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Parameterization of Suboptimal Solutions of the Nehari
Problem for Infinite-Dimensional Systems
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Abstract—The Nehari problem plays an important role in control
theory. It is well known that control problem can be reduced to solving
this problem. This note gives a parameterization of all suboptimal solutions
of the Nehari problem for a class of infinite-dimensional systems. Many
earlier solutions of this problem are seen to be special cases of this new
parameterization. It is also shown that for finite impulse response systems
this parameterization takes a particularly simple form.

Index Terms—Delay systems, -control, infinite-dimensional systems,
Nehari problem.

I. INTRODUCTION

It is well known that many interesting H1 control problems can
be transformed to the so-called one-block problem; see for example,
[1]–[3] and references therein. The one-block problem can be seen as a
model matching problem where stable approximation(s), in the sense of
L1, of a given unstable system is sought. This is precisely the Nehari
problem which can be stated as follows: Given F 2 L1, find all � 2
H1 such that

kF + �kL < 1: (1)

(We have chosen to write F + � in place of F � �, which is more
conventional, for the convenience of later developments.) Nehari’s the-
orem states that a solution � 2 H1 satisfying (1) exists if and only if
k�Fk < 1, where�F is the Hankel operator associated with symbolF ;
see Section II and [2]. In this note, we assume that F 2 L1 with
k�Fk < 1 is given and we derive a parameterization of solutions
� 2 H1 of (1). We approach this problem from an operator theo-
retic viewpoint.

The Nehari problem has been studied in the control community for
various classes of F , and many different solution techniques have been
developed, depending on the assumptions of F . In the finite-dimen-
sional case where F is rational, the solution can be obtained easily by
solving Lyapunov equations derived from a state space realization of
F . However, for the infinite-dimensional case where F is irrational,
state space approaches require solutions of operator equations (instead
of matrix Lyapunov equations), see, e.g., [4].
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One of the most interesting solutions of the Nehari problem is a char-
acterization due to Adamjan, Arov and Krein (abbr. AAK hereafter)
[5]. The AAK solution was originally given for H1 functions defined
on the unit disk [5]. Several parameterization for the continuous-time
suboptimal Nehari problem have also been derived; see, e.g. [4] and ref-
erences therein. Among them, the following two independently derived
results played an important role in the frequency-domain approaches
for infinite-dimensional H1 control theory:

• Toker and Özbay [6] derived a solution by directly converting
AAK theory to the continuous-time domain by using a conformal
mapping between the unit disk and the right half plane. This
result involves a redundant variable, conformal map parameter,
which blurs the structure. We will further comment on this issue
in Section III.

• Meinsma et al. [7] gave a parameterization for the Nehari problem
with a continuous-time finite impulse response (FIR) system F

(see Section IV) by constructing J -spectral factor via solving 2
matrix Riccati equations. However, its structure and relation with
the AAK theory is not very clear.

Our goal in this note is to clarify the relationship between these two
results and represent AAK theory in a unified way for infinite-dimen-
sional systems. To this end, we first derive Theorem 1, a direct contin-
uous-time counterpart of AAK theory. While this result is in a similar
form to that in [6], no redundant variable is introduced in Theorem 1.
We then show that Theorem 1 includes [7] as a special case. This way
we establish a clear connection between the chain scattering approach
taken by [7] and the AAK theory used in [6].

The remaining parts of this note are organized as follows: The
next section summarizes notational conventions and preliminary
results. The main contribution, Theorem 1, is given in Section III. In
Section IV, we investigate a special case which is crucial for standard
H1 control problems for a class of infinite-dimensional system
including systems with time delays.

II. PRELIMINARY RESULTS

A. Notation and Convention

As usual, Hp and Hp
�

denote the Hardy spaces on the open right-
and left-half complex planes, respectively. The spacesL1 andL2(j )
denote, respectively, the space of essentially bounded functions and
square integrable functions on the imaginary axis. The orthogonal
projections from L2(j ) = H2 � H2

� to H2(H2
�) are denoted by

�+[�](��[�]). Let q~(s) := q(��s)
>

where M> denotes the transpose
of a matrix M . For state-space realization of rational transfer matrix
we write

A B

C D
:= D + C(sI � A)�1B:

The size of matrices is omitted for brevity. For a normed space X , the
open unit ball is denoted by BX

BX := fx 2 X : kxkX < 1g :

For F 2 L1, the Hankel operator is defined by

�F : H2 ! H
2

� : x 7! �
�[Fx]

and its operator norm k�Fk is called the Hankel norm of F . In what
follows, �F is denoted by � for simplicity.

B. Chain Scattering Representation

Let G, K be transfer matrices of appropriate dimensions. Then the
chain scattering of G and K is defined by

Cr(G;K) := H1H
�1

2 ;
H1

H2

= G
K

I

provided that H2 6� 0; see also [8].
Definition 1: Let � be a (2 � 2)-block matrix with square diagonal

blocks. Define

J =
I 0

0 �I

where J is partitioned accordingly to �. Then � is said to be J -unitary
if �~J� = J .

The following lemma reduces the Nehari problem to an equivalent
problem of finding a J -unitary matrix.

Lemma 1: Given F 2 L1 such that k�k < 1, define

G :=
I F

0 I
: (2)

Suppose that a J -unitary matrix � 2 L1 satisfies G�1�, ��1G 2
H1. Then all � 2 H1 satisfying (1) is given by

� = Cr(G
�1�; U) (3)

where U 2 BH1 but otherwise arbitrary.
Proof: For J -unitary matrix � in L1, its inverse is given

by ��1 = J�~J . It can be easily verified that ��1G is a
J -spectral factor for G~JG, i.e., bistable matrix ��1G satisfies
G~JG = (��1G)~J(��1G). Therefore, the same discussion as that
in [9, Theorem 3.1] yields the bistability of �22 and the desired result;
see also [10, Appendix], [11].

It should be noted that, in many cases, k�k < 1 actually imply the
existence of such �; see the following sections and [4], [9], and [10].

III. MAIN RESULT

In this section, we attempt to construct � satisfying the properties
required in Lemma 1, i.e., � should be J -unitary andG�1� should be
bistable. It should be stressed that AAK theory was derived in a sim-
ilar way and that such a � was given in terms of the Hankel operator.
While we will not go into further details of AAK theory, it would be
informative to consider an equivalent form in the continuous-time do-
main as follows. Let us partition � as

� :=
�11 �12

�21 �22

(4)

and assume that it satisfies

(I � ���)�11 = I

���11 = �21

and
(I � ���)�22 = I

��22 = �12

where �� denotes the adjoint operator of �

�� : H2

� ! H
2 : y 7! �

+[F~y]:

We may try to construct � from the above. However, this function may
not satisfy the required properties nor be well-defined either. To see
this, let us focus our attention only on

(I � ���)�22 = I: (5)
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Recall that ��� is a bounded operator in H2. Obviously, the left-hand
side belongs to H2 whenever so does �22. Therefore, this equation is
meaningless because the constant I never belongs to H2. This shows
a clear contrast with the discrete-time domain case where any constant
function is square integrable on the unit circle.

In [6], an extra variable was introduced to fill the gap of measures
between the imaginary axis and the unit circle; that is, the right-hand
side of (5) was simply replaced by (1=(s+�))�I with� > 0. While this
modification succeeded in deriving a solution, the additional variable �
seems redundant but not easily removable. To circumvent this problem,
let us assume thatF is square integrable on the imaginary axis, i.e.,F 2
L2(j ). Under this assumption, ��[F ] is well-defined. Moreover, if
k�k < 1 then both I���� and I���� are invertible in H2 andH2

�
,

respectively, and consequently we can define

� := (I � ���)�1 ��[F ] :

In other words, there exist unique � 2 H2 and � 2 H2
�

such that

�� + ��[F ] = �

��� = �:
(6)

The point here is that defining �22 := I + � yields

�22 � �+ F~��[F�22] = I:

It seems natural that we use this equality instead of (5). Dually, there
exist unique �� 2 H2 and �� 2 H2

�
such that

���� + �+[F~] = ��

��� = ��:
(7)

Under these definitions, the desired J -unitary matrix � can be given
as follows.

Assumption 1: Let F 2 L1\L2(j ) such that k�k < 1. Suppose
that the unique solutions to operator equations (6) and (7), �; �� 2 H2

and �; �� 2 H2
�

, belong to L1.
Theorem 1: Let Assumption 1 hold. Then all � 2 H1 such that

F + � 2 BL1 is given by

� = Cr(G
�1�; U) = Cr(�; U)� F : U 2 BH1

where � 2 L1 is defined by

� :=
�11 �12

�21 �22

:=
�� + I �
�� � + I

: (8)

The proof of this result will be given below. First, note that from
Lemma 1, it is sufficient to show that � in (8) is J -unitary and that
G�1�, ��1G belong to H1. We will also need the following lemma
on shift operators.

Lemma 2: For h � 0, let �h[�] be the left-shift operator on H2, i.e.

�h : x(s) 7! �+ ehsx(s) :

Then for arbitrary F 2 L1, h � 0, y 2 H2
�

, we have

�h[�
�y] = ��(ehsy):

Proof: This can be shown by direct calculation.
Proof of Theorem 1: First we show that � in (8) is J -unitary, or

equivalently
a) �11~�11 � �21~�21 = I ;
b) �22~�22 � �12~�12 = I ;
c) �11~�12 � �21~�22 = 0.

We prove b) only, because a) and c) can be shown similarly. By the
definition of �, b) is equivalent to

�~� � �~� + � + �~= 0:

By the assumption � 2 L1, the left hand side belongs to L2(j ).
Moreover, because of its symmetry, it suffices to show that

�+[�~� � �~� + � + �~] = �+[�~� � �~� + F~�] = 0:

This is equivalent to saying that, in the time domain

1

�1

(�~� � �~� + F~�)(j!)ej!hd! = 0 (9)

holds for every h � 0. Under the following definition

(x; y) :=

1

�1

(y~x)(j!)d!

for x; y 2 L2(j ), (9) can be rewritten as

(ehs�; �)� (ehs�; �) + (ehs�;F ) = 0:

Recall that (y; x) = 0 and (y;�x) = (��y; x) for any x 2 H2 and
y 2 H2

�
. From Lemma 2 and (6), for any h � 0

(ehs�; �)� (ehs�;F )=(ehs�; �)� ehs�; ��[F ]

=(ehs�;��)= ��(ehs�); �

=(�h[�
��]; �)

=(�h�; �)=(ehs�; �)� ��[ehs�]; �

=(ehs�; �):

Hence, b) follows.
By substituting ��1 = J�~J to ��1G, we have

G�1� =
I + �+[F ��] ��+[F�] � �+[F ]

�� � + I

��1G =
I + ��~ ��[F~��] + ��[F~] ~

��~ I � ��[F~�] ~
:

Both of these are analytic on the open right half plane. Thus G�1�,
��1G belong to H1.

Theorem 1 can be viewed as a direct continuous-time counterpart of
AAK theory. Notice that no additional variable is introduced at the cost
of Assumption 1.

IV. CONTINUOUS-TIME FIR CASE

For an arbitrary irrational F it is not easy to obtain suboptimal �
from Theorem 1. When F has a certain special structure, our result can
be more effectively utilized. In this section, we illustrate this fact for
so-called FIR systems. These type of problems are crucial in deriving
an explicit realization of suboptimalH1 controllers for a class of stan-
dard H1 control problems for time delay systems; see [3], [7], [10],
[12]–[15] and references therein for earlier work on FIR systems and
H1-control.
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Fig. 1. H control problem for systems with finitely many unstable modes.

A. Extension of FIR Systems

For a scalar complex function f(s), the set of square matrices M
such that f~(s) is analytic in a neighborhood of every eigenvalue of
M is denoted by Mf . For M 2 Mf , the matrix function f~(M) is
well-defined [16, Section 11.1.1]. Hereafter we confine ourselves to the
following class of infinite-dimensional systems including FIR systems:

Lemma 3: Let m(s) be a scalar inner function, and (A;B;C; 0)
with A 2 Mm be a realization of a rational matrix W . Then �m[W ]
defined by

�
m[W ] := C(sI � A)�1 (I �m(s)m~(A))B (10)

is in both H2 and H1. Moreover, m~�m[W ] belongs to H2

�.
Proof: See [3].

When m(s) = e�hs, �m[W ] is a continuous-time FIR system, i.e.,
the Laplace transform of

CeAtB; t 2 [0; h]

0 ; t 62 [0; h]

with compact support [0; h]. For general inner functionsm(s),�m[W ]
does not necessarily have finite impulse response. However, since all
poles of �m[W ] are shown to be those of m(s), �m[W ] is always
stable.

In [3], the standard H1 control problem for systems in Fig. 1 was
studied. Here the generalized plant is given as the series connection of a
rational transfer matrix Pr and a scalar inner functionm. This problem
covers a wide class of practical control problems for infinite-dimen-
sional plants with finitely many unstable modes, and was shown to be
reducible to the Nehari problem in (1), via solving a couple of matrix
Riccati equations. Moreover, the symbol associated with the resulting
Nehari problem is always given in the form of

F := m~�m[W ] (11)

where W is an appropriately defined strictly proper rational transfer
matrix. For such an F , its Hankel norm can be computed by analyzing
singularity of a matrix of finite size as seen in Theorem 2 below. If the
norm conditions are satisfied, all suboptimal solutions can be given by
Theorem 1 and Fig. 1.

Theorem 2: Let m(s) be an inner function, (A;B;C; 0) with
A 2 Mm a minimal realization of a rational matrix W , and
F := m~�m[W ]. Suppose that the essential norm of � is less than 1
and that for any � � 1

H� :=
A ��1BB>

���1C>C �A>
2Mm

and the (2,2)-block of m~(H�) is of full-rank. Then, � in (8) belongs
to L1 and is given by

� =
I 0

0 I
+

m~I 0

0 I
�
m[�r]

�r =

A BB> 0 B

�C>C �A> ��1
22
C> ���1

22
�21B

C 0 0 0

0 B> 0 0

� =
�11 �12

�21 �22

:= m~
A BB>

�C>C �A>
:

Proof: Since this theorem can be shown by the same computa-
tions as that in [3], we only give the outline. First, the assumptions in
this theorem is necessary and sufficient conditions for k�k < 1, [3]. In
what follows, we derive state space forms of � and � in (6) explicitly.
It can be verified that solutions �, � to operator equations (6) can be
represented by two finite-dimensional vectors:

m�

�
=

C 0

0 B>
(sI �H)�1

B

� 2
�m(s)

 1

0

where

H :=
A BB>

�C>C �A>

and  1;  2 satisfies

 1

0
= �

B

� 2
:

Since �22 is nonsingular by the assumption,  1;  2 are uniquely de-
termined and  2 = ��1

22
�21B. Therefore, by (10), we have

m�

�
= �

m

H B

���1
22

�21B

C 0

0 B>
0

:

Similarly

m��
��

= �
m

H
0

��1
22
C>

C 0

0 B>
0

follows from (7). Finally, by (8), we obtain

mI 0

0 I
� =

mI 0

0 I
+ �

m[�r]:

Trivially, � is in L1 since so are m~and �m[�r].
The realization of � in Theorem 2 is exactly the same as that in [7]

when we take m(s) = e�hs . In this sense, Theorem 1 includes the
existing result as a special case and provides us with an AAK theoretic
interpretation of the chain scattering based results.

Remark 1: Let us go back to the standard H1 control problem in
Fig. 1. By substituting the parameterization in Theorem 2 to suboptimal
H1 controller obtained in [3], we can show that all suboptimal H1

controllers are given in the form of modified Smith predictor. This fact
can be proven by simply replacing e�hs by a general inner function
m(s) in [12]; see also [17].

We close this section with a remark on the assumption F 2 L2(j ).
A possible relaxation of Assumption 1 follows.
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Fig. 2. Minimal singular values of m~(H )j .

Assumption 2: F 2 L1 can be given by

F = K +m~D

where K 2 L2(j ), m(s) is an scalar inner function and D is a con-
stant matrix such that mD>K and mKD> are analytic on the open
right half plane.

The present authors have derived a solution forH1 control problem
for systems with infinitely many unstable modes (and finite-dimen-
sional inner part) [18]. The Nehari problem to which this standard
problem reduces satisfies Assumption 2 only. We can derive similar
results to Theorem 1 and 2 under this relaxed assumption. Details are
omitted since it can be proven straightforwardly.

B. Example

We demonstrate the above result numerically on problem data de-
rived originally from a weighted mixed sensitivity optimization for
a delayed feedback system. Let us consider the Nehari problem with
F = m~�m[W ], where W is the unstable rational function

W =
1

s� 1
=

1 1

1 0

and m is the inner function with infinitely many unstable zeros

m =
2(s� 8)e�0:5s + (s+ 1)

2(s+ 8) + (s� 1)e�0:5s
:

It should be noted that the original mixed sensitivity optimization is a
so-called two-block problem for an infinite-dimensional system. How-
ever, it can be described by the system in Fig. 1, and consequently
can be reduced to a one-block problem that is equivalent to the Nehari
problem of the above form via solving a couple of Riccati equations;
see [3] and [18] for details of the reduction procedure.

Fig. 2 shows minimal singular values of m~(H�)j22 for � � 1.
Since this matrix is nonsingular for any � � 1 and consequently
k�m~� [W ]k < 1, we can apply Theorem 2 to obtain � in Theorem 1.
Let �0 be the central solution (U = 0), i.e., �0 := �21�

�1
22 � F .

We can show the stability of �0 by using Nyquist plot. Furthermore,
Fig. 3 shows the Bode gain plot of

F + �0 =
m~(s)(s+ 30) + 30(s+ 1)

(s� 1)(s+ 30)� 30m(s)

Fig. 3. Bode gain plot of m~� [W ] + � .

which is less than 1 over all frequencies. Therefore, a solution �0 to the
Nehari problem is obtained without solving any operator equations. Of
course, all solutions are also given by exhausting U 2 BH1.

V. CONCLUSION

In this note, we derived a parameterization of all suboptimal solu-
tions of the Nehari problem for a class of infinite dimensional systems.
The key additional assumption was that F is square integrable on the
imaginary axis. This can be viewed as a continuous-time counterpart
of the AAK theory, and enables us to interpret in a unified way some
existing results that use chain scattering approach.
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Attitude Tracking With Adaptive Rejection
of Rate Gyro Disturbances

Pierluigi Pisu and Andrea Serrani

Abstract—The classical attitude control problem for a rigid body is re-
visited under the assumption that measurements of the angular rates ob-
tained by means of rate gyros are corrupted by harmonic disturbances, a
setup of importance in several aerospace applications. This note extends
previous methods developed to compensate bias in angular rate measure-
ments by accounting for a more general class of disturbances, and by al-
lowing uncertainty in the inertial parameters. By resorting to adaptive ob-
servers designed on the basis of the internal model principle, it is shown
how converging estimates of the angular velocity can be used effectively in
a passivity-based controller yielding global convergence within the chosen
parametrization of the group of rotations. Since a persistence of excitation
condition is not required for the convergence of the state estimates, only an
upper bound on the number of distinct harmonic components of the dis-
turbance is needed for the applicability of the method.

Index Terms—Adaptive observers, aerospace control, nonlinear systems.

I. PROBLEM DEFINITION

Consider the rotational dynamics of a rigid body

_R =RS(!)

J(�) _! =S (J(�)!)! + u (1)

with state (R;!) 2 SO(3) � 3, representing the orientation and
angular velocity of a body-fixed frame with respect to an inertial frame,
and control input u 2 3. The matrixS(�) denotes the skew-symmetric
operator S(v)w := v � w, where v, w 2

3. The inertia matrix
J(�) = JT (�) > 0 is assumed to depend continuously on a vector
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of unknown parameters � ranging over a given compact set K� �
p. The desired reference trajectory (Rd; !d) 2 SO(3)� 3 for the

body-fixed frame of (1) is provided by a smooth autonomous system
of the form

_$d = s($d)

_Rd =RdS(!d)

!d = r($d) (2)

with state ($d; Rd) evolving on a compact invariant subset K$ �

SO(3) of n
� SO(3). This setup, while obviously not the most

general, encompasses many configurations of importance in aerospace
applications [1]. The attitude error Re := RT

d R 2 SO(3) satisfies the
kinematic equation _Re = ReS(!e), where !e := ! �RT

e !d denotes
the angular velocity error resolved in the body frame.

The classic attitude control problem [2] is loosely defined as
that of finding a feedback control law such that all trajectories of
the closed-loop system are bounded, and the tracking error satisfies
(Re(t); !e(t))! (I3; 0) as t!1, for any given reference trajectory
in the considered family of solutions of (2), and for all � 2 K�. In
this note, the problem in question is revisited under the assumption
that measurements of the rotation matrix R(t) are available, while
measurements of !(t) obtained by means of rate gyros are corrupted
by additive harmonic noise. The considered setup arises frequently in
the control of aerospace vehicles with significant aeroelastic effects
[3], [4], where structural vibrations are transmitted to the rate gyros
through the coupling with the airframe, or in the attitude control of
rigid of flexible satellites, where harmonic disturbance in the angular
velocity measurements are produced by imbalance or mechanical
defects in gyroscopes [5]–[7]. Dealing with uncertainties on the
natural frequencies is a fundamental issue in applications to control of
hypersonic vehicles, where the vibrational modes change in response
to mass variation and heating effects [8].

Building upon the results of [9], in this study the disturbance is mod-
eled as an exogenous signal containing a finite number of harmonics
of unknown amplitude, phase and frequency. While the formulation
of the problem falls in principle within the scope of output regulation
theory (see [1] and [10] for related applications), the occurrence of the
disturbance at the sensor input poses unique challenges, as the error
to be regulated is not directly available to the controller [11]. For the
problem at issue, it will be shown first that a converging estimate of
the angular velocity can be obtained using an observer endowed with
a nonlinear adaptive internal model of the exogenous disturbance. The
design of the adaptive observer extends (nontrivially) the approach pro-
posed in [7] to the more general situation discussed here. A remarkable
feature of our approach is that only an upper bound on the number of
distinct harmonics of the disturbance is required for the implementa-
tion of the adaptive observer, since persistence of excitation of the re-
gressor is not needed for the convergence of the state estimates. Then,
it will be shown that the availability of converging estimates of the an-
gular velocity suffices to obtain global tracking (with respect to the
chosen parametrization of the attitude error in SO(3)) by means of a
certainty-equivalence robust redesign of the adaptive attitude regulator
of Egeland and Godhavn [12]. Since the design of the regulator is inde-
pendent from that of the observer, the result yields a form of separation
principle for attitude regulation that may be applicable to more general
situations.

The note is organized as follows. The disturbance model is briefly
described in Section II, whereas the design of the adaptive observer
and the certainty-equivalence controller are presented in Section III and
Section IV, respectively. Simulation results are illustrated in Section V.
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