nonnegativity and integrality constraints.

Yaman and Sen prove that the optimal value of the linear programming relaxation
of MPD is zero. As a result it is important to derive strong valid inequalities for this
problem to be able to improve the linear programming-based lower bounds.

For k ∈ C and i ∈ N , let Dki =
⌈∑

t∈T dkit/Q2

⌉
. The inequality

∑
t∈T

(
min{Q1, Dki}fkit +

∑
j∈Pk

min{qij , Dki}ykjt
)

≥ Dki(47)

is satisfied by all feasible solutions of MPD. Remark that the set of nonnegative integer
solutions satisfying inequality (47) is an integer knapsack cover set. Hence we can
generate valid lifted rounding and lifted 2-partition inequalities for the MPD based
on inequalities (47).

We test the use of these valid inequalities on seven problem instances. We start
with two base instances. In the first instance the number of products is two, and
in the second instance the number of products is three. In both base instances, the
number of periods is three, and the maximum number of mixed pallet designs to be
offered is one. Using the first base instance, we generated four problems where the
number of customers takes values 4, 5, 6, and 7. Using the second base instance, we
generated three problems with 5, 6, and 7 customers.

For each problem instance, we first solve the model without valid inequalities. We
call this Model1. We report the number of nodes in the branch and bound tree (in
column node) and the CPU time in seconds (in column CPU). Then we form Model2 by
adding the nondominated lifted rounding inequalities (17) to Model1. For Model2, we
report the number of inequalities (17) added (in column (17)), the percentage duality
gap (in column %gap, where %gap = opt−lp

opt ∗ 100, opt is the optimal value, and lp

is the lower bound obtained from the linear programming relaxation), the number of
nodes in the branch and bound tree, and the CPU time in seconds. Finally, we form
Model3 by adding the nondominated lifted 2-partition inequalities (37) to Model2.
We report here the number of inequalities (37) added (in column (37)), the number of
nodes in the branch and bound tree, and the CPU time in seconds. The percentage
duality gaps remained the same as the ones of Model2 and so are not reported. We
solve the models using the mixed integer programming (MIP) solver of CPLEX 8.1
on an AMD Opteron 252 processor (2.6 GHz) with 2 GB of RAM. The results are
given in Table 1.

The results show that both families of valid inequalities have been useful in de-
creasing the number of nodes in the branch and bound tree and the solution times
for these instances. The solution time for Model3 is larger than the one of Model2
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for instance five, but still it is about twenty times less than the one of Model1. The
averages of percentage improvements obtained in the number of nodes and CPU time
with the addition of inequalities (17) are 96.29% and 95.85%, respectively. The av-
erages of percentage improvements obtained in the number of nodes and CPU time
compared to Model2 with the addition of inequalities (37) are 34.07% and 28.07%,
respectively.

8. Conclusion. We studied the polyhedral properties of the convex hull of the
integer knapsack cover set which appears as a relaxation of many optimization prob-
lems that concern covering a given demand using integer numbers of different types
of items. We derived four families of valid inequalities, investigated when they domi-
nate each other, and gave some conditions under which some are facet-defining. We
used sequence-independent lifting to derive that last two families of valid inequali-
ties. These inequalities can be used to solve problems such as those investigated in
[11, 18, 19].

Except the rounding inequalities for arbitrary λ values, the valid inequalities
derived in this paper share some common features. There exists always an item
j ∈ N such that the right-hand side of the inequality is equal to the coefficient of
xj times

⌈
b
cj

⌉
. We know that this is an upper bound on the value of the right-hand

side (see Proposition 1). Clearly, there are facet-defining inequalities which do not
follow this rule. For instance, the cover constraint is facet-defining for conv({x ∈ Z

3
+ :

3x1 + 4x2 + 5x3 ≥ 13}).
Again excluding rounding inequalities, another common feature is that the num-

ber of inequalities that are nondominated within a family is polynomial even when the
family has an exponential number of inequalities. These inequalities can be further
lifted or modified to define larger families of valid inequalities for more complicated
problems in consideration. For instance, an exponential number of valid inequalities
can be derived for the integer capacity cover polyhedron using the inequalities of this
paper and the lifting results of Mazur and Hall [12].
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