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Abstract

The spatial distribution of the incompressible edge states (IES) is obtained for a geometry which is topologically equivalent to an

electronic Mach–Zehnder interferometer, taking into account the electron–electron interactions within a Hartree type self-consistent

model. The magnetic field dependence of these IES is investigated and it is found that an interference pattern may be observed if two IES

merge or come very close, near the quantum point contacts. Our calculations demonstrate that, being in a quantized Hall plateau does

not guarantee observing the interference behavior.

r 2007 Elsevier B.V. All rights reserved.
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The puzzling interference patterns observed at the
quantum Hall effect (QHE) based electronic Mach–Zehnder
interferometers (MZI) [1] setups have already attracted
many theoreticians to investigate the structure of the ‘‘edge
states’’ at these samples. The realistic modelling of the
electrostatic potential and electronic density distributions is
believed to be indispensable in understanding the rearran-
gement of the edge states involved. Therefore, the
electron–electron interaction has been proposed [2,3] as a
possible source of dephasing in these experiments. It was
stated that, the conventional edge state explanation of the
QHE, i.e. Landauer–Büttiker (LB) formalism, fails to
cover the experimental findings. On the other hand, a
detailed analysis of the QHE related physics, taking
account the formation of the incompressible strips, is
needed for a direct comparison with experimental data.
Recently, a two channel edge state model is proposed [3],
which is able to explain the observed visibility oscillations
e front matter r 2007 Elsevier B.V. All rights reserved.

yse.2007.09.063

ing author. Tel.: +90332 2231845.

ess: aekavruk@selcuk.edu.tr (A.E. Kavruk).
in terms of a non-Gaussian noise. The essential parameters
are the electron velocity and the coupling strength between
the ‘‘interference’’ and ‘‘detector’’ channels. In this paper,
we extend a previous work [4] to investigate the electro-
statics of e-MZI setups in the integer QHE, assuming a
topologically equivalent geometry to the experimental
one [5]. We aim to provide explicit calculations of the
spatial rearrangement of the incompressible edge states [6].
The widely used self-consistent Thomas–Fermi–Poisson
screening theory [4] is used to obtain the electron density
and electrostatic potential. We propose two possible
scenarios to observe interference, depending on the
distribution of the incompressible strips, in other words
depending on the magnetic field strength.
To obtain the confinement potential, we follow the

procedure proposed by Ref. [7]. In this model the bare
potential can be obtained at the level of two dimensional
electron system (2DES), i.e. in the plane of z ¼ z0 measured
from the surface into the sample, provided that the surface
gate pattern and the potential distribution are known. The
contribution of the gates to the total potential at the 2DES
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is given by

V gateðr; z0Þ ¼
1

k

Z
jz0j

2pðz20 þ jr� r0j2Þ3=2
V gðr

0; 0Þdr0, (1)

where V gðr
0; 0Þ is the potential on the sample surface. The

second contribution to the external potential comes from
the donors, which we simulate by a half-period cosine
function in the y direction. Given the external potential in
the plane of 2DES; V extðr; z0Þ ¼ V gateðr; z0Þ þ Vdonorðr; z0Þ,
ðx; y; z0Þ ¼ ðr; z0Þ, in the real space, it is straightforward to
calculate the screened potential (again in the real space) at
T ¼ 0 and B ¼ 0, making two dimensional forward and
back Fourier transform, using V scrðqÞ ¼ V extðqÞ=�ðqÞ,
where �ðqÞ is the momentum ðqÞ dependent Thomas–Fermi
dielectric function defined by �ðqÞ ¼ 1þ 2=a�Bjqj, and a�B is
the effective Bohr radius (�10 nm). We use this screened
potential as an initial input for the following set of two self-
consistent (SC) equations:

nelðrÞ ¼

Z
dEDðEÞf ð½E þ V ðrÞ � m%�=kBTÞ, (2)

for the spinless electron density, where DðEÞ is the bare
Landau density of states (DOS), f ðaÞ ¼ ½1þ ea��1 the
Fermi function and the Hartree potential energy of an
electron

V H ðrÞ ¼
2e2

k̄

Z
A

dr0Kðr; r0Þ nelðr
0Þ, (3)

within the Thomas–Fermi approximation. In the case of
periodic boundary conditions, as we consider, the kernel
Kðr; r0Þ can be expressed in an analytically closed form [8],
otherwise has to be obtained numerically. The total
potential energy is obviously nothing but the sum of
Hartree and external potential energies. In the conven-
tional edge state explanation of the integer QHE, one
counts the number of the LB ES, which essentially gives the
plateau number with an integer filling factor. Without
assuming any sort of localization or disorder, the Hall
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Fig. 1. The sketch of the Hall resistance, considering LB ES (solid line)

and incompressible ES (broken line). Expected interference intervals of the

magnetic field are denoted by the lines with arrows on both ends.
resistance looks like a staircase (cf. Fig. 1), whereas
longitudinal resistance exhibits delta spikes at transitions
as a function of the B field. This implies that, whenever one
enters to a plateau region one always have a percolating LB
ES from source to drain, therefore the interference pattern
should be observed throughout all the plateau region,
contradicting with the experimental findings. Although
such a discrepancy can be removed by a large amount of
(asymmetric) Landau level broadening, the high mobility
of the sample rules out this possibility. On the other hand,
in the screening theory of the QHE [6,9] a plateau occurs
only if at least an IES exists along the current direction.
Within this localization free model, the widths of the
plateaus are limited by the thicknesses of the IES,
depending on the B field and/or the long-range part of
the disorder [9]. In Fig. 2, we plot the electron distribution
as a function of the spatial coordinates, calculated within
the above SC scheme for a typical Fermi energy, EF ¼

12:75meV at 1K. The color gradient depicts from zero
(dark) to high electron concentration. The high potential
bias at the surface guarantees that no electrons can reside
under the gates, whereas the light (yellow) stripes highlight
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Fig. 2. The color coded nðx; yÞ for O ¼ 1:15; 0:95; 0:90. The calculations

are done at O=kBT � 0:025. The gates defining the geometry, are taken to

be 85 nm above the 2DES and biased with �1:0V.



ARTICLE IN PRESS
A. Siddiki et al. / Physica E 40 (2008) 1398–14001400
the positions of local filling factor two. Under the
conditions considered at the top most panel of Fig. 2 the
system will be observed to be almost entering to the plateau
region since there exists two (almost) percolating IES (at
the top and the bottom part of the geometry), however, we
believe that the visibility will be either too small to observe
(due to scattering at the constriction or at the bulk) or will
be zero. The middle panel shows a situation that, the
percolation of the IES is well formed and the system is on
the plateau, on contrast the visibility will still be small,
since the interference will continue to be dominated by the
tunnelling where scattering processes may take place. For
the lowest B field, the IES merge at the quantum
constrictions and decoherence is minimized, therefore the
visibility is predicted to be the highest at a reasonably high
mobility sample, similar to the samples measured at the
experiments [1,3]. We believe that, if (not only if) the non-
dissipative current is confined to the IES, where no
backscattering takes place, the observed amplitude varia-
tion of the visibility as a function of B field at the
experiments can simply be explained by an emerging IES at
the QPCs. This claim also promotes the fact that, in such
sensitive experiments the geometrical shape of the QPCs
may play an important role [4,10], although the transmis-
sion amplitude remains unchanged.

In summary, the spatial distribution of the back-
scattering free IES at a MZI (topologically equivalent
geometry) is studied, exploiting the smooth variation of the
external potential, within the Thomas–Fermi approxima-
tion. We have shown that, one would not observe visibility
oscillations on each and single magnetic value of the
quantized Hall plateau interval in contrast to the LB ES
model. We have reasoned this on the base of merging
IES at the QPCs and highlighting the importance of the
geometry of the constriction. The amplitude itself and
the interference interval clearly depend on the mobility of
the sample, therefore (also including spin) an extension
of this present work may help in improving the sample
design and the quality of the observed quantities.
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