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Abstract Given a set of points S = {x1, . . . , xm} ⊂ R
n and ε > 0, we propose and

analyze an algorithm for the problem of computing a (1 + ε)-approximation to the
minimum-volume axis-aligned ellipsoid enclosing S . We establish that our algorithm
is polynomial for fixed ε. In addition, the algorithm returns a small core set X ⊆ S ,
whose size is independent of the number of points m, with the property that the
minimum-volume axis-aligned ellipsoid enclosing X is a good approximation of the
minimum-volume axis-aligned ellipsoid enclosing S . Our computational results in-
dicate that the algorithm exhibits significantly better performance than the theoretical
worst-case complexity estimate.

Keywords Axis-aligned ellipsoids · Enclosing ellipsoids · Core sets ·
Approximation algorithms

1 Introduction

Real time computer graphics and computer gaming call for the computation of simple
bounding regions for rapid culling in the rendering process and for rapid determina-
tion that two objects are not intersecting during the collision detection process [1].
An axis-aligned ellipsoid is one such bounding region with low storage complexity
that can support fast intersection tests. Currently, in computer graphics, this is done

Communicated by Y. Zhang.

This work was supported in part by the National Science Foundation through CAREER Grants
CCF-0643593 and DMI-0237415.

P. Kumar
Department of Computer Science, Florida State University, Tallahassee, FL, USA
e-mail: piyush@cs.fsu.edu

E.A. Yıldırım (�)
Department of Industrial Engineering, Bilkent University, Bilkent, Ankara, Turkey
e-mail: yildirim@bilkent.edu.tr



212 J Optim Theory Appl (2008) 136: 211–228

by computing the axis-aligned bounding box of the object first and then computing
the minimum-volume axis-aligned ellipsoid (MVAE) enclosing the resulting box [1].
While such a scheme usually enables one to quickly compute a reasonably good ap-
proximation of the MVAE enclosing the object under consideration, the volume of
the resulting ellipsoid may be significantly larger than that of the optimal ellipsoid
for certain geometric objects. For instance, if the object is almost spherical, the sim-
ple procedure outlined above would return an ellipsoid whose volume may exceed
the volume of the MVAE enclosing the object by a factor of as much as nn/2, where
n is the dimension of the object. Therefore, this procedure may lead to false posi-
tive results in collision detection, which provides one of our motivations to study the
minimum-volume enclosing axis-aligned ellipsoid problem.

Another application of this problem in higher dimensions is in machine learning,
where the kernel approach is widely used [2]. Kernel functions are functions that live
in low-dimensional spaces but behave like inner products in high dimensions. In this
approach, the main idea is based on linearization [3–5], for which kernel functions
provide an implicit way. For instance, kernel functions are used in support vector
machines to separate nonlinearly separable data via calculating a hyperplane in a
different space. In case of enclosing shapes, it is easy to calculate the linearization
given a kernel function and then apply optimization algorithms to compute enclos-
ing shapes in the explicitly linearized space. For minimum enclosing balls (MEBs),
the kernel version of the problem can be solved very efficiently [6]. The problem
with calculating the minimum-volume enclosing ellipsoid (MVEE) in kernel space
is that the core set size dependence of MVEEs is quadratic (or higher) in dimension
so the number of support vectors produced with such an algorithm is too large for
good generalization bounds [2]. Keeping this in mind, a natural question emerges: Is
there a bounding shape whose quality is between MEB and MVEE and that can be
efficiently computed? Axis-aligned ellipsoids are clearly an answer to this question
but efficient algorithms to compute enclosing MVAEs in higher dimensions have not
been studied yet. Moreover, for machine learning applications, it is also important to
identify a small subset of the input points with the property that the MVAE enclos-
ing this subset is a good approximation of the MVAE enclosing the original set of
points. These considerations form a basis for studying minimum-volume enclosing
axis-aligned ellipsoids.

In this paper, we propose and study an algorithm that computes an approximation
to the MVAE enclosing a given set of m points in R

n. More precisely, given S :=
{x1, . . . , xm} ⊂ R

n and ε > 0, our algorithm computes an axis-aligned ellipsoid E ⊂
R

n that satisfies

S ⊆ E, Vol E ≤ (1 + ε) Vol E∗, (1)

where E∗ denotes the MVAE enclosing S and Vol(·) denotes the volume. An axis-
aligned ellipsoid E satisfying (1) is said to be a (1 + ε)-approximation to the MVAE
enclosing S .

Our algorithm is mainly motivated by the algorithm developed earlier by the
authors of this paper for the minimum-volume enclosing ellipsoid problem [7]
(henceforth the KY algorithm), which, in turn, improves upon the algorithm of
Khachiyan [8] by using a simple initial volume approximation scheme. In particu-
lar, we establish that our algorithm computes a (1 + ε)-approximation to the MVAE
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enclosing S in

O
(
mn2

(
logn + n2[(1 + ε)2/n − 1]−1

))
(2)

arithmetic operations (cf. Theorem 4.2), which is linear in m, the number of points in
S , and is polynomial for fixed ε > 0. In particular, the overall complexity reduces to
O(mn5/ε) for ε ∈ (0,1), which implies that our algorithm is especially well-suited
for instances of the problem for which m � n and for moderately small values of ε.

Despite the underlying similarity between the KY algorithm and the algorithm
proposed in this paper, our theoretical complexity analysis here is slightly more in-
volved than that of [7] and relies on somewhat different tools. In contrast with the
KY algorithm, the one-dimensional line search problem that arises in each iteration
of our algorithm does not have a closed form solution. We circumvent this difficulty
by using an approximate solution, which, in turn, leads to a worse complexity result
given by (2) than that of the KY algorithm. On the other hand, we also establish
that our theoretical analysis in general cannot be improved by demonstrating several
examples (cf. Sect. 4.2).

Similar to the KY algorithm, our algorithm in this paper also computes a subset
X ⊆ S with the property that

Vol E∗
X ≤ Vol E∗ ≤ Vol E ≤ (1 + ε)Vol E∗

X ≤ (1 + ε)Vol E∗,

where E∗
X denotes the MVAE enclosing X . It follows from (1) that the ellipsoid E

returned by our algorithm is simultaneously a (1 + ε)-approximation to the MVAE
enclosing X and to that enclosing S . In addition, |X | = O(n(logn+n2[(1 + ε)2/n −
1]−1)), which is independent of |S| = m. Following the earlier literature, we call
X an ε-core set (or a core set) of S to signify that X provides an approximate and
compact representation of S . To the best of our knowledge, this establishes the first
core set result for the minimum-volume enclosing axis-aligned ellipsoid problem. In
comparison with the KY algorithm, the theoretical estimate of the size of the core set
for this problem is considerably larger. Similarly to the overall complexity result, this
is a byproduct of a more pessimistic theoretical analysis, which, in general, cannot be
improved (cf. Sect. 4.2).

In an attempt to highlight the potential discrepancy between the worst-case theo-
retical complexity result and the practical behavior of the algorithm, we implemented
two different versions in MATLAB. While the first version numerically computes an
“exact” solution to the line search problem mentioned above, the second one is an
exact implementation of our algorithm using only the approximate solution of the
line search problem. Our computational experiments reveal that the former version
is usually much faster than the latter. These results indicate that the overall compu-
tation time and the size of the core set in practice tend to be much smaller than the
corresponding worst-case estimates for our algorithm.

The paper is organized as follows. In Sect. 2, we review the optimization formu-
lation of the minimum-volume enclosing axis-aligned ellipsoid problem. Section 3
presents a simple initial volume approximation scheme, which constitutes the ini-
tialization stage of our algorithm. In Sect. 4, we present the main algorithm and its
analysis. Finally, we conclude the paper in Sect. 5 with future research directions.
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2 Optimization Formulation

Let S = {x1, . . . , xm} ⊂ R
n. In this section, we derive optimization formulations for

the problem of computing the minimum-volume axis-aligned ellipsoid (MVAE) en-
closing S . Throughout the rest of the paper, we will make the following assumption,
which ensures that the volume of the optimal enclosing ellipsoid is positive.

Assumption 2.1 The affine hull of S is R
n.

An axis-aligned ellipsoid E ⊂ R
n is specified by its center c ∈ R

n and a positive
definite diagonal matrix D = diag(d1, . . . , dn) ∈ R

n×n, which determines its shape.
Such an ellipsoid can be defined as

E := {x ∈ R
n : (x − c)T D(x − c) ≤ 1} =

{
x ∈ R

n :
n∑

j=1

(√
dj [xj − cj ]

)2 ≤ 1

}
.

Since the length of each axis is given by 1/
√

dj , j = 1, . . . , n, the volume of E is
given by

Vol E = ηn detD−1/2 = ηn

n∏
j=1

1√
dj

,

where ηn is the volume of the unit ball in R
n. We define also a scaled volume by

vol E = Vol E
ηn

= detD−1/2 =
n∏

j=1

1√
dj

.

Using a change of variable with γj := √
dj and μj := √

dj cj , j = 1, . . . , n, and
taking the logarithm of the expression for the volume of the enclosing ellipsoid, the
problem of computing the MVAE enclosing S admits the following convex optimiza-
tion formulation:

(P) min
γ,μ

−
n∑

j=1

logγj ,

s.t.
n∑

j=1

(
γjx

i
j − μj

)2 ≤ 1, i = 1, . . . ,m,

where γ = (γ1, . . . , γn)
T ∈ R

n and μ = (μ1, . . . ,μn)
T ∈ R

n.
The Lagrangian dual of (P) is equivalent to the following optimization problem:

(D) max
σ

n

2
logn + 1

2

n∑
j=1

log
(
uj (σ ) − v2

j (σ )
)

s.t. eT σ = 1, σ ≥ 0,
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where σ ∈ R
m, e ∈ R

m denotes the vector of all ones, and

uj (σ ) :=
m∑

i=1

σi(x
i
j )

2, vj (σ ) :=
m∑

i=1

σix
i
j , j = 1, . . . , n. (3)

It follows from a straightforward but tedious manipulation of the necessary and
sufficient optimality conditions for the dual problem (D) that σ ∗ ∈ R

m is an optimal
solution of (D) if and only if

n∑
j=1

(xi
j − vj (σ

∗))2

n(uj (σ ∗) − v2
j (σ

∗))
≤ 1, i = 1, . . . ,m, (4a)

eT σ ∗ = 1, (4b)

σ ∗
i

(
1 −

n∑
j=1

(xi
j − vj (σ

∗))2

n(uj (σ ∗) − v2
j (σ

∗))

)
= 0, i = 1, . . . ,m, (4c)

together with σ ∗ ≥ 0.
Let us define

γ ∗
j :=

[
n

(
uj (σ

∗) − v2
j (σ

∗)
)]−1/2

, μ∗
j := γ ∗

j vj (σ
∗), j = 1, . . . , n. (5)

Clearly, (γ ∗,μ∗) is a feasible solution of (P). Since

−
n∑

j=1

logγ ∗
j = n

2
logn + 1

2

n∑
j=1

log
(
uj (σ

∗) − v2
j (σ

∗)
)

,

it follows from strong duality that (γ ∗,μ∗) is an optimal solution of (P). As a result,
the minimum-volume axis-aligned ellipsoid enclosing S can be computed by solving
the dual problem (D), which will form a basis for our algorithm.

Lemma 2.1 Let S = {x1, . . . , xm} ⊂ R
n. Then, the minimum-volume enclosing axis-

aligned ellipsoid E∗ of S exists and is unique. Furthermore, if σ ∗ denotes the optimal
solution of (D), then E∗ is given by

E∗ :=
{

x ∈ R
n :

n∑
j=1

(xj − vj (σ
∗))2

n(uj (σ ∗) − v2
j (σ

∗))
≤ 1

}
, (6)

where uj (·) and vj (·) are defined as in (3).

Proof The existence and uniqueness respectively follow from the facts that the fea-
sible region of (D) is compact and that the objective function is strictly concave. The
relation (6) is a consequence of the discussions preceding the lemma. �
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Undoing the change of variable in (P), it follows from (5) that

c∗
j := μ∗

j

γ ∗
j

= vj (σ
∗), d∗

j := (γ ∗
j )2 = 1

n(uj (σ ∗) − v2
j (σ

∗))
, j = 1, . . . , n. (7)

Therefore, if σ ∗ is viewed as a probability measure, c∗
j , j = 1, . . . , n, is simply the

expected value of the j th components of the input set and the length of each axis given

by
√

1/d∗
j = 1/γ ∗

j is proportional to the standard deviation of the j th components of

the input set for j = 1, . . . , n with respect to this probability measure.
Finally, if σ ∗ is viewed as a set of nonnegative weights for each input point, only

the points on the boundary can get a positive weight in an optimal solution by (4c).

3 Initial Volume Approximation

In this section, we present a simple deterministic initial volume approximation algo-
rithm. Given a set of points S = {x1, . . . , xm} ⊂ R

n, the algorithm identifies a small
subset X0 ⊆ S such that the minimum volume enclosing axis-aligned ellipsoid of X0
is closely related to that of S .

Algorithm 3.1 Initial volume approximation algorithm

Step 0. Input: S = {x1, . . . , xm} ⊂ R
n.

Step 1. k ← 0, X0 ← ∅.
Step 2. While k < n, do Steps 3–5 below.
Step 3. k ← k + 1.
Step 4. α+ ← arg maxi=1,...,m xi

k; X0 ←X0 ∪ {xα+}.
Step 5. α− ← arg mini=1,...,m xi

k; X0 ←X0 ∪ {xα−}.
Step 6. Return X0.

Lemma 3.1 Algorithm 3.1 computes a subset X0 ⊆ S with the property that |X0| ≤
2n in O(mn) arithmetic operations. Furthermore,

vol E∗
X0

≤ vol E∗ ≤ nn/2vol E∗
X0

, (8)

where E∗
X0

and E∗ denote the minimum-volume enclosing axis-aligned ellipsoids of
X0 and S , respectively.

Proof Note that Algorithm 3.1 goes through a total of n loops. In each loop, the
algorithm computes two points with the minimum and maximum kth coordinates,
each of which can be performed in O(m) arithmetic operations, which yields an
overall complexity of O(mn) operations.

Let B denote the minimum-volume axis-aligned enclosing box of S , which coin-
cides with the minimum-volume axis-aligned enclosing box of X0. Let Eout denote the
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minimum-volume enclosing ellipsoid of B. Since B is an axis-aligned set, it follows
that Eout is an axis-aligned ellipsoid. Furthermore, since B is centrally symmetric, it
follows from the Löwner-John theorem [9] that

Ein := 1√
n
Eout ⊆ B ⊆ Eout, (9)

where Ein is obtained by scaling Eout around its center by a factor of 1/
√

n. Clearly,
vol E∗

X0
≤ vol E∗ ≤ vol Eout. We now establish that vol Ein = (1/

√
n)nvol Eout ≤

vol E∗
X0

. Since X0 ⊆ E∗
X0

, it follows from the projection of each point on each dimen-
sion that the length of each axis of E∗

X0
should be at least as large as the length of the

corresponding axis of Ein. Combining these relationships, we obtain

vol E∗
X0

≤ vol E∗ ≤ vol Eout ≤ nn/2vol E∗
X0

,

which completes the proof. �

4 Algorithm

In this section, we present and analyze an algorithm (Algorithm 4.1) to compute
the minimum-volume enclosing axis-aligned ellipsoid of a given input set of points
S = {x1, . . . , xm} ⊂ R

n.

Algorithm 4.1 Minimum-volume enclosing axis-aligned ellipsoid algorithm

Step 0. Input: S = {x1, . . . , xm} ⊂ R
n, ε > 0.

Step 1. Run Algorithm 3.1 to obtain X0 ⊆ S .
Step 2. X ←X0.
Step 3. σ 0

i ← 1/|X0| if xi ∈X0; σ 0
i ← 0 otherwise.

Step 4. k ← 0; i∗k ← arg maxi=1,...,m

∑n
j=1

(xi
j −vj (σ k))2

n(uj (σ k)−v2
j (σ k))

.

Step 6. εk ← ∑n
j=1

(x
i∗
k

j −vj (σ k))2

n(uj (σ k)−v2
j (σ k))

− 1.

Step 7. While εk > (1 + ε)2/n − 1, do Steps 8–12 below.
Step 8. X ←X ∪ {xi∗k }.
Step 9. βk ← εk

(n+1)(1+εk)
.

Step 10. σk+1 ← (1 − βk)σ
k + βke

i∗k ; k ← k + 1.

Step 11. i∗k ← arg maxi=1,...,m

∑n
j=1

(xi
j −vj (σ k))2

n(uj (σ k)−v2
j (σ k))

.

Step 12. εk ← ∑n
j=1

(x
i∗
k

j −vj (σ k))2

n(uj (σ k)−v2
j (σ k))

− 1.

Step 13. Return X and
√

1 + εk Ek , where Ek is given by (10).

We now describe Algorithm 4.1 in detail. Initially, Algorithm 3.1 is called to com-
pute X0. The initial iterate σ 0 is obtained by assigning an equal weight to each of
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the points in X0. Note that σ 0 is a feasible solution of (D). At iteration k, a trial
axis-aligned ellipsoid Ek is (implicitly) constructed and is given by

Ek :=
⎧⎨
⎩x ∈ R

n :
n∑

j=1

(xj − vj (σ
k))2

n(uj (σ k) − v2
j (σ

k))
≤ 1

⎫⎬
⎭ , k = 0,1, . . . , (10)

where uj (·) and vj (·) are given by (3). Observe that Ek is the optimal enclosing axis-
aligned ellipsoid if and only if σk is an optimal solution of (D) (cf. Lemma 2.1). At
each iteration, Algorithm 4.1 computes the furthest point xi∗k from the center of Ek

using its ellipsoidal norm. εk can be viewed as a quality measure of the kth iterate
σk (cf. Lemma 4.1). The next iterate σk+1 is given by a convex combination of σk

and the i∗k th unit vector ei∗k with weights (1 − βk) and βk , respectively, where βk

is computed as in Step 9. This updating scheme simply increases the weight of the
furthest point xi∗k while decreasing those of the remaining points to ensure that the
iterate remains feasible for the dual problem (D).

Algorithm 4.1 is a modification of the Frank-Wolfe algorithm [10] applied to the
dual optimization problem (D). This idea has previously been used in [7, 8, 11] to
compute the minimum-volume enclosing ellipsoid of a given set of points and in [12]
to compute the minimum-volume enclosing ellipsoid of a given set of ellipsoids. The
Frank-Wolfe algorithm is driven by linearizing the nonlinear objective function of
(D) at a given feasible solution σk and optimizing this linearized function over the
feasible region of (D), which is the unit simplex. Due to the special structure of this
feasible region, the optimal solution of the resulting linear programing problem is one
of the unit vectors ei∗k . It can easily be shown that i∗k is precisely the index of the input
point that is furthest away from the center of the trial ellipsoid Ek in its ellipsoidal
norm, i.e.,

i∗k := arg max
i=1,...,m

n∑
j=1

(xi
j − vj (σ

k))2

n(uj (σ k) − v2
j (σ

k))
. (11)

The next iterate σk+1 in the Frank-Wolfe algorithm is given by σk+1 := (1−β∗
k )σ k +

β∗
k ei∗k , where β∗

k is given by

β∗
k := arg max

β∈[0,1]
g

(
(1 − β)σ k + βei∗k

)
, (12)

and

g(σ ) := n

2
logn + 1

2

n∑
j=1

log
(
uj (σ ) − v2

j (σ )
)

is the objective function of (D).
In the context of our problem, the main difficulty stems from the fact that the line

search problem given in (12) does not have a closed form solution. In general, the
optimal solution β∗

k is given by the root in [0,1] of an nth degree polynomial. The
main difference between the Frank-Wolfe algorithm and Algorithm 4.1 is the fact
that we do not use the exact minimizer of the line search problem (12). Instead, we
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will establish that the particular choice of βk as computed in Step 9 of Algorithm 4.1
enables us to prove the desired complexity result.

4.1 Analysis of the Algorithm

The complexity analysis of Algorithm 4.1 consists of two main steps. First, we es-
tablish an upper bound on the difference of the volume of the initial trial ellipsoid E0

and that of the optimal ellipsoid E∗. Next, we show that the sequence of the volumes
of trial ellipsoids generated by Algorithm 4.1 gives us a sequence of strictly sharper
lower bounds on the volume of the optimal ellipsoid E∗.

We start with the following lemma, which establishes the relationship between the
volume of each trial ellipsoid Ek and the volume of the optimal ellipsoid E∗.

Lemma 4.1 For any k = 0,1, . . ., we have

log vol Ek ≤ log vol E∗ ≤ log vol Ek + n

2
log(1 + εk), (13)

where E∗ denotes the minimum-volume enclosing axis-aligned ellipsoid of S .

Proof Note that (cf. (10))

log vol Ek = n

2
logn + 1

2

n∑
j=1

log
(
uj (σ

k) − vj (σ
k)

)
.

The first inequality follows from the fact that σk is a feasible solution of the dual
problem for all k = 0,1, . . ., and that log vol E∗ coincides with the optimal value of
the dual problem.

By definition of εk , we have S ⊆ √
1 + εk Ek , which implies that log vol E∗ ≤

log vol Ek + (n/2) log(1 + εk), proving the second inequality. �

An immediate corollary of Lemma 4.1 is that εk ≥ 0 for all k = 0,1, . . . and εk = 0
if and only if σk is an optimal solution of (D).

The next lemma provides a bound on the volume of the initial trial ellipsoid E0.

Lemma 4.2 Let E0 denote the trial ellipsoid corresponding to σ 0. Then,

log vol E0 ≤ log vol E∗ ≤ log vol E0 + n logn + (n/2) log 2. (14)

Proof The first inequality in (14) is a direct consequence of Lemma 4.1. In order to
prove the second inequality, let us define I := {i ∈ {1, . . . ,m} : xi ∈ X0}. For i ∈ I ,
let

zi :=
n∑

j=1

(xi
j − vj (σ

0))2

n(uj (σ 0) − v2
j (σ

0))
, (15)
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i.e., zi is the squared distance of xi from the center of E0 measured in terms of its
ellipsoidal norm for i ∈ I . Clearly, zi ≥ 0, i ∈ I . By (3) and the definition of σ 0, we
have

∑
i∈I

zi =
∑
i∈I

n∑
j=1

(xi
j − vj (σ

0))2

n(uj (σ 0) − v2
j (σ

0))
,

=
n∑

j=1

|X0|(uj (σ
0) − v2

j (σ
0))

n(uj (σ 0) − v2
j (σ

0))
,

= |X0|.
Note that

max
i∈I

zi ≤
∑
i∈I

zi = |X0| ≤ 2n,

which implies that X0 ⊆ √
2nE0. Therefore, log vol E∗

X0
≤ log vol E0 + (n/2) logn +

(n/2) log 2, where E∗
X0

is the minimum-volume enclosing axis-aligned ellipsoid of
X0. By Lemma 3.1, log vol E∗ ≤ log vol E∗

X0
+ (n/2) logn. Combining these two in-

equalities, we obtain log vol E∗ ≤ log vol E0 +n logn+ (n/2) log 2, which establishes
the second inequality in (14). �

We now reconsider the line search problem given by (12). We are interested in

max
β∈[0,1]

�k(β), k = 0,1, . . . , (16)

where

�k(β) := g
(
(1 − β)σ k + βei∗k

)

= n

2
logn + 1

2

n∑
j=1

log
(
uj

(
(1 − β)σ k + βei∗k

)
− v2

j

(
(1 − β)σ k + βei∗k

))

= n

2
logn

+ 1

2

n∑
j=1

log

(
(1 − β)uj (σ

k) + β
(
x

i∗k
j

)2 −
[
(1 − β)vj (σ

k) + βx
i∗k
j

]2
)

= n

2
logn + n

2
log(1 − β)

+ 1

2

n∑
j=1

log

(
uj (σ

k) − v2
j (σ

k) + β
[
x

i∗k
j − vj (σ

k)
]2

)

= n

2
logn + 1

2

n∑
j=1

log
(
uj (σ

k) − v2
j (σ

k)
)
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+ n

2
log(1 − β) + 1

2

n∑
j=1

log

(
1 + β[xi∗k

j − vj (σ
k)]2

uj (σ k) − v2
j (σ

k)

)

= g(σ k) + 	k(β),

where

	k(β) := n

2
log(1 − β) + 1

2

n∑
j=1

log

(
1 + β[xi∗k

j − vj (σ
k)]2

uj (σ k) − v2
j (σ

k)

)
, k = 0,1, . . . . (17)

Therefore, the line search problem (16) is equivalent to

max
β∈[0,1]

	k(β), k = 0,1, . . . . (18)

Let us define

wj(σ
k) := (vj (σ

k) − x
i∗k
j )2

n(uj (σ k) − v2
j (σ

k))
, j = 1, . . . , n, k = 0,1, . . . . (19)

By definition of εk (cf. Step 12 of Algorithm 4.1), we have

1 + εk =
n∑

j=1

wj(σ
k), k = 0,1, . . . . (20)

It follows from (17) and (19) that the line search problem (18) can be rewritten as

max
β∈[0,1]

	k(β) = max
β∈[0,1]

{
n

2
log(1 − β) + 1

2

n∑
j=1

log
(

1 + βnwj (σ
k)

)}
,

k = 0,1, . . . . (21)

The next lemma shows that this optimization problem has a unique solution and
provides useful information on the unique maximizer.

Lemma 4.3 For each k = 0,1, . . ., the function 	k(β) has a unique maximizer β∗
k ∈

[0,1). Furthermore,

β∗
k ≥ βk := εk

(n + 1)(1 + εk)
, k = 0,1, . . . , (22)

where εk is defined as in Step 12 of Algorithm 4.1.

Proof We first prove that 	k(β) is a strictly concave function on [0,1). Taking the
derivative, we obtain

	′
k(β) = − n

2(1 − β)
+ 1

2

n∑
j=1

nwj (σ
k)

1 + βnwj (σ k)
. (23)
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By (23),

	′′
k(β) = − n

2(1 − β)2
− 1

2

n∑
j=1

n2w2
j (σ

k)

1 + βnwj (σ k)
,

which is clearly negative on [0,1). Since 	′
k(0) = nεk/2 ≥ 0 by (20), limβ↑1 	′(β) =

−∞, and 	′(β) is strictly decreasing, it follows that there exists a unique β∗
k ∈ [0,1)

such that 	′(β∗
k ) = 0, which completes the first part of the proof.

By (23), we have

	′
k(β) ≥ 1

2

(
− n

1 − β
+

n∑
j=1

nwj (σ
k)

1 + βn(1 + εk)

)

= 1

2

(
− n

1 − β
+ n(1 + εk)

1 + βn(1 + εk)

)
,

where we used wj(σ
k) ≤ 1 + εk to derive the first inequality and (20) in the last

equality. It follows from this inequality that

	′
k(βk) ≥ 1

2

(
− n

1 − βk

+ n(1 + εk)

1 + βkn(1 + εk)

)
= 0 = 	′

k(β
∗
k ).

Since 	′
k(β) is a strictly decreasing function, it follows that β∗

k ≥ βk , which con-
cludes the second part of the proof. �

Lemma 4.3 establishes that βk used in Step 9 of Algorithm 4.1 is a lower bound
on the unique solution β∗

k of the line search problem (21). It follows from (23) that
solving the equation 	′

k(β) = 0 is equivalent to finding a zero of an nth degree poly-
nomial in [0,1]. As such, β∗

k does not have a closed form solution. This is the rea-
son why Algorithm 4.1 differs from the Frank-Wolfe algorithm by employing βk as
opposed to β∗

k . The next lemma establishes a lower bound on the improvement of
the objective function of the dual problem (D) in each iteration using this particular
choice of βk .

Lemma 4.4 Let β∗
k be the unique maximizer of 	k(β) in [0,1) and let δk be given

by

δk := max
j=1,...,n

βknwj (σ
k), k = 0,1, . . . , (24)

where βk and wj(·) are defined by (22) and (19), respectively. Then, for k = 0,1, . . .,

	k(β
∗
k ) ≥ 	k(βk) ≥

{ 1
2 log 2 − 1

4 > 0, if δk ≥ 1,

δ2
k

16 , otherwise.
(25)

Proof Since 	′
k(βk) ≥ 0 by the proof of Lemma 4.3, it follows from (23) that

n∑
j=1

wj(σ
k)

1 + βknwj (σ k)
≥ 1

1 − βk

. (26)
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Since β∗
k is the maximizer of 	k(β) in [0,1), we have

	k(β
∗
k ) ≥ 	k(βk)

= n

2
log(1 − βk) + 1

2

n∑
j=1

log
(

1 + βknwj (σ
k)

)

= −n

2
log

(
1 + βk

1 − βk

)
+ 1

2

n∑
j=1

log
(

1 + βknwj (σ
k)

)

≥ − nβk

2(1 − βk)
+ 1

2

n∑
j=1

log
(

1 + βknwj (σ
k)

)

≥ −1

2

n∑
j=1

βknwj (σ
k)

1 + βknwj (σ k)
+ 1

2

n∑
j=1

log
(

1 + βknwj (σ
k)

)
,

where we used log(1 + x) ≤ x for x > −1 and (26) to derive the second and the third
inequalities, respectively.

It is easy to verify that the function �(x) := log(1 + x) − x/(1 + x) is a strictly
increasing function for x ≥ 0 and �(x) ≥ (1/8)x2 for x ∈ [0,1). Therefore, if δk ≥ 1,
it follows from the above inequality that

	k(βk) ≥ 1

2
log 2 − 1

4
.

Otherwise, we obtain

	k(βk) ≥ δ2
k

16
,

which concludes the proof. �

Note that the lower bound on the improvement is presented in terms of the value of
δk in Lemma 4.4. The next lemma relates this quantity to εk , which is the parameter
used to determine the convergence of Algorithm 4.1.

Lemma 4.5 Let δk be given by (24). Then,

εk ≤ δk(n + 1), k = 0,1, . . . . (27)

Proof Clearly, βknwj (σ
k) ≤ δk, j = 1, . . . , n. Summing these inequalities over j =

1, . . . , n, we obtain βkn(1+ εk) ≤ δkn, where we used (20). Solving for εk , we obtain
the desired inequality (27) using (22). �

Let us now define

κr := min

{
k : δk ≤ 1

2r

}
, r = 0,1, . . . . (28)
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The next lemma plays a key role in the complexity analysis.

Lemma 4.6 Let n ≥ 2. The following relationships are satisfied:

κ0 = O(n logn), (29)

κr+1 − κr ≤ 2r+6n2, r = 0,1, . . . . (30)

Proof By Lemma 4.2, log vol E0 ≤ log vol E∗ ≤ log vol E0 + n logn + (n/2) log 2 ≤
log vol E0 + 2n logn for n ≥ 2. At each iteration k with δk > 1, log vol Ek+1 −
log vol Ek = 	k(βk) ≥ (1/2) log 2 − 1/4 > 0 by Lemma 4.4. Therefore, κ0 =
O(n logn), which proves (29).

In order to prove (30), let ρ := κr . Then, ερ ≤ δρ(n + 1) ≤ (1/2r )(n + 1) by
Lemma 4.5 and by the definition of ρ. By Lemma 4.1, log vol Eρ ≤ log vol E∗ ≤
log vol Eρ + (n/2) log(1 + ερ) ≤ log vol Eρ + (n/2)ερ ≤ log vol Eρ + (1/2r+1)n(n +
1), where we used log(1 + x) ≤ x for x > −1. At each iteration k with δk > 1/2r+1,
we have log vol Ek+1 − log vol Ek = 	k(βk) ≥ 1/22r+2+4 = 1/22r+6 by Lemma 4.4.
Therefore, κr+1 − κr ≤ ((1/2r+1)n(n + 1))/(1/22r+6) = 2r+5n(n + 1) ≤ 2r+6n2,
where we used n + 1 ≤ 2n. This completes the proof. �

The next lemma gives an upper bound on the number of iterations to obtain an
iterate σk with δk ≤ ν.

Lemma 4.7 Let ν ∈ (0,1). Then, Algorithm 4.1 computes an iterate with δk ≤ ν in
O(n logn + n2/ν) iterations.

Proof Let p be an integer such that 1/2p+1 ≤ ν ≤ 1/2p . Then, after k = κp+1 itera-
tions, we already have δk ≤ 1/2p+1 ≤ ν. By Lemma 4.6, we have

κp+1 = κ0 +
p∑

r=0

(κr+1 − κr) ≤ κ0 +
p∑

r=0

2r+6n2 ≤ κ0 + 64n22p+1

= O

(
n logn + n2

ν

)
,

where we used 2p+1 ≤ 2/ν. �

We now have all the ingredients to establish the iteration complexity of Algo-
rithm 4.1.

Theorem 4.1 Algorithm 4.1 computes a (1 + ε)-approximation to the minimum-
volume enclosing axis-aligned ellipsoid of S in O(n(logn + n2[(1 + ε)2/n − 1]−1))

iterations.

Proof We first establish that it suffices to run Algorithm 4.1 until we obtain an iterate
with δk ≤ [(1+ ε)2/n −1]/(n+1). Let k∗ denote the index of first such iterate. Then,
εk∗ ≤ δk∗(n + 1) ≤ (1 + ε)2/n − 1, which implies that the termination criterion is
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satisfied. It follows then that 1 + εk∗ ≤ (1 + ε)2/n. However, S ⊆ √
1 + εk∗ Ek∗ . By

Lemma 4.1,

vol Ek∗ ≤ vol E∗ ≤ vol
√

1 + εk∗ Ek∗

= (1 + εk∗)n/2vol Ek∗ ≤ (1 + ε)vol Ek∗ ≤ (1 + ε)vol E∗. (31)

Therefore,
√

1 + εk∗ Ek∗ is a (1 + ε)-approximation to the minimum-volume enclos-
ing axis-aligned ellipsoid of S .

By Lemma 4.7, Algorithm 4.1 computes such an iterate in

O
(
n logn +

(
(n + 1)n2

)
/
[
(1 + ε)2/n − 1

])

= O
(
n

(
logn + n2[(1 + ε)2/n − 1]−1

))

iterations. �

The next theorem establishes the overall complexity of Algorithm 4.1.

Theorem 4.2 Algorithm 4.1 computes a (1 + ε)-approximation to the minimum-
volume enclosing axis-aligned ellipsoid of S in O(mn2(logn+n2[(1+ε)2/n−1]−1))

arithmetic operations.

Proof Algorithm 4.1 first calls Algorithm 3.1, which computes the initial iterate σ 0

in O(mn) operations by Lemma 3.1. Note that each of the linear functions uj (·) and
vj (·) can be updated in constant time since σk+1 = (1−βk)σ

k +βke
i∗k . Therefore, i∗k

can be computed in O(mn) time. Combining this result with Theorem 4.1 establishes
the assertion. �

Remark 4.1 Theorem 4.2 establishes the overall complexity of Algorithm 4.1. We
stress that the complexity result depends linearly on m, the number of points. In ad-
dition, for ε ∈ (0,1), the complexity of Algorithm 4.1 is given by O(mn5/ε) since
[(1 + ε)2/n − 1]−1 = O(n/ε). Therefore, from a theoretical point of view, this sug-
gests that Algorithm 4.1 is especially well-suited for instances of the minimum-
volume enclosing axis-aligned ellipsoid problem with m � n and for moderately
small values of ε. Furthermore, the complexity result is polynomial for fixed ε > 0.

Finally, we establish the following core set result.

Theorem 4.3 Let k∗ denote the index of the final iterate computed by Algorithm 4.1.
Let E∗

Xk∗ and E∗ denote the minimum-volume enclosing axis-aligned ellipsoids of Xk∗

and S , respectively. Then,

vol E∗
Xk∗ ≤ vol E∗ ≤ (1 + ε)vol E∗

Xk∗ . (32)

Furthermore,

|Xk∗ | = O
(
n

(
logn + n2[(1 + ε)2/n − 1]−1

))
. (33)
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Proof The first inequality in (32) is obvious since Xk∗ ⊆ S . The second inequality
is a consequence of the inequalities vol Ek∗ ≤ vol E∗

Xk∗ ≤ vol E∗ (cf. the proof of
Lemma 4.1) and vol E∗ ≤ (1 + ε)vol Ek∗ (cf. the proof of Theorem 4.1).

Clearly, |Xk∗ | ≤ 2n+k∗ = O(n(logn+n2[(1+ε)2/n −1]−1)) by Theorem 4.1. �

Remark 4.2 Theorem 4.3 establishes a core set result with the property that the size of
the core set is independent of m, the number of points. To the best of our knowledge,
this is the first core set result established for the minimum-volume enclosing axis-
aligned ellipsoid problem. As such, it is an addition to the previous core set results
established for similar geometric optimization problems such as the minimum enclos-
ing ball problem [13], the minimum volume enclosing ellipsoid problem [7, 11] and
the minimum volume enclosing ellipsoid of ellipsoids problem [12]. For ε ∈ (0,1),
the size of the core set is given by O(n4/ε).

4.2 Justification of the Larger Core Set Size

Given a set of points S = {x1, . . . , xm} ⊂ R
n, note that the minimum-volume en-

closing axis-aligned ellipsoid of S is determined by a subset X ⊆ S with at most
2n points since one needs to compute a total of 2n parameters corresponding to the
center and the length of each axis of the minimum-volume enclosing axis-aligned
ellipsoid of S . Therefore, in theory, there always exists a core set whose size is O(n).

Our analysis of Algorithm 4.1 establishes a core set size of O(n4/ε) for ε ∈ (0,1)

(cf. Theorem 4.3). In this subsection, we attempt to justify this discrepancy. In par-
ticular, we will argue that the theoretical analysis is rather pessimistic. On the other
hand, we provide simple examples illustrating that the analysis in general cannot be
improved.

A close examination of the analysis of Algorithm 4.1 reveals two potential sources
which lead to a larger core set size in comparison with the core set size of O(n2/ε)

established for the minimum-volume enclosing ellipsoid problem in [7, 11].
The first potential source of the larger core set size arises from the line search

problem (12). As we discussed in Sect. 4, Algorithm 4.1 differs from the algorithm
proposed in [7] in the sense that it employs the lower bound βk as opposed to the
exact maximizer β∗

k of the line search problem (cf. Lemma 4.3) since β∗
k does not

have a closed form solution. From a computational point of view, β∗
k can be computed

to within an arbitrary precision using, for instance, binary search since Lemma 4.3
establishes that the function 	′

k(β) is strictly decreasing and has a unique zero in
(0,1). Note that this computation only adds a fixed overhead at each iteration of
Algorithm 4.1. However, the theoretical analysis heavily depends on establishing a
lower bound on the improvement given by 	k(β) at each step of Algorithm 4.1. Our
improvement result relies on the lower bound βk . Clearly, using the lower bound βk

instead of the exact maximizer β∗
k yields a smaller improvement in general.

On the other hand, the following example establishes that, for certain data sets,
βk can coincide with β∗

k for some iterations of Algorithm 4.1. Therefore, the lower
bound βk on β∗

k used in the analysis in general cannot be improved.

Example 4.1 It is easy to verify that if wj(σ
k) = 1 + εk and wl(σ

k) = 0 for
l = 1, . . . , n; l �= j , then βk = β∗

k . This simple example illustrates that this can
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indeed happen. Let S := {x1, . . . , x4} ⊂ R
2, where x1 = (1,0)T , x2 = (−1,0)T ,

x3 = (0,−1)T and x4 = (0,3)T . Then, running Algorithm 3.1 yields X0 = S =
{x1, . . . , x4} and σ 0 = (1/4,1/4,1/4,1/4)T . By (3), u1(σ

0) = 1/2, u2(σ
0) = 5/2,

v1(σ
0) = 0, and v2(σ

0) = 1/2. Therefore, the initial trial ellipsoid E0 is given by
E0 := {x ∈ R

2 : x2
1 + (2/9)(x2 − 1/2)2 ≤ 1} (cf. (10)). It is easy to verify that the

furthest point in S from the center of E0 in its ellipsoidal norm is x4, which im-
plies that i∗0 = 4. By (19), we have w1(σ

0) = 25/18 and w2(σ
0) = 0. Therefore,

β∗
0 = β0 = [(25/18) − 1]/[3(25/18)] = 7/75.

The second potential source of the larger core set size is the relationship between
δk and εk given by Lemma 4.5. For instance, if w1(σ

k) = 1 + εk and wj(σ
k) = 0

for j = 2, . . . , n (cf. Example 4.1), then it is easy to verify that δk = βknw1(σ
k) =

(εk/[(n + 1)(1 + εk)])n(1 + εk) = [n/(n + 1)]εk . Using the relationship given by
Lemma 4.5, we obtain εk ≤ δk(n + 1) = nεk , which implies that the upper bound on
εk can be worse by a factor of n. However, the next example illustrates that this upper
bound in general cannot be improved, either.

Example 4.2 If wj(σ
k) = (1 + εk)/n for j = 1, . . . , n, one can verify that εk =

δk(n + 1), i.e., the inequality given by Lemma 4.5 is satisfied with equality.
We provide a simple example illustrating that this can indeed happen. Let S =
{x1, . . . , x5} ⊂ R

2, where x1 = (1,0)T , x2 = (0,1)T , x3 = (−1,0)T , x4 = (0,−1)T ,

and x5 = (.9, .9)T . Then, running Algorithm 3.1 yields X0 = {x1, . . . , x4} and σ 0 =
(1/4,1/4,1/4,1/4,0)T . By (3), u1(σ

0) = u2(σ
0) = 1/2, and v1(σ

0) = v2(σ
0) = 0.

Therefore, the initial trial ellipsoid E0 is given by E0 := {x ∈ R
2 : x2

1 + x2
2 ≤ 1}

(cf. (10)). Clearly, x5 is the only point which lies outside E0, which implies that
i∗0 = 5. By (19), we have w1(σ

0) = w2(σ
0) = .81. By (20), ε0 = 2(.81) − 1 = .62.

Similarly, δ0 = maxj=1,2 β0nwj (σ
0) = (.62/(3(1.62)))2(.81) = .62/3, which im-

plies that ε0 = 3δ0.

These small examples illustrate that our theoretical analysis of Algorithm 4.1 in
general cannot be improved. In addition, they help to explain the larger core set size
presented in Theorem 4.3.

On the other hand, it is reasonable to expect that situations arising in Example 4.1
and 4.2 will occur fairly infrequently for general data sets. In fact, our preliminary
computational results support our claim in the sense that both the core set size and the
running time in practice tend to be far smaller than those predicted by the theoretical
analysis.

5 Concluding Remarks

In this paper, we proposed and analyzed an algorithm to approximately compute the
minimum-volume enclosing axis-aligned ellipsoid of a given set of points. We es-
tablished the existence of a core set whose size is independent of the number of
points. As illustrated by several examples and our computational results, the theoret-
ical analysis is rather pessimistic but cannot be improved in general.
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There are many interesting theoretical and practical problems that are motivated
by our investigations. In the near future, we intend to study the minimum-volume
enclosing axis-aligned ellipsoid problem with outliers and the k-center problem using
axis-aligned ellipsoids.
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