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Trapped Fermi Gases in Rotating Optical Lattices:
Realization and Detection of the Topological Hofstadter Insulator
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We consider a gas of noninteracting spinless fermions in a rotating optical lattice and calculate the
density profile of the gas in an external confinement potential. The density profile exhibits distinct
plateaus, which correspond to gaps in the single particle spectrum known as the Hofstadter butterfly. The
plateaus result from insulating behavior whenever the Fermi energy lies within a gap. We discuss the
necessary conditions to realize the Hofstadter insulator in a cold atom setup and show how the quantized
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Hall conductance can be measured from density profiles using the Stfeda formula.
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Recently, some fundamental models of many-particle
quantum systems have been experimentally realized using
trapped ultracold fermions. Some of these experiments,
such as transport in optical lattices [1], have demonstrated
well-known effects with improved precision, while others,
such as spin imbalanced superfluidity [2,3], have provided
access to previously unexplored regimes. With constantly
improving experimental control over ultracold systems, it
is expected that many other fundamental ideas can be
tested in the laboratory for the first time.

A basic problem in quantum mechanics is the dynamics
of a charged particle moving in a periodic potential under a
magnetic field. The single particle spectrum depends sen-
sitively on the ratio of the flux through a unit cell of the
lattice to flux quantum. For a tight-binding lattice, a single
band splits into narrow magnetic bands, forming a self-
similar energy spectrum known as the Hofstadter butterfly
[4]. The gaps in the Hofstadter spectrum form continuous
regions for a finite range of flux. For a system of non-
interacting fermions, it was shown by Thouless ef al. that
whenever the Fermi energy lies in one of these gaps, the
Hall conductance of the system is quantized [5]. This
quantization is topological in nature, and the quantized
Hall conductance is determined uniquely by the magnetic
translation symmetry [6]. This Hofstadter insulating phase
is a topological insulator that is characterized by two
topological numbers [7], the first Chern number corre-
sponding to Hall conductance and another number related
to polarizability [8].

Despite its mathematical elegance, the Hofstadter insu-
lator can hardly be achieved in solid state systems because
the magnetic field needs to be thousands of Tesla in order
to create a magnetic flux which can be comparable to one
flux quantum per unit cell [9]. While in some experiments
superlattice structures have been used to study the splitting
of Landau levels under a periodic potential, the tight-
binding regime has never been experimentally realized
[10]. The main purpose of this Letter is to propose an
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alternative way to achieve and to experimentally study
this topological insulator by using ultracold Fermi gases
in a rotating optical lattice. We discuss (i) the conditions to
realize the Hofstadter insulator in rotating optical lattices,
and (ii) the manifestation of this insulator in real space
density profile and the method to detect the Hall conduc-
tance in a cold atom setup.
The Hamiltonian for a particle in a rotating lattice is

1 1
H= %pi +§mwir2 —Qz-r
X p1 + Volsin?(kx) + sin’(ky)], (1)

where m is the mass of the particle, () is the rotation
frequency, and w, is the transverse trapping frequency.
p1 = (P py). ¥ = (x, ), and V; is the maximum depth of
the optical potential created by a laser light with wave
number k = 277/A (for counterpropagating laser beams
lattice constant a is equal to A/2). Photon recoil energy
Ey, defined as h%k*/(2m) is introduced as the energy unit
in the following discussion. This Hamiltonian can be re-
arranged as

(py — mQz Xr)?
2m

+ %m(wzl - 092 2)

H=

+ Vy[sin?(kx) + sin*(ky)]

When () is close to w |, the third term represents a smooth
potential in space. The first term describes the motion of a
particle under a perpendicular magnetic field with strength
B = 2mcQ)/e. This effective magnetic field description
has led a number of authors to study the quantum-Hall
type of physics in rotating quantum gases [11]. Here, we
consider the presence of both rotation and a lattice poten-
tial [12], employing the Hofstadter model, which is appro-
priate for the description of a noninteracting gas of
fermions in a lattice.
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We now discuss the conditions for simulating the
Hofstadter model in an ultracold optical lattice system.

(1) The Hofstadter model is expressly single band; the
motion of fermions in the periodic potential has to be well
described by a single-band tight-binding model with near-
est neighbor hopping. This requirement means that there
has to be a finite gap between s and p bands, and the
dispersion of the s band can be well approximated by a
cosine function. From the band-structure calculations for
optical lattice potentials, one can easily show that this
requirement is fulfilled when V, > 3Ey [13]. A rotating
lattice experiment has recently been carried out [14].
Although in this particular experiment Vy < 1Ep, which
is not deep enough to reach the tight-binding regime, there
is no fundamental reason against increasing V|, a few more
Ep, as it has been routinely done in static lattice experi-
ments [15].

(2) The “magnetic field” has to be strong enough. The
dimensionless parameter ¢ = a’>B/(hc/e) is the magnetic
flux quantum per plaquette and is connected to the rotation
frequency ) as ¢ = 2ma*Q)/h. For rotation to create an
effective magnetic flux close to 1 flux quantum, the rota-
tion frequency () must be close to Ep/h of the lattice. In
typical optical lattice experiments the recoil frequency is a
few kHz; thus, rotation of the lattice at hundreds to thou-
sands of Hz would be enough to reach the high magnetic
field limit.

(3) To observe the insulating behavior, the temperature
has to be lower than the gap of the insulator. The gap for the
Hofstadter insulator is comparable to the hopping ampli-
tude ¢. In a moderately deep lattice, for which V, ~ 3-7Ex,
for instance, ¢ is of the order of 1-10 nK. This is below
currently attainable temperatures. However, cooling fermi-
ons to this regime is not more difficult than achieving
degenerate Fermi gases in a lattice, and the latter is now
the major goal pursued in many key laboratories in this
field.

(4) The Hofstadter model is a noninteracting one. Strong
repulsive or attractive interactions can lead to either ex-
citon instability or BCS instability of the insulating phase
(which will be discussed elsewhere), and therefore dimin-
ish its topological behavior. In ultracold atom experiments
a single species of fermions is naturally noninteracting due
to the Pauli exclusion principle.

Even when the above conditions are satisfied, there are
two factors which complicate the correspondence between
the results of ultracold atom experiments and theories
developed for “bulk’ systems. The first is the presence
of an external confining potential in all ultracold atom
experiments, i.e., the third term in Eq. (2). The second
factor is that transport measurements are usually very hard
for cold atom systems. Hereafter, we first calculate the
density profile of a noninteracting Fermi gas in a rotating
optical lattice, in the presence of a smooth external poten-
tial [16]. We find that the presence of the residual trapping
potential does not preclude the observation of the effects of
single particle spectrum, as long as it is varying smooth

enough on the lattice length scale. Secondly, we show that
one of the most important transport properties, namely, the
Hall conductance which reflects the topological nature, can
be inferred from the measurement of the density profile due
to the well-known Stfeda formula [17].

When the residual trapping potential is slowly varying,
we can utilize the local-density approximation (LDA) in
which we define a local chemical potential w,;(r) (or Fermi
energy) as

mi(r) = p = V(r), 3)

where in our case V(r) = m(w} — Q?)r?/2. In what fol-
lows, we shall denote (03 — Q?) by w?.

To find the density profile n(r), we simply count the
number of states below w,(r) for the corresponding uni-
form system as

n(r) = [ deD()O(uy(r) — €. @)

So, we shall first find the density of states D(e) for non-
interacting fermions in a periodic lattice under a magnetic
field. By using the Landau gauge A= Bxj, one can con-
struct the Hamiltonian for this system as follows:

H = —tZa;rajeiAff, (®)]
@0

where a; (a:r) is the fermionic annihilation (creation) op-
erator at site i and the sum is over nearest neighbor sites.
Magnetic field affects the Hamiltonian through Aij, which
is equal to *27n¢, if i and j have the same x coordinate
na, and is 0 otherwise, with the sign being determined by
the hopping direction. The hopping strength 7 can be
obtained as a function of V,/E; from a simple band-
structure calculation. The density of states is displayed in
Fig. 1. When ¢ is a rational number p/q, with p and ¢
being relatively prime integers, the energy band divides
into g bands [4]. In this spectrum the gaps form continuous
regions in ¢ — E plane, although the band edges are
fractal. When u lies in a gap, the system is an insulator,
and as one changes ¢ and u, the topological nature and the
Hall conductance of the insulator do not change as long as
one remains within the same gap [5]. The largest two gaps
correspond to insulators with Hall conductance o, = *1,
and the second largest ones have Hall conductance o, =
*2 and so on, as marked in Fig. 1.

To calculate the integral in Eq. (4) efficiently, we note
that if we take ¢ to be sufficiently large, the bandwidths of
each subband become negligibly small. Counting the num-
ber of states then reduces to counting these bands in certain
intervals. In our numerical procedure, we determine the
subbands with their edge values &.44.. So the number of
states per plaquette in the two dimensional case can con-
veniently be expressed as
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FIG. 1 (color online). Density of states for the Hofstadter
butterfly. Darker regions imply greater density. Dashed lines
represent the trajectory of local Fermi energy from the center
to the edge of the cloud, for different values of ¢ corresponding
to those used in Fig. 2, namely ¢ = 1/3, 1/4, 1/7, and 1/10.
Regions marked by X and A have Hall conductance o, = *1,
and marked by O and M have o, = *2.

n(w) = 53 Ol — o). ©

sedge

In all of our calculations we took g = 401, which is a
prime number allowing p to be successive integers. ¢
values for other small denominators of ¢ are approximated
by properly choosing p. For instance, ¢» = 1/10 is ap-
proximated by 40/401, 1/4 by 100/401, and 1/3 by
134/401.

We now present the density profiles for several ¢ values.
To make a connection with experiments, we refer to the
work in Ref. [18] in which “°K atoms are stored in an
optical lattice with lattice constant a = 413 nm. We take
Vo = SEg, which gives t = 0.066Ey. The parameters at
hand yield Ex/h = 45.98 kHz and t/h = 3.035 kHz. With
the choice w ~ 355 Hz, the gas extends over approxi-
mately 60 lattice sites in the radial direction, so that the
assumption of LDA is satisfied. In Figs. 2 and 3 we fixed
the number of fermions at 5000.

When the local chemical potential w,(r) lies in one of
the gaps, we have dn(r)/du(r) = 0 because of vanishing
compressibility. Hence, as one can see by comparing
Figs. 1 and 2, corresponding to the energy gaps in the
single particle spectrum, there appear plateaus in the den-
sity profile. The discernible number of plateaus is related to
the size of the energy gaps. For instance, in Fig. 2(a), the
plateau with n = 1 is the band insulator with completely
filled band, which is topologically trivial and has vanishing
Hall conductance. Apart from that, for ¢ = 1/3, the
chemical potential trajectory passes through two gap re-
gions which gives two plateaus with n = 0.333 and n =
0.667, respectively. While for ¢ = 1/4, there are totally
four subbands, but two of them touch at u = 0, so there are
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FIG. 2 (color online). (a) Density profiles for 5000 fermions
with ¢ = 1/4, Q = 7.2992 kHz, v, = 7.3078 kHz (solid line)
and ¢ =1/3, QO =9.7809 kHz, w, = 9.7873 kHz (dashed
line). (b) Density profiles for 5000 fermions with ¢ = 1/10,
Q =29197 kHz, w | = 2.9412 kHz (solid line) and ¢ = 1/7,
Q =4.1605 kHz, w, = 4.1756 kHz (dashed line). Length is
measured in units of lattice constant a. Density is given in units
of particles per lattice site.

also two gap regions corresponding to two plateaus with
n =0.25 and n = 0.75. In Fig. 2(b) we choose two ¢’s
with larger g, where there are more gaps in the spectrum
and therefore more density plateaus. Experimentally, the
smaller gap one wants to find, the more difficult it is,
because it requires larger system size and lower
temperature.

In Fig. 3 we show the temperature effect on the visibility
of plateaus. We implement the effect of finite temperature
by incorporating the Fermi-Dirac distribution into our
calculations as

1

nop(p(r), T) = 2 Z

1
exp[(sedge - /-l’l(r))/kBT] +1
(N

Sedge

We observe from Fig. 3 that plateaus will be smeared out
when kzT > 0.5¢.

As shown by Thouless et al., the topological distinction
of the insulators we consider manifests itself in the Hall
conductance, which should be quantized in units of e?/h
[5]. Here, we propose a method to read out the information
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FIG. 3 (color online). Density profile for 5000 fermions at
several temperatures when ¢ = 1/4. Plateaus become indiscern-
ible when kT ~ 0.5¢.
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about the Hall conductance quantization from the obtained
density profiles. One can observe how the particle density
within a particular plateau (labeled by the corresponding
gap) changes with the rotation frequency, and the change of
plateau density with respect to rotation frequency is di-
rectly related to the Hall conductance of that plateau as
follows.

Streda obtained a formula for the Hall conductance of a
two dimensional charged system as

y = ec%, (8)
which is valid when the Fermi energy lies in a gap [17].
Here N is the number of levels below the Fermi energy. For
a neutral gas we can define a similar response function
Yy = Ji/Fy, where J, is the mass current in x direction
induced by a force F, in the y direction. Then the Stfeda
formula for the rotating system can be written as

1 ON
yxy - E m (9)

Expressing the rotation frequency in terms of ¢ and N in
terms of the density per plaquette n(r) (as in our density
plots), one obtains

Oy

m on
Yo TG e (10)

To measure Hall conductance, we first choose two ¢
values, and identify the plateaus in both density profiles
that correspond to the same gap. The density difference of
those two plateaus divided by the difference between ¢
values gives the Hall conductance. We use Fig. 2 as an
example to show how this procedure works. The plateaus
are marked by the same symbol as their corresponding
gaps in Fig. 1. Two plateaus marked by the same symbol
are the same insulating phase. In Fig. 2(a), for that marked
by X, An = 0.333-0.25, and An/A¢ = 1, for that marked
by A, An = 0.667-0.75, and An/A¢ = —1. In Fig. 2(b),
one can get the same quantization number for the plateaus
marked by X and A. In addition, there are more plateaus,
such as those marked by O and B corresponding to the
second largest gaps. For that marked by O, An =
0.284-0.201 and An/A¢ = 2, and for that marked by H,
An = 0.716-0.802 and An/A¢ = —2.

While the above examples concentrated on the largest,
Landau level type, gaps of the spectrum, the method can be
applied to any gap, including the nontrivial smaller gaps in
the right-left or central chains. For example, considering
two density profiles near ¢ = 0.45 we can observe the Hall
conductance of the largest gap in the right chain to be
An/A¢ = 2. Generally smaller gaps have higher values
of Hall conductance; however, experimentally it becomes
increasingly harder to observe these gaps, as the corre-
sponding plateaus will become discernible at lower tem-
peratures and higher particle numbers.

In summary, we discussed the experimental conditions
for simulating Hofstadter model in rotating optical lattices,

such as lattice depth, rotational frequency, and tempera-
ture. We calculated the density profile in the presence
of a smooth residual trapping potential, and showed how
the density plateaus reflect the insulating behavior in a
“magnetic field” with incommensurate filling number.
We also propose a method to measure the Hall conductance
from real space density profiles, without doing transport
experiments.
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