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Abstract
We study the spectra of a two-parameter family of self-similar Laplacians on the Sierpinski
gasket (SG) with twists. By this we mean that instead of the usual IFS that yields SG as
its invariant set, we compose each mapping with a reflection to obtain a new IFS that still
has SG as its invariant set, but changes the definition of self-similarity. Using recent results
of Cucuringu and Strichartz, we are able to approximate the spectra of these Laplacians by
two different methods. To each Laplacian we associate a self-similar embedding of SG into the
plane, and we present experimental evidence that the method of outer approximation, recently
introduced by Berry, Goff and Strichartz, when applied to this embedding, yields the spectrum
of the Laplacian (up to a constant multiple).
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1. INTRODUCTION

Kigami1 gives a general construction of self-similar
energies and Laplacians on a family of self-similar
fractals that includes the familiar Sierpinski gas-
ket (SG), the invariant set for the iterated func-
tion system (IFS) consisting of three homothetic
similarities {Fi} with contraction ratio 1

2 and fixed
points {qi}, the vertices of an equilateral triangle
in the plane. Sabot2 gives a complete description
of all possible self-similar energies on SG. Recently,
Cucuringu and Strichartz3 revisit the problem using
a different IFS denoted {F̃i}, where each F̃i is the
composition of Fi with the reflection that fixes qi

and permutes the other two vertices of the trian-
gle. This IFS has the same invariant set SG, but we
refer to it informally as SG with twists. The set of
self-similar energies with respect to {F̃i} is not the
same, and it turns out that it has a much simpler
and completely constructive description. In addi-
tion, there is a family of self-similar embeddings of
SG with twists in the plane that are all given by
IFSs that are topologically conjugate to {F̃i}, but
with the contraction ratios different from (1

2 , 1
2 , 1

2 ).
(Without the twists this is simply impossible.) The
purpose of this paper is to study the spectra of fam-
ilies of the self-similar Laplacians naturally associ-
ated to the self-similar energies on one hand, and
the self-similar embeddings on the other hand, using
the method of outer approximation introduced in
Berry et al.4 Both families of Laplacians have two
parameters, and we propose a one-to-one corre-
spondence between the parameters that we conjec-
ture will make the two Laplacians equal (up to a
constant).

We begin with a brief review of Kigami’s con-
struction (see also Refs. 5 and 6). Suppose K is a
connected non-empty compact set satisfying

K =
⋃

FiK (1.1)

for some IFS {Fi} (for simplicity we assume
these are contractive similarities on some Euclidean
space). We write Fw = Fw1 ◦ · · · ◦ Fwm for a word
w = (w1, . . . , wm) of length |w| = m, and call FwK
a cell of level m. We say that K is post-critically
finite (PCF) if there exists a finite subset V0 ⊆ K,
called the boundary of K, such that

FwK ∩ Fw′K ⊆ FwV0 ∩ Fw′V0 (1.2)

whenever w and w′ are distinct words of the same
length. We consider FwV0 to be the boundary of the
cell FwK. Thus (1.2) says that distinct cells of the

same level intersect only at points on their bound-
ary. Because we assume K is connected, there must
be enough non-empty intersections. SG is perhaps
the simplest non-trivial example (the unit interval
is a trivial example).

We then approximate K by a sequence of graphs
{Γm} with vertices {Vm} and edge relation x∼

m
y

as follows: Γ0 is the complete graph on V0, and Γm

is defined inductively as the image of Γm−1 under
the IFS with the appropriate vertices identified. For
simplicity we assume that each vertex in V0 is the
fixed point of one of the IFS mappings, say Fiqi = qi

(in general there may be more mappings in the IFS
than vertices in V0). Then V0 ⊆ V1 ⊆ V2 ⊆ · · · .
Figure 1 shows Γm for m = 0, 1, 2 for the standard
SG, and Fig. 2 shows the same for SG with twists.
We consider graph energies Em on Γm. These are
nonnegative bilinear forms on the functions on V0

that are zero exactly on the constants. We write
Em(u) = Em(u, u) for the associated quadratic form,
that determines the bilinear form via polarization
identity Em(u, v) = 1

4

(Em

(
u+v

2

)− Em

(
u−v

2

))
. We

require

Em(u) =
∑
x∼

m
y

c(x, y) (u(x) − u(y))2 (1.3)

for certain positive conductances c(x, y) (we may
interpret the reciprocals c(x, y)−1 as resistances,
and think of the graph as representing an elec-
tric network of resistors with resistances c(x, y)−1

on each edge). This not only guarantees the non-
negativity of the form, but also the Markov property
Em(u) ≤ Em(u) for u(x) = min{max{u(x), 0}, 1}.
We also want two compatibility relations to hold
for this family of energies. The first is that Em−1

should be the restriction of Em to Γm−1, defined as
follows:

Em−1(u) = min Em(ũ) (1.4)

where the minimum is taken over all ũ satisfying
ũ |Vm−1= u (it is easy to see that a unique mini-
mum exists, and the extension ũ that achieves the
minimum is called the harmonic extension). The
second condition is the self-similarity condition

Em(u) =
∑

i

r−1
i Em−1(u ◦ Fi) (1.5)

for a set of resistance renormalization factors {ri}
satisfying 0 < ri < 1. It is easy to see that the initial
energy on Γ0, which can be written

E0(u) =
∑
i<j

cij(u(qi) − u(qj))2, (1.6)



February 14, 2008 21:2 00381

Spectra of Self-Similar Laplacians on the Sierpinski Gasket 45

F q 
0   0

F q 
0   1

F q 
0   2

F q 
2   0

F q 
2   2

F q 
2   1

F q 
1   2

F q 
1   1

F q 
1   0

q 
0

q 
2

q 
1

F F q
0   1   1

F F q
1   0   0 F F q

0   1   2

F F q
1  1   0 F F q

1   2   0

F F q
1   0   2

F F q
1  0   1

F F q
0   0   2

F F q
0   2   1

F F q
0   1   0

F F q
0   0   1

F F q
0   0   0

F F q
0   2   0

F F q
2   1   0

F F q
2   0   1

F F q
2   0   0

F F q
0   2   2

F F q
2   0   2

F F q
2   2   2

F F q
2   2   1

F F q
2   1   2

F F q
2   2   0

F F q
2   1   1

F F q
1  1   1

F F q
1  1   2

F F q
1  2   1

F F q
1  2   2

Fig. 1 Γ0, Γ1, Γ2 for the standard SG.
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Fig. 2 Γ0, Γ1, Γ2 for SG with twists. Note that the two labels for each have the same qj .

and the {ri} determine all Γm inductively via (1.5),
and so the question becomes whether or not (1.4)
holds. It is also easy to see that it suffices to check
(1.4) for m = 1, and if so then it holds for all m by
induction. We refer to (1.4) for m = 1 as the renor-
malization equation. The existence of solutions to
the renormalization equation is a highly non-trivial

problem, and it requires a careful balancing of the
initial conductances and the resistance renormaliza-
tion factors.

Given a solution to the renormalization equation,
it is easy to construct a limiting energy on K:

E(u) = lim
m→∞ Em(u) (1.7)
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because the sequence {Em(u)} is always monotone
increasing. We define the domain dom E to be the
set of continuous functions on K for which E(u) is
finite. It can be shown that dom E modulo constants
forms a Hilbert Space with inner product E(u, v).
The fact the dom E is entirely contained in the space
of continuous functions is one of a constellation of
equivalent properties described as “points have pos-
itive capacity.” This property does not hold for the
standard energy on Euclidean domains in dimen-
sions greater than one. It follows from (1.5) that
the energy E on K is self-similar:

E(u) =
∑

i

r−1
i E(u ◦ Fi). (1.8)

To define a Laplacian we need two ingredients: an
energy E and a measure µ. (Note that in Rieman-
nian geometry, both are derived from the Rieman-
nian metric, but there is no analogous concept on
fractals, and the measure and energy do not have
to be related.) We will consider only self-similar
measures, satisfying the identity

µ =
∑

i

µiµ ◦ F−1
i (1.9)

for a finite set of probabilities {µi}. In fact we will
make the choice

µi = rα
i (1.10)

for the unique α that yields the probability
condition ∑

i

rα
i = 1. (1.11)

Note that this means the parameters {log ri} and
{log µi} are proportional. The Laplacian ∆ is
defined as follows. We say u ∈ dom ∆ and ∆u = f
if u ∈ dom E , f is continuous, and

E(u, v) = −
∫

K
fv dµ ∀v ∈ dom0 E , (1.12)

where dom0 E denotes the subset of domE of func-
tions vanishing on V0. Moreover, we say that u
belongs to the domain of the Neumann Laplacian
if (1.12) holds for all v ∈ domE . It is possible to
describe the Neumann domain in terms of vanishing
of certain normal derivatives of u on the boundary,
but we prefer the above “natural” description. The
Neumann Laplacian has a complete set of eigen-
functions {uj} with eigenvalues {λj} satisfying

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞. (1.13)

This is the spectrum that we study.

The main result of Cucuringu and Strichartz3 is
that the renormalization problem for SG with twists
has a solution for any projective choice of resistance
renormalization factors. That is, given any vector
(r̃0, r̃1, r̃2) in the positive octant in R

3, there exists
a unique λ > 0 such that (r0, r1, r2) = λ(r̃0, r̃1, r̃2)
allows a solution for a unique (up to a constant
multiple) set of initial conductances. The formula
for λ and {cjk} is explicit (involving the solution
of a fourth degree polynomial), and the set of all
solutions (r0, r1, r2) forms a portion of an explicit
algebraic variety of degree six (a set defined by
a polynomial equation of degree six). The choice
(r0, r1, r2) = (3

5 , 3
5 , 3

5 ) yields the standard energy
(all cjk equal) and Laplacian and this is the same
with or without twists. Altogether we get a two-
parameter family of Laplacians (we can take r̃0 = 1
and then use r̃1, r̃2 as parameters). In Sec. 2 we
describe two different methods to approximate the
spectra of these Laplacians, and we present numer-
ical data in some cases. As predicted in Kigami and
Lapidus,7 there is a difference between the lattice
case, where there exists r such that ri = rki for
integers ki (in other words, the values log ri lie in a
lattice subgroup of the reals), and the non-lattice
case, everything else. The eigenvalue counting
function

N(x) = #{j : λj ≤ x} (1.14)

has roughly a power growth xβ, for β the solu-
tion of ∑

i

(riµi)β = 1, (1.15)

but in the non-lattice case we actually have a posi-
tive limit for the Weyl ratio W (x) = N(x)/xβ , while
in the lattice case we have the asymptotics

W (x) = ψ(x) + o(1) x → ∞ (1.16)

where ψ is multiplicatively periodic

ψ(rx) = ψ(x) (1.17)

and bounded on both sides

0 < c1 ≤ ψ(x) ≤ c2 < ∞. (1.18)

In the case of the standard Laplacian we know
that the function ψ is discontinuous, since we can
identify a countable set of jump discontinuities cor-
responding to eigenvalues of high multiplicity. We
have some evidence for the same behavior in the
general lattice case, even though the highest multi-
plicity appears to be 1.
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It is also mentioned in Cucuringu and Strichartz3

that there is a two-parameter family of self-similar
embeddings of SG with twists in the plane. Start
with any acute triangle, with vertices denoted
q0, q1, q2 and corresponding angles α0, α1, α2. Let
F̃i denote the composition of the direct simi-
larity with fixed point qi and contraction ratio
cos αi (denoted ρi), and the reflection with fixed
point qi interchanging the two sides of the trian-
gle that meet at qi. Then the invariant set for
the IFS {F̃i} is homeomorphic to SG with twists,
although it is geometrically quite different from
the standard realization (all ρi = 1

2). Again, the
parameters (ρ0, ρ1, ρ2) lie on an algebraic variety,
namely

ρ2
0 + ρ2

1 + ρ2
2 + 2ρ0ρ1ρ2 = 1. (1.19)

Now, given a self-similar Laplacian with param-
eters (r0, r1, r2) we associate the embedding with
parameters (ρ1, ρ2, ρ3) determined by the condition

ρi = rγ
i for some γ. (1.20)

Note that if we substitute (1.20) in (1.19) we obtain

r2γ
0 + r2γ

1 + r2γ
2 + 2(r0r1r2)γ = 1, (1.21)

which we can solve uniquely for γ. This choice
has the property that it preserves the lattice/non-
lattice dichotomy: if ri = rki then ρi = (rγ)ki

for the same set of integers. Also, the Hausdorff
measure of the embedded K is a constant mul-
tiple of the self-similar measure determined by
(1.10). For these reasons, we believe the correspon-
dence (1.20) is natural. The main conjecture of this
paper is that the method of outer approximation,
applied to the embedding of K, yields the spec-
trum of the self-similar Laplacian (up to a constant
multiple).

The method of outer approximation, introduced
recently in Berry et al.4 involves approximating the
embedded K by a nested sequence of connected
domains Ωn in the plane, so that K =

⋂
n Ωn

in some reasonable way. Then consider the ordi-
nary Neumann Laplacian ∆n on Ωn, and denote
by {λ(n)

j } its spectrum. For certain renormalization
factors sn, we would like to have

lim
n→∞ snλ

(n)
j = cλj . (1.22)

We will present numerical evidence that this is
indeed true. Note that we are not suggesting that
the limit is uniform across the whole spectrum.

Indeed this would be impossible, since {λ(n)
j } obeys

the Weyl asymptotic law for a two-dimensional
domain. What we do see is that some initial seg-
ment of the spectra {λ(n)

j } and {λj} are very close
(after multiplying by a constant) for the relatively
small values of n that we can handle computa-
tionally, and the size of this segment increases
as we increase n. Even as the numerical values
begin to diverge, other qualitative features of the
two spectra seem to agree. In Sec. 3 we describe
in detail our construction of the approximating
regions Ωn. This is a non-trivial problem, because
the obvious domains obtained by deleting trian-
gles from the original triangle are disconnected.
In fact, the method we use here is an improve-
ment over the method used in Berry et al.4 in that
it yields much greater accuracy even in the case
of the standard embedding. In Sec. 4 we present
data comparing the two spectra. In Sec. 5 we dis-
cuss some interesting features of the spectra we
have observed, and pose some problems for future
research.

Related ideas have been studied in the context of
quantum graphs (see Kuchment and Zeng8 and the
references therein).

2. COMPUTING THE SPECTRUM
OF A SELF-SIMILAR
LAPLACIAN

Fix the values (r0, r1, r2) and associated {cij}, and
consider the Laplacian defined by (1.12). The first
method we use for computing its spectrum is based
on what we call the pointwise formula of Kigami.
Let ψ

(m)
x denote the piecewise harmonic function on

level m satisfying

ψ(m)
x (y) = δxy for all y ∈ Vm. (2.1)

In other words, ψ
(m)
x minimizes energy among all

functions satisfying (2.1). If we put v = ψ
(m)
x in

(1.12) we obtain∫
K

(∆u)ψ(m)
x dµ =

∑
x∼

m
y

c(x, y)(u(y) − u(x)) (2.2)

(this uses (1.3) and the fact that E(u, ψ
(m)
x ) =

Em(u, ψ
(m)
x )). We approximate the left side of (2.2)

by ∆u(x)µm(x) for

µm(x) =
∫

ψ(m)
x dµ. (2.3)



February 14, 2008 21:2 00381

48 A. Blasiak et al.

This leads us to define a graph Laplacian on Γm by

∆mu(x) = µm(x)−1
∑
x∼

m
y

c(x, y)(u(y) − u(x)).

(2.4)

(for x ∈ Vm\V0 there are four summands, and for
x ∈ V0 there are two summands). For u ∈ dom ∆ it
follows that

∆u = lim
m→∞∆mu on V ∗\V0 (2.5)

where V ∗ =
⋃

Vm, and the limit is uniform. Note
that ∆m is a self-adjoint operator with respect to
the inner product

〈u, v〉m =
∑

x∈Vm

u(x)v(x)µm(x), (2.6)

so it is represented by a symmetric matrix, hence
it has a complete set of eigenvectors. Since −∆m is
non-negative we write

−∆mu
(m)
j = λ

(m)
j u

(m)
j with (2.7)

0 = λ
(m)
0 < λ

(m)
1 ≤ · · · ≤ λ

(m)
Nm

(2.8)

(here Nm + 1 = #Vm). The functions u
(m)
j are

initially defined only on Vm, but we may extend
them to be piecewise harmonic on K. The spectrum
(1.13) on K is then given by

λj = lim
m→∞λ

(m)
j . (2.9)

Experimental evidence indicates that this is an
increasing limit. For the standard Laplacian
(r0, r1, r2) = (3

5 , 3
5 , 3

5), the graph eigenvalues λ
(m)
j

may also be described by the method of spec-
tral decimation, which easily implies that (2.9) is
increasing. We do not know an argument for this in
the general case. It is also true that the eigenfunc-
tions u

(m)
j converge to the eigenfunctions uj on K,

provided one makes reasonable choices of u
(m)
j .

It is straightforward to compute the spectrum of
the sparse symmetric matrix ∆m (provided we do
not take the value of m too large). The values of the
conductances c(x, y) are determined by (1.5) and
(1.6), explicitly

c(Fwqi, Fwqj) = r−1
w cij if |w| = m, (2.10)

where rw = rw1 · · · rwm . We also need to compute
the values for µm(x). Note that each ψ

(m)
x is sup-

ported on two m-cells for x ∈ Vm\V0, and one m-cell

for x ∈ V0. In the first case, if x = Fwqj = Fw′qj′ ,
then by self-similarity∫

ψ(m)
x dµ = µw

∫
ψ(0)

qj
dµ + µw′

∫
ψ

(0)
q′j

dµ, (2.11)

where µw = µw1 · · ·µwm. In the second case∫
ψ(m)

qj
dµ = (µj)m

∫
ψ(0)

qj
dµ. (2.12)

This reduces the problem to the m = 0 case; in
other words, the integration of harmonic functions.

We solve this problem using self-similarity,
namely∫

ψ(0)
qj

dµ =
∑

i

µi

∫
ψ(0)

qj
◦ Fi dµ (2.13)

[this follows from (1.9)]. We can write ψ
(0)
qj ◦ Fi as

an explicit linear combination of ψ
(0)
qk obtained from

the minimizing property of E1(ψ
(0)
qj ). This gives a

redundant set of three homogeneous linear equa-
tions. We also know∑

j

∫
ψ(0)

qj
dµ = 1 (2.14)

because
∑

j ψ
(0)
qj ≡ 1, and then we can solve for the

integrals.
The second method we use is a fractal version

of the finite element method (FEM) using piece-
wise harmonic splines. For the standard Lapla-
cians this is described in detail in Gibbons et al.,9

based on a discussion of spline spaces in Stricharz
and Usher.10 (These works also discuss piecewise
biharmonic splines (the analog of cubic polynomial
splines) that yield greater accuracy, but in the gen-
eral context the difficulties involved in doing this are
much greater.) The idea is to approximate functions
on K by piecewise harmonic functions of level m,
determined by values on Vm simply by

u =
∑

x∈Vm

u(x)ψ(m)
x . (2.15)

Then E(u, ψ
(m)
x ) = Em(u, ψ

(m)
x ) is still given by the

right side of (2.2), but the left side is now∫
K

(∆u)ψ(m)
x dµ =

∑
y∈Vm

∆u(y)
∫

K
ψ(m)

y ψ(m)
x dµ.

(2.16)

We define the Gram matrix of level m

Gm(x, y) =
∫

K
ψ(m)

y ψ(m)
x dµ. (2.17)

Note that G is symmetric and sparse, since the
product ψ

(m)
y ψ

(m)
x is zero unless either x = y or
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x∼
m

y. So our FEM approximation to the eigenvalue
problem is the generalized eigenvalue equation

−
∑
x∼

m
y

c(x, y) (u(y) − u(x)) = λ
∑

y

Gm(x, y)u(y).

(2.18)

(Note that it would be foolish to multiply by the
inverse of the Gram matrix, even though it is invert-
ible, because then we would obtain an eigenvalue
equation for a matrix that is neither symmetric nor
sparse.) To make this explicit we need to compute
the Gram matrix.

If x∼
m

y then x = Fwqj and y = Fwqk for j = k

and some word w with |w| = m. It is easy to see
that the product ψ

(m)
y ψ

(m)
x is supported in FwK,

and so

Gm(x, y) =
∫

FwK
ψ(m)

y ψ(m)
x dµ

= µw

∫
ψ(0)

qj
ψ(0)

qk
dµ. (2.19)

On the other hand, if x = y ∈ Vm\V0, then x =
Fwqj = Fw′qj′ and (ψ(m)

x )2 is supported on the
union of the two cells FwK and Fw′K. Thus

Gm(x, x) =
∫

FwK
(ψ(m)

x )2 dµ +
∫

Fw′K
(ψ(m)

x )2 dµ

= µw

∫
K

(ψ(0)
qj

)2 dµ + µw′

∫
K

(ψ(0)
qj′ )

2 dµ.

(2.20)

Finally, if x = y = qj, then

Gm(qj, qj) = (µj)m
∫ (

ψ(0)
qj

)2
dµ (2.21)

so we have reduced the computation to the case
m = 0. Then we can use essentially the same
method as we used to compute the integrals∫

ψ
(0)
qj dµ. The analogy of (2.13) is

G0(qj, qk) =
∑

i

µi

∫
(ψ(0)

qj
◦ Fi)(ψ(0)

qk
◦ Fi) dµ

(2.22)

and we can express the right side of (2.22) as an
explicit linear combination of entries of the Gram
matrix. This gives us homogeneous linear equations
for the entries, and we complete the story by using
the inhomogeneous identity∑

j

∑
k

G0(qj, qk) = 1 (2.23)

and solving.

We denote by ũ
(m)
j and λ̃

(m)
j the solutions to

(2.18), with

0 = λ̃
(m)
0 < λ̃

(m)
1 ≤ · · · ≤ λ̃

(m)
Nm

. (2.24)

We again have

λj = lim
m→∞ λ̃

(m)
j , (2.25)

but this time the limit is decreasing. We get a good
estimate of λj by averaging λ

(m)
j and λ̃

(m)
j . Rather

than a fair average, we use the estimate

λj ≈ 0.625λ(m)
j + 0.375λ̃(m)

j (2.26)

since this gives greater accuracy in the case of the
standard Laplacian, where the exact values of the
λj are known via spectral decimation.

The complete algorithms and computer code
may be found on the website www.math.
cornell.edu/˜reu/twist. The actual computations
use a variable depth level decomposition, rather
than the uniform depth level described above, in
order to increase accuracy.

In Table 1 we present the data for the val-
ues of λ

(m)
j , λ̃

(m)
j and λj [via (2.26)] for three

levels of approximation and j ≤ 40, for the
choice (r0, r1, r2) = (0.7267, 0.5281, 0.5281). This
is the lattice case example with (k0, k1, k2) =
(1, 2, 2). In Table 2 we present the data for
(r0, r1, r2) = (0.7338, 0.6604, 0.3669), a non-lattice
case. In Figs. 3 to 6 we display the graphs of N(x)
and W (x) for these two Laplacians. Figures 7 to
10 show the same graphs for a selection of other
Laplacians.

3. SELF-SIMILAR EMBEDDINGS
AND OUTER APPROXIMATION

Fix a value of (ρ0, ρ1, ρ2) on the surface (1.19),
and let T be a triangle with vertices (q0, q1, q2) and
angles (α0, α1, α2) such that ρj = cos αj (note that
(1.19) guarantees α0 + α1 + α2 = π). Let {F̃i}
be the IFS where F̃i fixes qi, contracts by ρi and
reflects about the angle bisector at qi. The invari-
ant set is a self-similar embedding of SG with twists
in the plane. Figure 11 shows a selection of exam-
ples decomposed in m-cells for fixed m. Because
these cells are of varying sizes, these are rather poor
approximations of the fractals. In Fig. 12 we show
the same examples decomposed into cells of varying
levels but of approximately the same size (we choose
a value of ε and decompose cells of diameter greater
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Table 1 (r0, r1, r2) = (0.7267, 0.5281, 0.5281).

λ̃j
(m) λj

(m) λj λ̃j
(m) λj

(m) λj λ̃j
(m) λj

(m) λj

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17.8800 17.8714 17.8746 17.8765 17.8734 17.8745 17.8752 17.8741 17.8745

28.2587 28.2372 28.2453 28.2499 28.2421 28.2450 28.2467 28.2439 28.2450

65.2279 65.1139 65.1566 65.1812 65.1395 65.1551 65.1642 65.1491 65.1548

115.6214 115.2560 115.3930 115.4746 115.3438 115.3928 115.4215 115.3741 115.3919

147.0196 146.4504 146.6638 146.7808 146.5703 146.6492 146.6952 146.6184 146.6472

181.2605 180.4047 180.7256 180.9004 180.5817 180.7012 180.7700 180.6534 180.6971

221.1196 219.7966 220.2927 220.5799 220.1025 220.2815 220.3869 220.2139 220.2788

265.2214 263.2893 264.0139 264.4486 263.7595 264.0179 264.1709 263.9222 264.0155

276.3321 274.2077 275.0043 275.4972 274.7465 275.0280 275.1952 274.9253 275.0265

359.5113 355.9336 357.2752 358.1030 356.8345 357.3102 357.5927 357.1367 357.3077

478.7636 473.1080 475.2288 476.2579 474.1026 474.9109 475.3554 474.5551 474.8552

499.1229 493.0505 495.3276 496.3990 494.0686 494.9425 495.4185 494.5501 494.8758

536.6801 529.7402 532.3427 533.5311 530.8525 531.8570 532.3984 531.3970 531.7725

686.7001 674.5743 679.1215 681.5785 677.1063 678.7834 679.7330 678.0943 678.7088

702.5382 689.8152 694.5864 697.1812 692.4969 694.2535 695.2504 693.5356 694.1787

806.6381 787.7354 794.8239 799.6767 793.1586 795.6029 797.1435 794.8537 795.7123

808.2782 789.7977 796.7279 801.2684 794.8080 797.2307 798.7239 796.4335 797.2924

919.9874 896.0437 905.0226 910.8672 902.4954 905.6348 907.5954 904.6335 905.7442

923.6215 899.5941 908.6044 914.4184 905.9999 909.1568 911.1221 908.1391 909.2577

1008.7511 980.3304 990.9882 997.8731 987.8752 991.6244 993.9360 990.3872 991.7180

1257.3699 1220.7875 1234.5059 1239.9151 1225.9427 1231.1824 1233.8532 1228.5685 1230.5502

1296.3910 1256.5853 1271.5124 1277.8063 1262.7760 1268.4124 1271.3906 1265.7557 1267.8688

1348.9044 1307.2377 1322.8627 1329.0511 1313.1263 1319.0981 1322.0443 1315.9985 1318.2657

1397.1953 1353.8571 1370.1090 1375.8198 1359.0483 1365.3376 1368.3032 1361.8686 1364.2815

1422.3259 1377.1216 1394.0732 1400.0745 1382.6418 1389.1791 1392.3139 1385.6439 1388.1452

1502.4179 1453.1245 1471.6095 1477.6566 1458.5028 1465.6855 1468.9847 1461.6011 1464.3699
1841.4054 1754.6837 1787.2043 1804.7431 1773.3331 1785.1118 1792.0376 1780.6548 1784.9234
1850.9681 1764.3894 1796.8564 1813.8533 1782.3523 1794.1652 1801.0101 1789.5466 1793.8454
1929.5883 1838.3841 1872.5857 1889.7961 1856.3779 1868.9097 1875.7082 1863.3939 1868.0118
1941.4494 1851.0859 1884.9722 1900.9815 1867.6137 1880.1266 1886.7125 1874.3218 1878.9683
1975.4023 1879.7035 1915.5905 1933.7700 1898.6969 1911.8494 1919.0249 1906.1217 1910.9604
2129.4149 2004.9353 2051.6151 2082.0583 2037.7987 2054.3961 2065.2259 2049.6973 2055.5205
2130.0107 2005.7800 2052.3665 2082.6036 2038.3901 2054.9702 2065.7591 2050.2332 2056.0554
2270.9767 2122.6787 2178.2905 2218.9891 2166.7101 2186.3147 2199.8601 2181.8863 2188.6265
2273.0940 2126.5859 2181.5264 2220.7568 2168.9462 2188.3752 2201.5753 2183.6654 2190.3816
2276.5298 2133.0709 2186.8680 2223.6189 2172.5861 2191.7234 2204.3517 2186.5477 2193.2242
2280.0523 2139.3316 2192.1019 2226.5704 2176.2883 2195.1441 2207.2162 2189.5151 2196.1531
2750.6012 2549.7860 2625.0917 2673.5840 2600.9057 2628.1601 2645.8315 2620.2812 2629.8626
2783.0586 2577.7112 2654.7165 2704.2257 2629.8873 2657.7642 2675.8475 2649.7132 2659.5136
2843.0336 2629.2279 2709.4051 2760.8223 2683.3014 2712.3717 2731.2711 2704.0257 2714.2427

than ε). We will use these types of approximations.
In Fig. 13 we show a sequence of decompositions for
a single fractal with varying diameter size.

We write such a cell decomposition

K =
⋃

w∈P
FwK (3.1)

where P is the approximate set of words, called
a partition. A natural choice of approximating

domains would be Ω′ =
⋃

w∈P FwT 0, where T 0

denotes the interior of the triangle, but these
domains are not connected. We need a slight mod-
ification to obtain connectivity. In Berry et al.,4

the triangle T was enlarged slightly, but we found
a method that yields much greater accuracy in
the case (ρ0, ρ1, ρ2) = (1

2 , 1
2 , 1

2) (the equilateral tri-
angle case), and in all cases appear to converge
rapidly. The idea is that we view the domain Ω′
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Table 2 (r0, r1, r2) = (0.7338, 0.6604, 0.3669).

λ̃j
(m) λj

(m) λj λ̃j
(m) λj

(m) λj λ̃j
(m) λj

(m) λj

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16.3804 16.3793 16.3797 16.3818 16.3785 16.3798 16.3839 16.3768 16.3795

35.5030 35.4978 35.4997 35.5095 35.4946 35.5002 35.5247 35.4920 35.5043

65.2675 65.2493 65.2561 65.2881 65.2359 65.2555 65.3342 65.2221 65.2641

90.2505 90.2161 90.2290 90.2908 90.1936 90.2300 90.3904 90.1730 90.2545

132.4827 132.4073 132.4356 132.5724 132.3671 132.4441 132.7838 132.3382 132.5053

177.5597 177.4208 177.4729 177.7201 177.3638 177.4974 178.0187 177.2258 177.5231

220.7979 220.5859 220.6654 221.0348 220.4920 220.6955 221.6204 220.3627 220.8343

281.8900 281.5532 281.6795 282.2442 281.3656 281.6951 283.2622 281.2348 281.9950

306.6400 306.2239 306.3799 307.1151 305.9501 306.3870 308.2206 305.6620 306.6215

357.9062 357.3631 357.5667 358.5884 357.1628 357.6974 360.0949 356.7671 358.0150

426.7751 426.0185 426.3023 427.7322 425.6633 426.4391 429.5689 424.5419 426.4270

500.1202 499.0765 499.4679 501.3565 498.4569 499.5442 503.4926 496.7290 499.2653

552.0122 550.7229 551.2064 553.5409 549.9789 551.3147 556.3789 547.9929 551.1376

605.3365 603.8243 604.3914 607.0356 602.6262 604.2797 610.8727 600.9435 604.6669

641.5373 639.7384 640.4130 643.6870 638.4444 640.4104 647.6073 635.6317 640.1225

756.3415 753.9129 754.8236 759.1844 752.4937 755.0027 766.0254 750.6742 756.4309

843.3138 840.5031 841.5571 846.4076 838.7120 841.5978 854.2820 834.9364 842.1910

863.0294 859.6930 860.9441 866.8643 857.2380 860.8479 875.2884 853.9541 861.9544

878.5461 875.4711 876.6242 882.1249 874.1189 877.1212 889.9780 869.9759 877.4767

990.9869 986.8295 988.3885 996.2592 984.7015 989.0356 1006.1707 979.4493 989.4698

1096.0205 1090.9141 1092.8290 1100.8193 1085.9383 1091.5187 1114.6116 1080.5568 1093.3274

1111.6527 1106.2101 1108.2511 1117.6027 1101.7473 1107.6931 1130.7913 1098.7809 1110.7848

1235.4963 1229.2180 1231.5724 1242.4609 1223.8202 1230.8104 1258.6365 1212.6836 1229.9159

1256.4263 1249.4473 1252.0644 1263.8498 1242.6374 1250.5920 1280.8782 1237.4449 1253.7324

1380.4791 1372.3928 1375.4252 1389.3408 1366.3397 1374.9651 1407.8261 1355.9379 1375.3960

1411.9799 1403.1063 1406.4339 1421.8980 1396.8325 1406.2320 1446.8633 1390.4549 1411.6080

1523.5362 1513.4596 1517.2383 1534.2922 1501.8572 1514.0203 1559.9651 1501.7996 1523.6117

1657.2989 1645.2975 1649.7980 1669.5041 1632.8941 1646.6229 1704.3776 1633.6382 1660.1655

1665.0351 1653.5189 1657.8375 1678.0810 1644.8105 1657.2869 1712.5745 1640.9691 1667.8211

1762.1746 1747.6708 1753.1098 1778.0023 1733.4075 1750.1305 1812.9998 1729.7285 1760.9553

1848.6627 1834.4040 1839.7510 1865.0790 1825.3714 1840.2617 1895.7809 1807.1852 1840.4086

2095.7995 2077.6256 2084.4408 2116.1659 2060.2428 2081.2139 2175.8912 2061.4757 2104.3815

2128.4786 2109.9667 2116.9087 2147.7975 2094.8389 2114.6984 2200.8704 2081.1648 2126.0544

2203.7062 2184.5137 2191.7109 2225.4533 2163.9479 2187.0124 2284.4387 2150.9213 2200.9903

2323.4719 2302.4326 2310.3223 2347.5030 2289.0945 2310.9977 2419.2436 2290.9668 2339.0706

2365.3176 2338.8206 2348.7570 2395.9989 2323.3185 2350.5737 2469.8033 2317.2230 2374.4406

2382.1086 2360.6403 2368.6909 2406.3171 2343.3888 2366.9869 2480.0067 2338.7577 2391.7261

2407.5911 2385.4914 2393.7788 2434.4478 2369.7882 2394.0355 2500.6108 2359.1340 2412.1878

2484.4108 2459.2506 2468.6857 2511.3782 2434.7877 2463.5091 2585.6470 2404.3356 2472.3274

2654.2548 2622.9905 2634.7146 2689.0682 2595.4934 2630.5840 2772.8002 2575.7586 2649.6492

subtractively, as T 0 with some closed triangles
removed, Ω′ = T 0\∪Tj . We then clip off little neigh-
borhoods of the vertices of each Tj to get T ′

j ⊂ Tj ,
and take Ω = T 0\∪ T ′

j . The clipped-off neighbor-
hoods create little passages that make Ω connected.
To do this in a uniform fashion we choose a small
parameter δ, and near a vertex of Tj with angle θ

we inscribe a circle of radius δ tan θ/2 (so the dis-
tance from the circle to the vertex along the edges
is δ), and we remove the region between the circle
and the vertex. We choose δ to be constant over
all triangles Tj , but it will vary with the approx-
imation. This is illustrated in Fig. 14 that shows
the standard gasket with the inscribed circles and
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Fig. 3 The graph of N(x) for (r0, r1, r2) = (0.7267,
0.5281, 0.5281).
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Fig. 4 The graph of W (x) versus log x for (r0, r1, r2) =
(0.7267, 0.5281, 0.5281).

Fig. 15 that shows the approximation of the stan-
dard gasket. (For the actual Matlab FEM routine
we use polygonal approximations to the circle arcs.)

We choose a decreasing sequence {εn} of
maximum diameter cut-offs and a corresponding
sequence {δn} to yield a sequence of connected
domains Ωn. Let

0 = λ
(n)
0 < λ

(n)
1 ≤ · · · (3.2)

denote the eigenvalues of the Neumann Laplacian
on Ωn, with corresponding eigenfunctions

−∆u
(n)
j = λ

(n)
j u

(n)
j . (3.3)
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Fig. 5 The graph of N(x) for (r0, r1, r2) = (0.7338,
0.6604, 0.3669).
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Fig. 6 The graph of W (x) versus log x for (r0, r1, r2) =
(0.7338, 0.6604, 0.3669).

The premise of the method of outer approximation
is that there exist appropriate renormalization fac-
tors sn such that snλ

(n)
j converges as n → ∞ for

each j, and the eigenfunctions u
(n)
j restricted to K

also converge (again after proper normalization).
Our numerical data supports this premise. If the
Ωn are chosen appropriately, it may be true that
we can take sn = sn for some s, but we do not have
enough data to support this idea. In the standard
case, the renormalization factors tend to infinity,
but in other cases they tend to zero. (This is based
on data for small values of j.) Presumably there will
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Fig. 7 The graph of N(x) for (r0, r1, r2) = (0.6652,
0.5654, 0.5654).
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Fig. 8 The graph of W (x) versus log x for (r0, r1, r2) =
(0.6652, 0.5654, 0.5654).

be some values of (ρ0, ρ1, ρ2) where we can take all
sn = 1, but our data is not accurate enough to pin
down such values.

To avoid dealing with the renormalization fac-
tors, we renormalize all spectra by computing the
values λ

(n)
j /λ

(n)
1 , so the first renormalized eigenvalue

is always 1. In Tables 3 and 4 we present these val-
ues for these successive Ωn for two different choices
of (ρ0, ρ1, ρ2). The first is a lattice case example
with (k0, k1, k2) = (1, 2, 2), and the second is a non-
lattice case. The data is obtained by using the Mat-
lab FEM solver, which automatically triangulates
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Fig. 9 The graph of N(x) for (r0, r1, r2) = (1, 0.4, 0.65).
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Fig. 10 The graph of W (x) versus log x for (r0, r1, r2) =
(0.8371, 0.5441, 0.3348).

the region and uses piecewise linear splines. One
such triangulation is shown in Fig. 16.

Matlab is also able to refine the chosen triangula-
tion to increase accuracy, at the expense of greater
running time. Note that this FEM is not the same
as the FEM used in Sec. 2, but it also has the prop-
erty that it approximates from above.

Tables 5 and 6 report the ratios λ
(n+1)
j /λ

(n)
j for

the unnormalized eigenvalue approximations for the
two examples. More data may be found on the web-
site www.math.cornell.edu/˜reu/twist.
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Fig. 11 SG decomposed in m-cells for fixed m = 6.

Fig. 12 SG decomposed into cells of approximately the same size.

Fig. 13 A sequence of decompositions for a single fractal with varying diameter size.

4. COMPARISON OF SPECTRA

In order to compare spectra from the fractal Lapla-
cian and the outer approximation method, we
renormalize all spectra by dividing by the first
nonzero eigenvalue. We already did this in Sec. 3. In
Sec. 2 we reported unnormalized eigenvalues, since
the Laplacian has an exact spectrum. However, the
energy is only characterized up to a constant mul-
tiple, so it is not clear that the particular choice of
initial conductances {cjk} that we used are in any

way natural or canonical. For that reason we are not
really losing any significant information when we
renormalize the spectrum. In all cases we start with
parameters (r0, r1, r2) for the fractal Laplacian and
compute the corresponding parameters (ρ0, ρ1, ρ2)
via (1.20) and (1.21).

In Table 7 we give the best approximation of
an initial segment of the two spectra for the
standard Laplacian (r0, r1, r2) = (3

5 , 3
5 , 3

5) and
(ρ0, ρ1, ρ2) = (1

2 , 1
2 , 1

2 ). The same data is shown
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Fig. 14 The standard gasket with inscribed circles.

graphically in Fig. 17. Note that even when the
numerical values differ noticeably, there is still a
qualitative similarity in the graphs. The numerical
agreement here is much stronger than the results

Table 3 Outer approximation for Successive Ωn for Lattice Case with (k0, k1, k2) = (1, 2, 2) Using
the Third Mesh Refinement.

k λ
(1)
k λ

(2)
k λ

(3)
k k λ

(1)
k λ

(2)
k λ

(3)
k

for ε1 = 0.1 for ε2 = 0.05 for ε3 = 0.025 for ε1 = 0.1 for ε2 = 0.05 for ε3 = 0.025

2 3.0054 3.0036 3.1016 27 230.1850 244.0057 253.8197
3 4.8254 4.7911 4.9374 28 271.2435 298.7589 310.9698
4 10.8394 10.9002 11.3142 29 273.0022 300.3190 312.5188
5 19.8155 19.6045 20.1156 30 288.8534 311.1107 325.3433
6 24.2714 24.5793 25.5962 31 291.1689 312.6618 326.9210
7 29.7269 30.0137 31.3957 32 293.3271 318.3030 332.2885
8 37.1844 37.3817 38.5511 33 297.1452 347.8540 359.3666
9 44.4833 44.6698 45.9081 34 297.5306 347.9483 359.8783

10 46.6469 46.6344 47.8094 35 305.1095 366.0712 380.6041
11 60.1017 60.5395 62.2619 36 306.7676 366.5043 380.6949
12 79.0952 78.4946 82.5405 37 310.9881 367.1052 381.5178
13 82.3826 81.6028 85.9900 38 312.5521 367.1295 381.9275
14 88.4365 87.6016 92.4321 39 362.6193 437.4344 457.4669
15 112.9808 113.1100 118.1953 40 365.5773 442.0996 462.6731
16 115.8304 115.8378 120.9950 41 371.1921 451.8689 472.8840
17 133.8250 133.7415 138.3605 42 374.0436 457.9557 479.9252
18 134.6725 134.5194 138.9148 43 377.7701 465.0813 487.4827
19 150.8885 152.4357 157.8633 44 699.7585 561.9619 616.4579
20 151.5526 153.2330 158.8763 45 706.3876 571.4931 627.2202
21 165.4861 166.0872 173.0456 46 715.4798 578.6869 634.3195
22 193.8871 205.3829 213.6537 47 715.8576 579.4500 636.9564
23 200.3061 211.7301 220.1937 48 741.1138 594.7465 651.7928
24 206.5024 219.8432 228.7570 49 743.5864 596.2774 653.8485
25 214.0529 227.6267 236.7381 50 745.7984 616.4991 675.9083
26 218.2697 231.8121 240.9795

Fig. 15 Outer approximation of the standard gasket.

in Berry et al.,4 which used a different sequence of
approximating domains.

In Tables 8 and 9 and Figs. 18 and 19 we
give the same data for two more lattice cases. In
Tables 10 and 11 and the corresponding Figs. 20
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Table 4 Outer Approximation for Successive Ωn for Non-Lattice Case with (r0, r1,
r2) = (0.6407, 0.6407, 0.5126).

k λ
(1)
k λ

(2)
k λ

(3)
k k λ

(1)
k λ

(2)
k λ

(3)
k

for ε1 = 0.1 for ε2 = 0.05 for ε3 = 0.025 for ε1 = 0.1 for ε2 = 0.05 for ε3 = 0.025

2 3.3412 3.2772 3.4351 27 257.6586 258.436 291.2836
3 4.4268 4.4799 4.6754 28 279.2622 288.9922 329.7366
4 14.4917 15.7453 16.3976 29 290.7262 302.8475 342.196
5 15.3958 16.2011 16.9859 30 295.8093 306.9612 347.2723
6 21.1689 21.4397 22.3647 31 308.2649 317.3786 358.1169
7 35.4676 33.0958 34.6485 32 309.9739 327.6054 358.8984
8 40.9223 42.1461 44.2842 33 311.4715 334.0112 367.5322
9 46.3538 43.3581 44.7699 34 318.4612 336.2633 369.8387

10 59.6418 61.0546 67.2832 35 326.6663 363.5218 374.807
11 62.1507 62.3431 68.1003 36 327.9416 365.2178 375.0562
12 72.6398 75.4552 82.8393 37 331.0148 370.4838 380.981
13 80.514 80.6803 86.1174 38 344.8075 401.1682 418.9393
14 89.362 86.9142 91.2267 39 345.5013 402.2135 419.5983
15 98.6675 96.0501 101.3358 40 566.7065 549.9809 562.3849
16 134.3273 143.1652 143.0577 41 569.0164 550.8086 564.1144
17 135.0787 144.2425 144.1883 42 574.3514 555.8709 569.6954
18 157.4237 165.2669 167.8939 43 575.881 557.001 571.6285
19 161.2369 168.6998 178.4038 44 593.7856 637.7689 647.654
20 164.7817 170.4516 180.0923 45 599.0171 640.4132 656.0964
21 173.8276 186.1656 184.3523 46 601.365 647.4029 662.7673
22 175.1665 189.2562 185.7811 47 605.6756 649.8289 669.0267
23 178.0961 193.2652 186.5998 48 621.4816 664.8719 705.3707
24 245.5395 246.1592 281.7031 49 624.2777 670.5822 713.2526
25 249.2688 250.8471 282.6705 50 630.5624 675.9373 721.2077
26 251.9542 253.5524 287.2007

Fig. 16 A triangulation.

and 21 we give the same data for two non-lattice
cases. We see differences of no more than 2% for
close to 100 eigenvalue, with most differences much
smaller. More data may be found on the website
www.math.cornell.edu/˜reu/twist.

5. FEATURES OF THE SPECTRA

The spectrum of the standard Laplacian is quite
striking, featuring both high multiplicities and
large gaps. The high multiplicities, associated with
the existence of localized eigenfunctions, may be
explained in two ways, either by spectral decimation
Fukushima and Shima,11 or by the existence of a
nonabelian symmetry group Barlow and Kigami.12

Spectral decimation also explains large gaps. See
Adams et al.13 for numerical approximations to the
spectrum of the standard Laplacian on the pen-
tagasket. This is an example where spectral dec-
imation is known to fail Shima,14 but there is a
dihedral-5 symmetry group. The data shows both
high multiplicities and large spectral gaps, but as
yet there is no proof of the existence of the gaps.

Neither feature is possible in the non-lattice case7

because the Weyl ratio has a limit. We do not see
evidence of multiplicities greater than 1 in any of
the lattice cases. We see some evidence of large
spectral gaps, but they are not large enough to be
convincing. The precise question here is whether
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Table 5 Ratios λ
(n+1)
j /λ

(n)
j of the Unnormalized Eigenvalue Approximations from

the Outer Approximation Method with the Second Mesh Refinement for Lattice Case
with (k0, k1, k2) = (1, 2, 2).

k λ
(2)
k /λ

(1)
k λ

(3)
k /λ

(2)
k k λ

(2)
k /λ

(1)
k λ

(3)
k /λ

(2)
k k λ

(2)
k /λ

(1)
k λ

(3)
k /λ

(2)
k

2 1 1.03 19 1.01 1.04 36 1.19 1.04
3 0.99 1.03 20 1.01 1.04 37 1.18 1.04
4 1.01 1.04 21 1 1.04 38 1.17 1.04
5 0.99 1.03 22 1.06 1.04 39 1.21 1.05
6 1.01 1.04 23 1.06 1.04 40 1.21 1.05
7 1.01 1.05 24 1.06 1.04 41 1.22 1.0
8 1.01 1.03 25 1.06 1.04 42 1.22 1.0
9 1 1.03 26 1.06 1.04 43 1.23 1.0

10 1 1.03 27 1.06 1.04 44 0.8 1.1
11 1.01 1.03 28 1.1 1.04 45 0.81 1.1
12 0.99 1.05 29 1.1 1.04 46 0.81 1.1
13 0.99 1.05 30 1.08 1.05 47 0.81 1.1
14 0.99 1.06 31 1.07 1.05 48 0.8 1.1
15 1 1.05 32 1.09 1.04 49 0.8 1.1
16 1 1.04 33 1.17 1.03 50 0.83 1.1
17 1 1.03 34 1.17 1.03
18 1 1.03 35 1.2 1.04

Table 6 Ratios λ
(n+1)
j /λ

(n)
j of the Unnormalized Eigenvalue Approximations from

the Outer Approximation Method with the Zero Mesh Refinement for Non-Lattice
Case with (r0, r1, r2) = (0.6407, 0.6407, 0.5126).

k λ
(2)
k /λ

(1)
k λ

(3)
k /λ

(2)
k k λ

(2)
k /λ

(1)
k λ

(3)
k /λ

(2)
k k λ

(2)
k /λ

(1)
k λ

(3)
k /λ

(2)
k

2 0.98 1.05 19 1.05 1.06 36 1.11 1.03
3 1.01 1.04 20 1.03 1.06 37 1.12 1.03
4 1.09 1.04 21 1.07 0.99 38 1.16 1.04
5 1.05 1.05 22 1.08 0.98 39 1.16 1.04
6 1.01 1.04 23 1.09 0.97 40 0.97 1.02
7 0.93 1.05 24 1 1.14 41 0.97 1.02
8 1.03 1.05 25 1.01 1.13 42 0.97 1.02
9 0.94 1.03 26 1.01 1.13 43 0.97 1.03

10 1.02 1.1 27 1 1.13 44 1.07 1.02
11 1 1.09 28 1.03 1.14 45 1.07 1.02
12 1.04 1.1 29 1.04 1.13 46 1.08 1.02
13 1 1.07 30 1.04 1.13 47 1.07 1.03
14 0.97 1.05 31 1.03 1.13 48 1.07 1.06
15 0.97 1.06 32 1.06 1.1 49 1.07 1.06
16 1.07 1 33 1.07 1.1 50 1.07 1.07
17 1.07 1 34 1.06 1.1
18 1.05 1.02 35 1.11 1.03

there exists a constant s > 0 such that
λj+1 − λj

λj
≥ s for infinitely many j. (5.1)

For the standard Laplacian this is valid for a value
of s > 1. We see many gaps with a value around
s = 0.1, but gaps of this size also show up in some
non-lattice cases. Indeed, it is difficult to distinguish

between the two cases from our data. Of course,
both lattice and non-lattice cases are dense in the
set of parameters, but the point is that only lattice
cases with relatively small values of {ki} should be
distinguishable with the precision level of compu-
tation we must accept, and these are few and far
between.
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Table 7 Comparison of Normalized Eigenvalues for the Outer Approximation
and FEM methods. Standard Case with (r0, r1, r2) = (3

5 , 3
5 , 3

5 ).

k λk λk k λk λk k λk λk

2 1.0000 1.0000 19 40.5196 40.4470 36 125.0003 124.7427
3 1.0000 1.0045 20 40.5196 40.5237 37 125.0003 124.8172
4 5.0000 4.9977 21 40.5196 40.6524 38 125.0003 124.8330
5 5.0000 5.0023 22 49.0160 48.9594 39 125.0003 124.9187
6 5.0000 5.0226 23 49.0160 49.0677 40 125.0003 124.9887
7 8.1039 8.0993 24 51.5278 51.4582 41 125.0003 125.2686
8 8.1039 8.1309 25 51.5278 51.5372 42 125.0003 125.3296
9 10.3056 10.3160 26 51.5278 51.5621 43 158.9238 158.3860

10 25.0000 24.9481 27 51.5278 51.6117 44 158.9238 158.4357
11 25.0000 24.9571 28 125.0003 124.3883 45 158.9238 158.5192
12 25.0000 24.9661 29 125.0003 124.4808 46 158.9238 158.6953
13 25.0000 25.0045 30 125.0003 124.4808 47 162.6063 162.1174
14 25.0000 25.0248 31 125.0003 124.5440 48 162.6063 162.1693
15 25.0000 25.1061 32 125.0003 124.6095 49 175.6999 174.9481
16 31.7847 31.7878 33 125.0003 124.6479 50 175.6999 175.1490
17 35.1398 35.0813 34 125.0003 124.6749
18 35.1398 35.2054 35 125.0003 124.6862
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Fig. 17 Comparison of normalized eigenvalues for the
outer approximation and FEM methods. Standard case with
(r0, r1, r2) = ( 3

5 , 3
5 , 3

5 ).

The existence of spectral gaps is significant, since
they imply (in the presence of sub-Gaussian heat
kernel estimates1) the uniform convergence of eigen-
function expansions of continuous functions when
the partial sums are taken up to a gap.15 It is some-
what disappointing that we cannot offer experimen-
tal evidence for the existence of gaps. On the other
hand, the experimental evidence does not suggest
that they do not exist.

Despite the absence of multiplicities greater than
1 in the spectra, there is an intriguing feature of

clustering of eigenvalues, meaning that there are
many eigenvalues that are nearly equal. This occurs
in both lattice and non-lattice cases, although the
existence of a limit for the Weyl ratio in the non-
lattice case limits the cluster sizes. This clustering
also occurs in spectra of other fractal Laplacians4,16

but does not seem to occur in non-fractal cases.17–19

(Of course there is a different type of clustering
that occurs when you perturb a Laplacian which
has high multiplicity eigenvalues. See Weinstein20

and Guillemin21 for the sphere, and Okoudjou and
Strichartz22 for SG.)

Sometimes, the eigenvalues in a cluster are so
close that one might be tempted to conjecture that
they are identical, but we do not believe this is the
case. Some of the reasons are the sporadic nature
of these coincidences, that they do not occur lower
in the spectrum, and that they occur for just two
eigenvalues in a large cluster. Moreover, there is no
apparent relationship between the associated eigen-
functions.

For all our Laplacians, the power growth rate xβ

for N(x) given by (1.15) has β < 1 (this follows
since

∑
µi = 1 and ri < 1, so

∑
riµi < 1). This

means that λj ≈ j1/β , so the average value of λj+1−
λj goes to infinity. Something very special must be
going on to make eigenvalues cluster together. This
deserves investigation.

We have also looked at the possibility of minia-
turization of eigenfunctions, where an eigenfunction
of higher eigenvalue is built out of eigenfunctions
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Table 8 Comparison of Normalized Eigenvalues for the
Outer Approximation and FEM Methods. Lattice Case with
(k0, k1, k2) = (1, 1, 2).

k λk λk k λk λk k λk λk

2 1 1 19 54.78 55.61 36 154.01 151.4
3 1.69 1.7 20 58.04 58.8 37 157.2 154.58
4 4.35 4.4 21 59.58 60.26 38 158.18 155.48
5 4.84 4.88 22 64.07 64.66 39 161.13 158.91
6 7.2 7.24 23 65.28 65.81 40 164.19 161.99
7 11.67 11.63 24 67.99 68.65 41 170.64 169.04
8 15.31 15.28 25 73.45 74.44 42 202.53 200.01
9 16.42 16.4 26 82.3 83.42 43 202.95 200.49

10 18.3 18.35 27 85.4 86.62 44 203.53 201.07
11 19.04 19.07 28 91.27 92.53 45 204.48 202.29
12 25.46 25.39 29 91.53 92.79 46 208.86 207.02
13 25.72 25.81 30 92.52 93.37 47 214.85 212.67
14 27.57 27.63 31 95.2 95.97 48 217.62 215.82
15 29.43 29.51 32 96.97 97.6 49 219.15 217.14
16 42.08 43.02 33 100.85 101.77 50 227.47 226.18
17 42.41 43.05 34 105.16 106.71
18 54.51 55.43 35 105.67 106.8

Table 9 Comparison of Normalized Eigenvalues for the
Outer Approximation and FEM Methods. Lattice Case with
(k0, k1, k2) = (1, 3, 3).

k λk λk k λk λk k λk λk

2 1 1 19 55.83 55.45 36 155.74 157.02
3 2.07 2.05 20 62.95 62.35 37 155.97 157.05
4 3.37 3.37 21 70.51 70.08 38 156.1 157.14
5 7.19 7.15 22 73.65 72.88 39 162.01 161.19
6 7.43 7.45 23 74.43 74.71 40 163.29 161.21
7 11.29 11.23 24 74.56 74.73 41 163.39 161.22
8 15.71 15.65 25 75.85 74.91 42 163.72 163.79
9 16.09 16.07 26 76.29 76.44 43 164.98 165.15

10 17.21 17.06 27 77.26 76.72 44 167.33 166.56
11 22.27 22.11 28 94.44 93.72 45 186.95 186.63
12 25.84 25.65 29 95.8 95.06 46 187.51 187.28
13 31.93 31.75 30 98.83 98.25 47 203.89 202.53
14 34.13 33.79 31 118.93 119.48 48 207.3 204.96
15 34.72 34.65 32 123.98 123.66 49 207.85 205.13
16 35.77 35.52 33 124.2 123.7 50 213.4 211.94
17 43.34 43.21 34 133.52 134.44
18 45.68 45.55 35 151.5 151.66

of lower eigenvalue composed with inverses of the
IFS mappings. For example, on the unit interval
the eigenfunction cos πjkx is built out of j copies of
the eigenfunction cos πkx miniaturized (composed
with x → jx) and appropriately glued together.
This occurs for the standard Laplacian on SG, and
also for the pentagasket13 and a number of other
fractals discussed in Berry et al.4 If this occurs, it

would mean that the ratio of the eigenvalues would
be an integer power of riµi. It is easy enough to test
if this happens. In Table 12 we list the spectrum and
the spectrum multiplied by r0µ0 and r1µ1 = (r0µ0)2

for the lattice case (k0, k1, k2) = (1, 2, 2) (same as
in Table 1), highlighting values that occur in all
three columns, at least approximately. We also note
that certain patterns occur in the number of the
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Fig. 18 Comparison of normalized eigenvalues for the
outer approximation and FEM methods. Lattice case with
(k0, k1, k2) = (1, 1, 2).

Table 10 Comparison of Normalized Eigenvalues for the
Outer Approximation and FEM Methods. Nonlattice Case with
(r0, r1, r2) = (0.8396, 0.4618, 0.4198).

k λk λk k λk λk k λk λk

2 1 1 19 57.79 57.56 36 148.64 149.14
3 2.78 2.75 20 61.39 61.73 37 153.99 150.55
4 3.37 3.37 21 62.15 62.4 38 156.37 152.14
5 6.44 6.44 22 64.58 63.86 39 157.95 152.92
6 8.53 8.4 23 83.48 83.49 40 162.45 161.69
7 11.42 11.41 24 84.34 84.57 41 179.77 181.34
8 15.39 15.28 25 85.24 85.15 42 188.87 190.06
9 16.14 15.88 26 86.64 86.36 43 195.52 191.47

10 19.9 20.08 27 91.1 91.79 44 198.28 192.97
11 25.25 24.88 28 100.97 101.88 45 201.4 194.69
12 28.13 27.48 29 109.6 108.69 46 205.11 199.19
13 31.67 31.64 30 110.82 109.46 47 215.35 205.06
14 34.66 35.33 31 112.1 110.47 48 215.85 206.41
15 39.1 38.64 32 118.93 115.8 49 229.48 223.9
16 45.5 45.25 33 128.05 125.99 50 257.96 256.15
17 48.54 48.17 34 141.42 142.14
18 49.69 49.6 35 147.33 146.9

eigenvalues, as λ3, λ6, λ12, λ24 and λ10, λ20, λ40. In
other words, it appears that for certain choices of k
we have

λ2nk ≈ (r0µ0)−nλk. (5.2)

Is this an exact equality? Most likely not, as it is
very reminiscent of the eigenvalue clusters (some
clusters of different sizes appear here). But the data
does not rule it out. However, we have looked at the
associated eigenfunctions without finding any evi-
dence of miniaturization. This is another question
worth further investigation.
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Fig. 19 Comparison of normalized eigenvalues for the
outer approximation and FEM methods. Lattice case with
(k0, k1, k2) = (1, 3, 3).

We are also interested in extremal problems
associated with our classes of spectra and embed-
dings. Perhaps the simplest question is to describe
the range of dimensions of our embeddings.
The Hausdorff dimension of the embedding with
parameters (ρ0, ρ1, ρ2) is the unique solution of

ρd
0 + ρd

1 + ρd
2 = 1. (5.3)

We note that the limit as the triangle approaches
a right triangle has ρ2 → 0 and d → 2. So the supre-
mum of all dimensions is 2, and is not an achieved
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Table 11 Comparison of Normalized Eigenvalues for the Outer
Approximation and FEM Methods. Non-Lattice Case with
(r0, r1, r2) = (0.7684, 0.4994, 0.4994).

k λk λk k λk λk k λk λk

2 1 1 19 52.08 52.29 36 140.5 142.36
3 1.88 1.88 20 56.8 56.99 37 145.21 148.94
4 3.42 3.42 21 64.52 64.71 38 146.29 149.9
5 6.92 6.89 22 65.88 65.99 39 155.38 157.82
6 7.98 8.03 23 70.93 71.36 40 158.21 161.65
7 10.23 10.18 24 73.19 73.56 41 164.65 167.07
8 15.32 15.12 25 75.36 76.07 42 170.26 170.36
9 16.25 16.2 26 86.92 84.69 43 171.05 170.47

10 18.38 18.57 27 95.93 94.67 44 175.92 176.26
11 19.19 19.54 28 97.19 95.73 45 184.92 188.88
12 22.42 22.67 29 97.24 99.81 46 186.08 189.59
13 29.9 29.83 30 102.37 101.48 47 197.16 196.09
14 33.03 32.84 31 102.9 103.13 48 206.6 211.94
15 37.13 36.56 32 104.06 103.9 49 208.12 212.79
16 41.41 41.09 33 118.47 121.16 50 225.2 221.09
17 42.44 43.1 34 129.61 132.04
18 44.27 43.86 35 139.94 142.23
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Fig. 20 Comparison of normalized eigenvalues for the outer
approximation and FEM methods. Non-lattice case with
(r0, r1, r2) = (0.8396, 0.4618, 0.4198).

maximum. If we choose angles (2t, π
2 − t, π

2 − t) for
the triangle and let t → 0, the fractal approaches
the interval, which has dimension 1, but the limit
of d is still 2. This simply means that the dimen-
sion is a discontinuous function of the parameters
at the point ρ0 = 1, ρ1 = ρ2. The minimum dimen-
sion is log 3/ log 2, and it is achieved at the stan-
dard embedding ρ0 = ρ1 = ρ2 = 1/2. We sketch
a proof to show that d has a unique critical point.
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Fig. 21 Comparison of normalized eigenvalues for the outer
approximation and FEM methods. Non-lattice case with
(r0, r1, r2) = (0.7684, 0.4994, 0.4994).

Since the ρ values are constrained by (1.19), which
we abbreviate F (ρ) = 1, the method of Lagrange
multipliers implies that ∇d is proportional to
∇F at a critical point. Differentiating (5.3) we
obtain(

2∑
i=0

ρd
i log ρi

)
∂d

∂ρj
+ dρd−1

j = 0 for j = 0, 1, 2,

(5.4)
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Table 12 The Spectrum of the Lattice Case (k0, k1, k2) = (1, 2, 2) and the Spectrum Multiplied by r0µ0

and r1µ1 = (r0µ0)
2. Values are Highlighted that Occur in all Three Columns, at Least Approximately.

k λk λkr0µ0 λkr1µ1 k λk λkr0µ0 λkr1µ1 k λk λkr0µ0 λkr1µ1

2 17.8745 6.4947 2.3598 19 905.7363 329.0979 119.5781 36 2190.6595 795.9727 289.2177
3 28.2449 10.2628 3.729 20 909.2483 330.3739 120.0418 37 2193.4158 796.9742 289.5816
4 65.1547 23.6738 8.6019 21 991.709 360.3359 130.9285 38 2196.2594 798.0074 289.957
5 115.3914 41.9273 15.2343 22 1230.4227 447.0722 162.4443 39 2630.0976 955.6419 347.2337
6 146.6465 53.2838 19.3607 23 1267.7449 460.6332 167.3717 40 2659.7548 966.4178 351.1492
7 180.6961 65.6557 23.8561 24 1318.1156 478.9352 174.0217 41 2714.5052 986.3113 358.3775
8 220.2771 80.0373 29.0817 25 1364.0973 495.6426 180.0924 42 2758.2735 1002.2144 364.1559
9 264.0132 95.9288 34.8558 26 1387.9555 504.3115 183.2422 43 2802.87 1018.4185 370.0437

10 275.0242 99.9296 36.3096 27 1464.1403 531.9931 193.3004 44 3550.5921 1290.1022 468.7603
11 357.3041 129.8259 47.1724 28 1784.7991 648.504 235.6348 45 3608.9404 1311.3029 476.4636
12 474.8452 172.5343 62.6906 29 1793.7011 651.7385 236.81 46 3657.5568 1328.9676 482.8821
13 494.8644 179.8082 65.3335 30 1867.8102 678.666 246.5942 47 3661.0604 1330.2407 483.3447
14 531.7586 193.2137 70.2044 31 1878.7249 682.6318 248.0351 48 3751.8918 1363.2441 495.3365
15 678.6909 246.6013 89.6029 32 1910.7587 694.2712 252.2644 49 3757.4126 1365.2501 496.0654
16 694.1603 252.2221 91.6452 33 2055.6098 746.9027 271.388 50 3899.999 1417.0586 514.8901
17 795.7107 289.1203 105.0522 34 2056.1388 747.0948 271.4579
18 797.2855 289.6925 105.2601 35 2188.9568 795.3541 288.9929

which just says that { ∂d
∂ρj

} is proportional to {ρd−1
j }.

So the Lagrange condition is that {ρd−1
j } is propor-

tional to { ∂F
∂ρj

}, or

ρ1−d
j

∂F

∂ρj
is independent of j (5.5)

at a critical point. Note that (5.5) obviously holds
when ρ0 = ρ1 = ρ2. Since ∂F

∂ρj
= 2ρj +2(ρ0ρ1ρ2)/ρj ,

we can write (5.5) as

f(ρ0) = f(ρ1) = f(ρ2) for (5.6)

f(t) = 2t2−d + 2(ρ0ρ1ρ2)t−d. (5.7)

Note that for any fixed value of ρ0ρ1ρ2, the func-
tion f(t) has only one critical point, hence is at most
two-to-one. So (5.6) can only hold if at least two of
the ρj are equal (without loss of generality ρ1 = ρ2).
In Fig. 25 we show the graph of d as a function of
ρ0 when ρ1 = ρ2, showing that it has a unique min-
imum when ρ0 = 1/2 (hence ρ1 = ρ2 = 1/2).

A related question involves the extrema of the
values α in (1.10) and β in (1.15). Note that

β = α/(α + 1) (5.8)

so the answer is the same for both. Recall that α
may be interpreted as the dimension of the fractal
with respect to the resistance metric, and α + 1 as
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Fig. 22 d as a function of ρ0 when ρ1 = ρ2.

the order of the Laplacian. Of course β controls the
growth of the eigenvalues

λj ≈ j1/β (5.9)

so smaller values of β make the eigenvalues larger
(at least for large values of j).

We conjecture that the minimum values αmin =
log 3

log 5−log 3 ≈ 2.151 and βmin = log 3
log 5 ≈ 0.683 for the

standard Laplacian with r0 = r1 = r2 = 3/5, and
there are no interior critical points. An argument
similar to the above argument for the minimum
of d should be possible, but because the equations
for the algebraic variety of (r0, r1, r2) values is very



February 14, 2008 21:2 00381

Spectra of Self-Similar Laplacians on the Sierpinski Gasket 63

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.68

0.69

0.7

0.71

0.72

0.73

0.74

r
0

Fig. 23 β as a function of r0 when r1 = r2.

complicated, we have not been able to carry out the
details. In Fig. 23 we show that the graph of β as
a function of r0 when r1 = r2, and in Fig. 24 we
show a rough sketch of the graph of β as a function
of (r0, r1).

If the above conjecture is valid, the maximum
value of α or β will not be attained, but we can
compute the supremum. To do this we allow r2 = 0.
This does not correspond to any Laplacian, but we
can still make sense of (1.11) as rα

0 + rα
1 = 1, where
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Fig. 24 β as a function of (r0, r1).

(r0, r1, 0) lie on the same algebraic variety. In this
case the equation simplifies to

e2(−e3
1 − e2

1 + 4e1e2 + e1 + 1) = 0 (5.10)

where e1 = r0 + r1 and e2 = r0r1 are the ele-
mentary symmetric polynomials. Again a Lagrange
multiplier argument shows that the unique interior
critical point is at the symmetric point r0 = r1 =
1+

√
5

4 . This time it is a maximum, so the supremum
of α is

αmax =
log 2

log 4 − log (1 +
√

5)
≈ 3.2706 (5.11)

and so

βmax =
log 2

log 8 − log (1 +
√

5)
≈ 0.7658. (5.12)

In Fig. 25 we show the graph of β as a function
of r0 along the boundary r2 = 0. We can also ask
what happens at the endpoints of the boundary, say
when r1 = t tends to zero. Substituting the Taylor
expansion r0 = 1 + at + bt2 + ct3 + o(t3) in (5.10)
yields a = b = 0 and c = −1/4, so (1.11) becomes(

1 − t3

4
+ o(t3)

)α

+ tα = 1 (5.13)

which implies

limt→0α = 3. (5.14)
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Fig. 25 β as a function of r0 along the boundary r2 = 0.

Next we can look at extremal values of the renor-
malized eigenvalues λk for k ≥ 2. The numerical evi-
dence suggests that the maximum is not attained,
but the supremum of the λk is k2 and is approached
as r1 = r2 tends to 0. Note that the values λk = k2

occur for the second derivative Laplacian on the
unit interval, and the embedded SG with ρ1 = ρ2

tending to 0 approaches an interval. Thus it appears
that the spectrum of the Laplacian on SG with
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Fig. 27 λ2.

Fig. 26 Eigenfunction for fourth eigenvalue with
(r0, r1, r2) = (0.8541, 0.4271, 0.4271).

r1 = r2 converges to the spectrum of the Lapla-
cian on the interval, even though β converges to
3/4 (the value of β on the unit interval is 1/2).
This is another discontinuity, but there is no con-
tradiction since the convergence of the spectra is
not uniform. More evidence for this spectral con-
vergence is that the eigenfunctions resemble cosine
functions, as shown in Fig. 26.

In Figs. 27 to 34 we show the graphs of λk for
2 ≤ k ≤ 9 as a function of r1/r0 and r2/r0. We have
to restrict the domain to values above 0.2 since we
lose accuracy for smaller values. We know that for
large values of k, the standard Laplacian (here cor-
responding to r1/r0 = r2/r0 = 1) must be a local
maximum for λk. We see this for k = 9. What is
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Table 13 Global Minima.

λk Minimum r0 r1 r2

2 1.0000 0.6 0.6 0.6
3 3.3253 0.8253 0.4539 0.4539
4 4.8697 0.6511 0.6511 0.4631
5 5.0000 0.6 0.6 0.6
6 8.1039 0.6 0.6 0.6
7 8.1039 0.6 0.6 0.6
8 10.3056 0.6 0.6 0.6
9 13.2478 0.6892 0.5514 0.5514

surprising is that for small values of k it is often a
local minimum. Indeed, it appears to be the global
minimum for k = 2, 5, 6, 7, 8. Table 13 gives the
approximate global minima and the corresponding
r values for 2 ≤ k ≤ 9.

Acknowledgements

A. Blasiak’s research is supported by the National
Science Foundation through the Research Experi-
ences for Undergraduates (REU) Program at Cor-
nell, while R. S. Strichartz’s research is supported
in part by the National Science Foundation, grant
DMS-0140194.

REFERENCES

1. J. Kigami, Analysis on Fractals (Cambridge Univer-
sity Press, 2001).

2. C. Sabot, Existence and uniqueness of diffusions on
finitely ramified self-similar fractals, Ann. Sci. Ecole
Norm. 30(Suppl. 4) (1997) 605–673.

3. M. Cucuringu and R. Strichartz, Self-similar energy
forms on the Sierpinski gasket with twists, Potential
Anal. 27 (2007) 45–60.

4. T. Berry, S. Goff and R. Strichartz, Spectra
of fractal Laplacians via outer approximation, in
preparation.

5. R. Strichartz, Analysis on fractals, Not. Am. Math.
Soc. 46 (1999) 1199–1208.

6. R. Strichartz, Differential Equations on Fractals: A
Tutorial (Princeton University Press, 2006).

7. J. Kigami and L. Lapidus, Weyl’s problem for the
spectral distribution of Laplacians on p.c.f self-
similar fractals, Commun. Math. Phys. 158 (1993)
93–125.

8. P. Kuchment and H. Zeng, Convergence of spectra of
mesoscopic systems collaping onto a graph, J. Math.
Anal. Appl. 258 (2001) 671–700.

9. M. Gibbons, A. Raj and R. Strichartz, The finite ele-
ment method on the Sierpinski gasket, Constructive
Approx. 17 (2001) 561–588.

10. R. Strichartz and M. Usher, Splines on frac-
tals, Math. Proc. Camb. Philas. Soc. 129 (2000)
331–360.

11. M. Fukushima and T. Shima, On a spectral analysis
for the Sierpinski gasket, Potential Anal. 1 (1992)
1–35.

12. M. Barlow and J. Kigami, Localized eigenfunctions
of the Laplacian on p.c.f. self-similar sets, J. Lond.
Math. Soc. 56 (1997) 320–332.

13. B. Adams, S. A. Smith, R. S. Strichartz and
A. Teplyaev, The spectrum of the Laplacian on
the pentagasket, Trends in Mathematics: Fractals in
Graz 2001 (Birkhauser, 2003), pp. 1–24.

14. T. Shima, On eigenvalue problems for Laplacians on
p.c.f. self-similar sets, Japan J. Ind. Appl. Math. 13
(1996) 1–23.

15. R. Strichartz, Laplacians on fractals with spectral
gaps have nicer Fourier series, Math. Res. Lett. 12
(2005) 269–274.

16. A. Fok and N. Kajino, in preparation.
17. T. Prosen and M. Robnik, Energy level statis-

tics in the transition region between integrability



February 14, 2008 21:2 00381

68 A. Blasiak et al.

and chaos, J. Phys. A Math. Gen. 26 (1993)
2371–2387.

18. T. Prosen and M. Robnik, Numerical demonstra-
tion of the Berry-Robnik level spacing distribution,
J. Phys. A Math. Gen. 27 (1994) L459–L466.

19. T. Prosen and M. Robnik, Semiclassical energy level
statistics in the transition region between integrabil-
ity and chaos: transition from Brody-like to Berry-
Robnik behavior, J. Phys. A Math. Gen. 27 (1994)
L459–L466.

20. A. Weinstein, Asymptotics of eigenvalue clusters for
the Laplacian plus a potential, Duke Math. J. 44(4)
(1977) 883–892.

21. V. Guillemin, Some spectral results for the Laplace
operator with potential on the n-sphere, Adv. Math.
27 (1978) 273–286.

22. K. Okoudjou and R. Strichartz, Asymptotics of
eigenvalue clusters of Schrödenger operators on the
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