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Abstract

The problem of an electron interacting with longitudinal-optical (LO) phonons is investigated
in an N -dimensional quantum dot with symmetric Gaussian confinement in all directions using
the Rayleigh–Schrödinger perturbation theory, a variant of the canonical transformation method of
Lee–Low–Pines, and the sophisticated apparatus of the Feynman–Haken path-integral technique for the
entire range of the coupling parameters and the results for N = 2 and N = 3 are obtained as special
cases. It is shown that the polaronic effects are quite significant for small dots with deep confining
potential well and the parabolic potential is only a poor approximation of the Gaussian confinement. The
Feynman–Haken path-integral technique in general gives a good upper bound to the ground state energy for
all values of the system parameters and therefore is used as a benchmark for comparison between different
methods. It is shown that the perturbation theory yields for the ground state polaron self-energy a simple
closed-form analytic expression containing only Gamma functions and in the weak-coupling regime it
provides the lowest energy because of an efficient partitioning of the Gaussian potential and the subsequent
use of a mean-field kind of treatment. The polarization potential, the polaron radius and the number of
virtual phonons in the polaron cloud are obtained using the Lee–Low–Pines–Huybrechts method and their
variations with respect to different parameters of the system are discussed.
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1. Introduction

The last two decades have witnessed a hectic pace of activity with a flurry of investigations
in the area of low-dimensional systems and consequently a huge amount of literature has now
piled up in this field with a rich variety of physics both at the fundamental level unravelling some
of the basic tenets of quantum mechanics and also at the applied level heralding the ushering
of a new era in micro-electronic technology [1]. In this context, polar semiconductor quantum
dot structures have been, in particular, the focus of attention for their potential applications in
nano-electronic and optoelectronic devices like single electron transistors, quantum dot lasers,
ultra-fast computers and so on. Since the natural length scale in a quantum dot is of the order of
a few nanometers where one would expect pronounced quantum effects like charge quantization
and Coulomb blockade, a quantum dot can be considered as a tiny laboratory to test the veracity
of the predictions of quantum mechanics and thus has an intrinsic appeal from the point of view
of fundamental physics. On the other hand, quantum dot structures can be realized in different
shapes and sizes because of the recent advent in modern micro-fabrication techniques like
molecular beam epitaxy and self-assembling and that provides a tremendous design flexibility
for their use in semiconductor technology. Another important feature that makes the study of
quantum dots so exciting is that these structures involve several length and energy scales which
are of the same order of magnitude and therefore their interplay gives rise to a host of novel and
complex physical phenomena which are extremely different from those of their bulk counterparts.
Because of the nano-scale extensions in all the directions of space, the quantum dots possess
discrete energy levels that can be tuned at will and furthermore, the number of electrons in a
quantum dot can also be varied at will by manipulating the confining potential or the so-called
gate voltage and thus one can obtain an energy spectra of the desired properties. The reduced
dimensionality with enormous design flexibility, the possibility of achieving a finite but variable
particle number system, the presence of δ-function-like density of states and several competing
length and energy scales have indeed made this new research area of low-dimensional systems
extremely fascinating with lots of challenges and also opportunities and opened up a new frontier
in condensed matter physics and materials science with tremendous potentiality to revolutionize
modern optoelectronic technology.

The theoretical investigation of a quantum dot requires the knowledge of the attractive
confining potential. One of the ideal methods to obtain such a potential would have been to
perform scattering experiments and then use the scattering data to obtain the potential parameters
using the inverse scattering method. However, to our knowledge, such investigations are at the
moment lacking. In the simplest approach, one can then assume the electron to be confined in
an infinite potential well to simulate the actual confining potential. This model is however not
very realistic since the constant potential inside the dot implies that the motion of electrons is
completely free in a quantum dot which is of course far from reality. Sikorski and Merkt [2] have
observed experimentally that the resonance frequencies of quantum dots are independent of the
number of electrons in the dot which indicates that the electron–electron interaction has no effect
on the excitation spectrum of a quantum dot. Later, Meurer et al. [3] obtained the energy spectrum
of a few-electron quantum dot using the far-infrared spectroscopy on GaAs quantum dot and
showed that the electron number has at best a very feeble influence on the resonance frequencies.
Independence of the dipole transitions on the electron number was also approximately observed
in GaAs–GaAlAs quantum dots by Ashoori et al. [4] and in InGaAs–GaAs–AlAs system by
Drexler et al. [5]. All these results suggest an interesting feature about the quantum dot namely,
the validity of the Kohn theorem or more precisely the generalization of it in a quantum dot.
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Kohn’s theorem [6] states that the cyclotron frequency of a translationally invariant electron
system is independent of the electron density and of the form of the electron–electron interaction.
This theorem is a consequence of the fact that the electric dipole of the radiation couples only
to the centre of mass of the electrons and does not affect the relative motion. Peeters [7] has
demonstrated that the position of the resonance lines in the magneto-optical absorption of a
quantum dot with a parabolic confinement potential is also independent of the electron–electron
interaction and the number of electrons in a quantum dot. Similar results have also been obtained
by Yip [8] and Li et al. [9]. These results thus indicate the validity of the so-called generalized
Kohn’s theorem in a quantum dot according to which one can conclude that the bare confining
potentials are almost parabolic in these systems. Consequently, a large number of theoretical
investigations have been carried out in this area in the last two decades taking the confinement
potential as parabolic [10].

However, in recent years a few groups [11] have shown that their experimental results deviate
from what would be expected from the generalized Kohn theorem. Their observations reveal that
the confining potential should be non-parabolic i.e., anharmonic and should have the shape of a
finite potential well. This has provided, understandably, a renewed impetus on the research of the
electronic energy spectra and the associated phenomena in quantum dots. Using a 3D spherical
rectangular potential well of finite depth, Szafran et al. [12] and Bednarek et al. [13] have been
able to successfully describe, albeit qualitatively, the charging of quantum dots. Subsequently,
Szafran et al. [14] have quantitatively explained the capacitance-spectroscopy data for self-
assembled quantum dots simulating the confining potential by a 3D cylindrical potential well.
Recently, Adamowsky et al. [15] have proposed a Gaussian attractive confining potential for the
investigation of the properties of excess electrons in quantum dots. This potential has a finite
depth and in the neighbourhood of the dot centre would behave like a parabolic potential and
would also approximately satisfy the generalized Kohn theorem. Furthermore, in contrast to
the rectangular potential well, it is continuous at the dot boundaries and this makes it easier to
be handled mathematically. Also it has a central minimum as required for a physical potential
and the force experienced by the particles within this potential well is non-zero which is also
a desirable feature. The other advantages with the Gaussian confining potential vis-a-vis a
parabolic potential are that the former allows for, in addition to the excitations, also the ionization
and tunnelling processes. Of course, one can use power law anharmonic potentials, but these
potentials suffer from divergence syndrome at large distances, while the Gaussian potential is
by construction bound to give convergent results. Of course one may argue that in a quantum
dot the spatial coordinates never extend to a very large value to lead to any divergence problem,
nevertheless, it is always appealing to work with a prescription that is mathematically sound and
works in all limits. We would like to mention in passing that the Gaussian potential has proved
to be a useful potential in various branches of physics and has been solved approximately for a
single particle problem by several authors [16].

Since most of the quantum dot structures available today are made of polar semiconductors,
and the electron–phonon interaction energy scale is almost comparable to the other energy scales
of the problem, one expects that the electron-longitudinal-optical (LO) phonon interaction will
have pronounced effects on the electronic states of a polar quantum dot leading to the formation
of polarons and furthermore these polaronic effects should be size dependent and therefore
tunable. Though, a large number of investigations have been carried out in the last two decades
to study the polaronic effects in parabolic quantum dots and in quantum dots with square and
spherical well confining potentials, there has not been any investigation, to our knowledge, with
a Gaussian confinement. Since several authors have recently shown quite unequivocally that the
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parabolic potential is only a poor approximation of the more realistic Gaussian potential, it would
be interesting to study the polaronic effects in a quantum dot with a Gaussian confinement. The
purpose of the present study is to make an attempt in this direction.

2. The model

The hamiltonian for an electron of Bloch mass m moving in an N -dimensional (ND) Gaussian
potential V ′ and interacting with the LO phonons of dispersionless frequency ωo of the system
may be written by modifying the Fröhlich hamiltonian [17,18], as

H ′
=

Ep′2

2m
+ V ′(Er ′) + h̄ωo

∑
Eq ′

bĎ
Eq ′bEq ′ +

∑
Eq ′

(ξ ′
Eq ′e−i Eq ′

·Er ′

bĎ
Eq ′ + h.c.), (1)

where all vectors are N -dimensional. Here Er ′ refers to the N -dimensional position vector of the
electron, Ep′ is the corresponding linear momentum operator, b∗

Eq ′(bEq ′) is the creation (annihilation)
operator for an LO phonon of wave vector Eq ′ with frequency ωo and ξEq ′ is the electron–phonon
interaction coefficient and V ′(Er ′) is the confining potential which we take as

V ′(Er ′) = −Vo
′ e−r ′2/2R′2

. (2)

We shall work in the Feynman units [19] in which the energy is scaled by h̄ωo, length by the
weak-coupling polaron radius, ro = (h̄/mωo)

1/2 and the wave vector by qo = 1/ro. This is
equivalent to putting h̄ = m = ωo = 1. In these units the dimensionless Hamiltonian reads

H =
Ep2

2
− Vo e−r2/2R2

+

∑
Eq

bĎ
EqbEq +

∑
Eq

(ξEqe−i Eq·Er bĎ
Eq + h.c.), (3)

where everything is dimensionless; H = H ′/h̄ωo, Er = Er ′/r0, Eq = Eq ′/qo, Ep = Ep′/h̄qo,
Vo = Vo

′/h̄ωo, R = R′/ro, and ξEq = ξ ′

Eq ′/h̄ωo is given by [20],

|ξEq |
2

=

Γ
(

(N−1)
2

)
2(N−3/2)π (N−1)/2

vN q N−1

α, (4)

where N is the dimensionality of the system under consideration, vN is the dimensionless volume
of the N -dimensional crystal, Vo is the depth of the confining potential in dimensionless unit and
R is the range of the potential giving some kind of a measure of the effective confinement length
or the size of the quantum dot and α is the dimensionless electron–phonon coupling constant. In
two and three dimensions we get the usual expressions:

|ξEq |
2

=

(√
2 π

vq

)
α, for 2D, (5)

and

|ξEq |
2

=

(
2
√

2 π

vq2

)
α, for 3D, (6)

where v represents the volume in the corresponding dimension.
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3. Formulation

3.1. Rayleigh–Schrödinger perturbation theory (RSPT)

We assume that the deviation of the confining potential from the parabolic potential is small
enough so that one can treat it as a parabolic potential plus a perturbation. This is a reasonable
assumption for small r and since in a quantum dot r will be generally small, it can be considered
as a fairly good approximation. So we rewrite the hamiltonian (3) as

H =
Ep2

2
+

1
2
ω̃2

hr2
− Vo +

∑
Eq

bĎ
EqbEq − λ

[
1
2
ω̃2

hr2
+ Vo(e−r2/2R2

− 1)

]
+

∑
Eq

(ξEqe−i Eq·Er bĎ
Eq + h.c.), (7)

where ω̃2
h = Vo/R2, and λ = 0 for a parabolic quantum dot (PQD) and λ = 1 for a Gaussian

quantum dot (GQD). The unperturbed problem satisfies the Schrödinger equation

Ho[Φ[ j](Er)Ψph] = E0
[ j],[n][Φ[ j](Er)Ψph]

=

 Ep2

2
+

1
2
ω̃2

hr2
− Vo +

∑
Eq

bĎ
EqbEq

 [Φ[ j](Er)Ψph]

=

E[ j] +

∑
Eq

n Eq

 [Φ[ j](Er)Ψph], (8)

where Φ[ j](Er) is the unperturbed electronic wave function given by

Φ[ j](Er) = Φ j1, j2, j3... jN (Er) =

[
ω̃

N/2
h

π N/22 j1+ j2+···+ jN j1! j2! j3! . . . jN !

]1/2

×H j1

(√
ω̃h x1

)
H j2

(√
ω̃h x2

)
. . . H jN

(√
ω̃h xN

)
× e−

1
2 ω̃hr2

, (9)

E[n] is the corresponding electronic energy which assumes the following expression

E[ j] = E j1, j2, j3... jN =

(
j1 + j2 + j3 + · · · + jN +

N

2

)
ω̃h − Vo, (10)

and Ψph is the eigenfunction of the free phonon hamiltonian,
∑

Eq bĎ
EqbEq which can be written as

|Ψph〉 ≡ |[n]〉 =

∏
Eq

|n Eq〉, (11)

with the corresponding energy given by

εph =

∑
Eq

n Eq , (12)

where n Eq is the number of phonons in the state Eq .
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We are presently interested in the ground state (GS) of the system for which the unperturbed
wave functions and the energy reduce to

Φo(Er) =

[
ω̃

N/2
h

π N/2

]1/2

e−
1
2 ω̃hr2

, (13)

|Ψ0
ph〉 = |[0]〉 =

∏
Eq

|0Eq〉, (14)

with

bEq |0Eq〉 = 0, ∀Eq, (15)

and

Eo =

(
N

2

)
ω̃h − Vo, (16)

and

ε0
ph = 0. (17)

The perturbation to the exactly soluble unperturbed hamiltonian Ho consists of two terms:

Hper = H1 + H2, (18)

where

H1 = −λ

[
1
2
ω̃2

hr2
+ Vo(e−r2/2R2

− 1)

]
, (19)

and

H2 =

∑
Eq

(ξEqe−i Eq·Er bĎ
Eq + h.c.). (20)

Since H1 cannot be very large, we shall obtain its contribution by the first-order perturbation
theory at the mean-field level or in other words we shall assume that the sole effect of H1 is
to renormalize the frequency of the unperturbed parabolic potential according to the first-order
perturbation theory. Therefore we rewrite H1 as

H1 = −λ

[
1
2
ω̃2

h +

(
Vo

r2

)
(e−r2/2R2

− 1)

]
r2

≈ −λ〈Φo(Er)|

[
1
2
ω̃2

h +
Vo

r2

(
e−

r2

2R2 − 1
)]

|Φo(Er)〉r2

= λVo

 2ω̃h

N − 2
−

1

R2 −
2ω̃

N
2

h

(N − 2)
(
ω̃h +

1
2R2

) N
2 −1

 r2. (21)
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The Gaussian quantum dot problem now essentially reduces to an effective parabolic quantum
dot problem described by

H̃ = H eff
o + H2 =

Ep2

2
+

1
2
ω2

hr2
− Vo +

∑
Eq

bĎ
EqbEq + H2, (22)

where

ωh =

[
(1 − λ)ω̃2

h +
4λV0ω̃h

(N − 2)

(
1 −

1

(1 +
ω̃h
2V0

) N
2 − 1

)]1/2

. (23)

The first-order perturbative correction to H eff
o due to H2 is zero, for the electron–phonon

interaction is linear in the phonon creation and annihilation operators, and so we shall treat this
term by the second-order perturbation theory. The calculation of the second-order perturbation
correction of course always poses a problem for it requires one to calculate a summation over
infinite intermediate states. However, in the present problem, the unperturbed system being
approximated as an N -dimensional harmonic oscillator, the summation over infinite intermediate
states essentially boils down to the calculation of the Green function of the harmonic oscillator
in N -dimensions, which is fortunately an exactly soluble problem.

The second-order perturbative correction ∆E (2)
RSPT due to H2 can be written as

∆E (2)
RSPT =

∑
[ j],[n]

|〈Φ[ j]|〈[n]|
∑
Eq

(ξEqe−i Eq·Er bĎ
Eq)|[0]〉|Φo〉|

2

(E[0],[0] − E[ j],[n])
, (24)

where Φ[ j](Er) and E[ j] are given by (9) and (10) with ω̃h replaced by ωh . The summation over
the phonon states can be performed easily and we get

∆E (2)
RSPT = −

∑
[ j],Eq

|〈Φ[ j]|ξEqe−i Eq·Er
|Φo〉|

2

E[ j] − E[0] + 1
. (25)

Using the identity,

1
Em − E0 + 1

=

∫
∞

0
e−(Em−E0+1)t dt, (26)

the N -dimensional inverse Coulomb Fourier transform

∑
Eq

e−i Eq·(Er−Er ′)

Eq N−1 =

 vN

2N−1π (N−1)/2Γ
(

N−1
2

)
 1

|Er − Er ′|
, (27)

and the Slater sum rule (which is related to the oscillator Green function)∑
n

1
2nn!

Hn(
√

λx)Hn(
√

λx ′)e−[
λ
2 (x2

+x ′2)+2np]

=
ep

√
2 sinh(2p)

e−
λ
4 [(x+x ′)2 tanh p+(x−x ′)2 coth p], (28)
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for all the N -set of coordinates Er and Er ′, we can transform Eq. (25) to

∆E (2)
RSPT = −

α
√

2

(ωh

π

)N
∫

0

∞

dt
e( N

2 ωh−1)t

[2 sinh(ωh t)]N/2 ×

∫ ∫
dErdEr ′

1
|Er − Er ′|

× e−(
ωh
4 )[(1+tanh(

ωh t
2 ))(Er+Er ′)2

]
× e−(

ωh
4 )[(1+coth(

ωh t
2 ))(Er−Er ′)2

]. (29)

Using the transformations

Er + Er ′

√
2

= Eu;
Er − Er ′

√
2

= Ev, (30)

the integrations over the spatial coordinates can be performed easily and the t-integration can be
simplified by substituting t = −[ln x]/ωh to finally obtain for the total energy

END
RSPT =

N

2
ωh − V0 −

(
α
√

π

2
√

ωh

)Γ
(

N−1
2

)
Γ
( N

2

)
 Γ

(
1
ωh

)
Γ
(

1
ωh

+
1
2

)
 . (31)

It is worthwhile to note that we have obtained the total energy of the system analytically in the
form of a closed-form expression involving only the gamma functions. The polaronic correction
to the total electron energy or in other words the polaron self-energy can now be obtained by
subtracting from the expression Eq. (31), the energy for α = 0. Thus we obtain

∆END
RSPT = [END

RSPT(α) − END
RSPT(α = 0)]

= −

(
α
√

π

2
√

ωh

)Γ
(

N−1
2

)
Γ
( N

2

)
 Γ

(
1
ωh

)
Γ
(

1
ωh

+
1
2

)
 . (32)

If we define an effective length l in analogy with a parabolic dot as

l = [ωh]
−1/2, (33)

then the polaronic correction can be written as

∆END
RSPT = −

(
α
√

π

2

)Γ
(

N−1
2

)
Γ
( N

2

)
[ Γ (l2

+ 1)

lΓ (l2 +
1
2 )

]
. (34)

The polaron self-energy thus depends crucially on two parameters α and l. It is worthwhile to
point out that according to the above definition of l, the confinement length is a very complicated
function of the depth and range of the Gaussian potential. We shall therefore consider the range
of the potential as an effective confinement length for the sake of simplicity. At this point it would
be interesting to discuss some limiting cases.

(i) Weak-confinement (WC) limit
In this limit, Vo is small and the range of the confining potential, R is large so that both ω̃h and

ωh tend to zero and consequently l → ∞. We can use in this limit the asymptotic formula [21]

Γ (z + 1)
√

zΓ
(

z +
1
2

) →

(
1 +

1
8z

)
, (35)
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so that the most dominant contribution from Eq. (34) becomes

∆END,WC
RSPT = −

(
α
√

π

2

)Γ
(

N−1
2

)
Γ
( N

2

)
 . (36)

In 2D and 3D, one gets respectively

∆E2D,WC
RSPT = −

απ

2
, (37)

and

∆E3D,WC
RSPT = −α, (38)

which are the well-known bulk polaron limits in the weak-coupling regime.
(ii) Strong-confinement (SC) limit
In the strong-confinement case, we assume V0 to be large and R to be small so that l2 becomes

small. However in this limit, the product
√

V0 R is assumed to be finite, preferably less than 1.
We can then write

Γ (1 + z) = Γ (1) + zΓ ′(1) + · · · ≈ 1 + zΨ(1) (39)

Γ
(

1
2

+ z

)
= Γ

(
1
2

)
+ zΓ ′

1
2

+ · · · ≈
√

π + z
√

πΨ
(

1
2

)
, (40)

where

Ψ(z) =
d
dz

ln Γ (z) + · · · ≈
√

π + z
√

πΨ
(

1
2

)
=

Γ ′(z)

Γ (z)
Ψ(1) = −0.5772

Ψ
(

1
2

)
= Ψ(1) − 2 ln 2 (41)

and therefore

Γ (1 + z)

Γ
(

z +
1
2

) ≈
(1 + 2z ln 2)

√
π

, (42)

so that the polaron self-energy reduces to

∆END,SC
RSPT = −

(α

2

)Γ
(

N−1
2

)
Γ
( N

2

)
 1

l
. (43)

In 2D and 3D, one then obtains respectively

∆E2D,SC
RSPT ≈ −

(
α
√

π

2

)(
V0
√

R

)1/4

, (44)

and

∆E3D,SC
RSPT ≈ −

(
α

√
π

)(
V0
√

R

)1/2

. (45)
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These are of course new results and therefore cannot be compared with any previous values.
However, there should be a word of caution here. The above limiting results have to be used
carefully because we have derived them using certain approximations like l2 is small etc., and
therefore one should be allowed to use them only when the right conditions are met, and that
would depend on the relative values of V0 and R. For the entire range of the confining potential,
however, we have to obtain the results numerically. In Section 4 we shall discuss the numerical
results.

One can however notice that the above formalism, albeit in general applicable to any
dimensional system, falls through in 2D. We would therefore like to develop another perturbation
theory that may work in all dimensions. To that end, we expand the Gaussian potential as

−V0e−r2/2R2
= −V0 +

V0

2R2 r2
−

V0

8R4 r4
+

V0

48R6 r6
+ · · · , (46)

and approximate it as

−V0e−r2/2R2
= −V0 +

1
2

[
ω̃2

h −
ω̃2

h

4R2 〈r2
〉 +

ω̃2
h

24R4 〈r4
〉 + · · ·

]
r2, (47)

where the averaging is done with respect to the oscillator wave function corresponding to the
frequency ω̃h . The hamiltonian (3) is thus reduced to

H̃ = H eff
o + H2 =

Ep2

2
+

1
2
ω2

hr2
− Vo + 〈 f (r)〉 +

∑
Eq

bĎ
EqbEq + H2, (48)

where ωh is now given by

ωh =

[
ω̃2

h −
λN ω̃h

8R2 +
λN (N + 2)

96R2

]1/2

, (49)

and 〈 f (r)〉 contains contributions from the higher-order terms of the Gaussian potential which
we have neglected assuming that for the polaronic correction it has negligible effect. The rest of
the calculation is along the same lines as delineated above.

3.2. The Feynman–Haken path-integral method (FHPIM)

We are interested in the GS of the hamiltonian (3) and the relevant transformation function
can be shown to be given by [17,19],

K00(Erb, tb; Era, ta) =

∫
DEr(t)ei S, (50)

where the index “00” refers to the transition from a zero-phonon state to a zero-phonon state, the
integration is from all paths from Er(ta) to Er(tb) and S is a non-local classical action given by

S =

∫ tb

ta

(
1
2
Ėr

2
− V0e−r2/2R2

)
dt +

1
2

∑
Eq

∫ ∫
dtds|ξEq |

2ei Eq·(Er(t)−Er(s))ei |t−s|. (51)

Performing the transforming t → i t and s → −is, we obtain

K00(Erb, tb; Era, ta) =

∫ b

a
DEr(t)eS, (52)



218 S. Yanar et al. / Superlattices and Microstructures 43 (2008) 208–239

where the action reads

S =

∫ tb

ta

(
−

1
2
Ėr

2
− V0e−r2/2R2

)
dt +

1
2

∑
Eq

∫ ∫
dtds|ξEq |

2e−i Eq·(Er(t)−Er(s))e−|t−s|. (53)

Substituting for |ξEq |
2 and performing the summation over Eq using (27) we immediately get

S =

∫ tb

ta

(
−

1
2
Ėr

2
− V0e−r2/2R2

)
dt +

α

2
√

2

∫ ∫
dtds

e−|t−s|

|Er(t) − Er(s)|
. (54)

This action is however not path integrable and in the usual Feynman method one chooses a
trial action which should contain the essential features of the actual action and should be path
integrable. One may thus choose the following trial action

S0 =

∫ tb

ta

(
−

1
2
Ėr

2
− V0e−r2/2R2

)
dt − C

∫ ∫
dtds[Er(t) − Er(s)]2e−w|t−s|. (55)

It is well known that for the calculation of the GS energy one has to take the long-time limit to
separate the GS from the excited states. Since in the long-time limit the above non-local Gaussian
action may not differ much from the actual non-local Coulombic action, it would not be a bad
approximation to treat (55) as a trial action and compensate for the errors introduced in the
process by optimizing the values of the variational parameters C and w. The palpable advantage
with the action (55) is that it is exactly integrable. One then uses the Feynman variational
principle

END
0,exact ≤ END

F = END
0,trial − s, (56)

where END
0,exact is the exact GS energy, i.e., the energy corresponding to the action S, END

0,trial is the
GS energy corresponding to the path-integrable trial action S0 and s is given by

s = lim
(ta−tb)→∞

� (S − S0) �

(tb − ta)
, (57)

where

� . . . �=

∫
. . . eS0 DEr(t)∫

eS0 DEr(t)
. (58)

We shall however follow the Haken approach [22] of calculating the path integrals which is a
convenient procedure for a bound state problem. In this approach we choose a general effective
action in the beginning. For instance, we choose

Seff =

∫ tb

ta
Leffdt =

∫ tb

ta

[
−

1
2
Ėr

2
− Veff(Er(t))

]
dt, (59)

where Veff is the effective potential which we shall specify later. The quantum mechanical
hamiltonian Heff corresponding to the classical Lagrangian Leff satisfies the Schrödinger
equation

Heffφ
ND
j,eff = END

j,effφ
ND
j,eff, (60)
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where φND
0,eff and END

0,eff are respectively the GS wave function and the GS energy of Heff. The
effective transformation function corresponding to (59) can now be written as

Keff(Erb, tb; Era, ta) =

∫ b

a
DEr(t)eSeff , (61)

which can be expanded on the basis of the hamiltonian Heff as

Keff(Erb, tb; Era, ta) =

∑
n

φND
n,effφ

ND∗

n,effe
−END

n,eff(tb−ta)
. (62)

The Feynman variational principle now reads

END
0,exact ≤ END

F = END
0,eff − s, (63)

where s is given by

s = lim
(ta−tb)→∞

� (S − Seff) �

(tb − ta)
. (64)

� (S − Seff) � can be written as

� S − Seff � =

∫
(S − Seff)eSeff DEr(t)∫

eSeff DEr(t)
= B1 + B2, (65)

where B1 and B2 are given by

B1 =

∫ b
a

(∫ tb
ta

[
−V0e−

r2

2R2 + Veff(Er)

]
dt

)
eSeff DEr(t)∫

eSeff DEr
, (66)

and

B2 =

∫ ∑
|ξq |

2
∫ ∫

dsdt e−i Eq·(Er(t)−Er(s))e−|t−s|eSeff DEr∫
eSeff DEr

. (67)

The numerator of B1 can be written as

Bnum
1 =

∫ b

a
dErt

∫ tb

ta
dt Keff(Ertb , t; Ert , t)

× [−V0e−r2
t /2R2

+ Veff(Ert )] × Keff(Ert , t; Erta , ta), (68)

which in the long-time limit reduces to

Bnum
1 ≈

∫ b

a
dErt

∫ tb

ta
dtφND

0,eff(Ertb )φ
ND∗

0,eff (Ert ) × e−END
0,eff(tb−t)

× [−V0e−r2
t /2R2

+ Veff(Ert )]

× φND
0,eff(Ert )φ

ND∗

0,eff (Erta ) × e−END
0,eff(t−ta)

. (69)

Integration over t can be done trivially to give

Bnum
1 ≈ (tb − ta)φND

0,eff(Ertb )φ
ND∗

0,eff (Erta ) × e−END
0,eff(tb−ta)

∫
dErtφ

ND∗

0,eff (Ert )

× [−V0e−r2
t /2R2

+ Veff(Ert )] × φND
0,eff(Ert ). (70)
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Although the quantity [−V0e−r2
t /2R2

+ Veff(Ert )] is a function of the classical variable r , the
integral in the above equation can be considered as the expectation value of the quantum
mechanical operator [−V0e−r2

t /2R2
+ Veff(Ert )] with respect to the wave function φND

0,eff(Ert ). Thus
we can write

Bnum
1 ≈ (tb − ta)φND

0,eff(Ertb )φ
ND∗

0,eff (Erta )e
−END

0,eff(tb−ta)

×〈φND∗

0,eff | − V0e−r2
t /2R2

+ Veff(Ert )|φ
ND
0,eff〉. (71)

In the same limit, the denominator of (64) reduces to

Bden
1 ≈ φND

0,eff(Ertb )φ
ND∗

0,eff (Erta )e
−END

0,eff(tb−ta)
. (72)

Therefore, B1 simplifies to

B1 ≈ (tb − ta)〈φND∗

0,eff | − V0e−r2/2R2
+ Veff(Er)|φND

0,eff〉. (73)

In a similar way one can show that

B2 = −(tb − ta)
∑
[ j],Eq

|〈Φ[ j],eff|ξEqe−i Eq·Er
|Φ0,eff〉|

2

E[ j],eff − E[0],eff + 1
. (74)

Eq. (56) then becomes

END
0,exact ≤ END

FH = T1 + T2, (75)

where

T1 = 〈φND
0,eff|

(
−

1
2

E∇
2
Er − V0e−

r2

2R2

)
|φND

0,eff〉, (76)

and

T2 = −

∑
[ j],Eq

|〈Φ[ j],eff|ξEqe−i Eq·Er
|Φ0,eff〉|

2

E[ j],eff − E[0],eff + 1
. (77)

To proceed further, now we have to give a prescription for the trial functions, Φ[ j],eff(Er) or in
other words we have to choose the potential, Veff(Er). We shall work in the harmonic oscillator
approximation and therefore choose

Veff(Er) =
1
2
ω2r2. (78)

The corresponding wave functions Φ[ j],eff(Er) and the energy spectrum E[ j],eff are then given by
Eqs. (9) and (10) respectively with ω̃h replaced by ω. The Feynman–Haken variational energy
finally assumes the following expression

END
FH =

N

4
(2 − λ)ω −

λV0(
1 +

1
2ωR2

) −

(
α
√

π

2
√

ω

)Γ
(

N−1
2

)
Γ
( N

2

)
 Γ

(
1
ω

)
Γ
(

1
ω

+
1
2

)
 . (79)
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The above expression has to be minimized with respect to ω for N = 2 and N = 3 separately
and the polaronic correction, ∆EFH is then obtained as

∆END
FH = END

FH (α) − END
FH (α = 0) = −

(
α
√

π

2
√

ω

)Γ
(

N−1
2

)
Γ
( N

2

)
 Γ

(
1
ω

)
Γ
(

1
ω

+
1
2

)
 . (80)

The numerical results will be discussed in Section 4. One can of course obtain a few interesting
limiting cases. But we shall not report any limiting results in this case, because almost similar
limiting results have already been presented while discussing the RSPT results.

3.3. Lee–Low–Pines–Huybrechts (LLPH) method

In the previous section we have discussed the Feynman–Haken (FH) path-integral method
which provides solutions for the entire range of the coupling parameters and also yields the
lowest upper bounds. However the disadvantage with this method is that it cannot be applied
to the excited states, for it uses the Feynman–Jensen inequality and the long-time limit in
which case, only the GS gets separated from the other excited states for a discrete energy
spectrum. Furthermore, this method is also not so useful for the calculation of quantities like
the number of phonons in the polaron, the polaron size, the polarization potential and so on
because these require the knowledge of the wave function and this method is particularly based
on the Lagrangian. Therefore in the present section, we shall look for an all-coupling variational
solution of (3) and use a variant of the celebrated Lee–Low–Pines (LLP) transformation
method [23], namely the Lee–Low–Pines–Huybrechts (LLPH) technique [24]. Though this
method is inferior to the Feynman path-integral approach (FPIA) in terms of accuracy, it has the
advantage in that it gives the wave function for the problem being a Ritz variational technique
and thus can describe various polaronic properties. In the LLPH method we successively apply
two unitary transformations with the operators

U1 = eS1 = exp

−ia
∑

Eq

(Eq · Er)bĎ
EqbEq

 , (81)

and

U2 = eS2 = exp

∑
Eq

( f EqbĎ
Eq − f ∗

Eq bEq)

 , (82)

where a and f Eq are variational parameters and then perform a zero-phonon averaging to obtain
an effective electronic hamiltonian, the expectation value of which with respect to a suitable
electronic function is then minimized with respect to the variational parameters. This procedure
is equivalent to choosing a trial variational wave function as

|Ψ 〉 = e
(−ia

∑
Eq

(Eq·Er)bĎ
Eq bEq )

× e
(
∑
Eq

( f Eq bĎ
Eq− f ∗

Eq bEq ))

|0〉|Φ(Er)〉, (83)

where |0〉 is the unperturbed zero-phonon state defined in Eq. (14) and Φ(Er) is the electronic
wave function that will be chosen later. The energy is of course given by E = 〈Ψ |H |Ψ 〉. This
procedure reduces to the LLP method if we take a = 1, which provides a good description in the
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extended state limit. In the other limit i.e., in the adiabatic case or the localized state limit, one
chooses a = 0, which is as expected equivalent to the Landau–Pekar method [18]. By treating a
as a variational parameter encompassing the range (0, 1), one can thus have a good description
for the entire coupling parameter space. The energy can be written as

E = 〈0|〈Ψ |H |Ψ 〉|0〉 = 〈Φ(Er)|〈0|
˜̃H |0〉|Φ(Er)〉, (84)

where

˜̃H = U−1
2 U−1

1 HU1U2 = U−1
2 H̃U2. (85)

After some algebraic manipulation, we obtain

˜̃H =
Ep2

2
− Voe−r2/2R2

+

∑
Eq

(
1 − a Ep · Eq +

a2q2

2

)
(b+

Eq + f ∗

Eq )(bEq + f Eq)

+
a2

2

∑
Eq,Eq ′

Eq · Eq ′(b+

Eq + f ∗

Eq )(b+

Eq ′ + f ∗

Eq ′)(bEq + f Eq)(bEq ′ + f Eq ′)

+

∑
Eq

[
ξEqe−(1−a)Eq·Er (b+

Eq + f ∗

Eq ) + h.c.
]
. (86)

The effective electronic hamiltonian becomes, after eliminating the phonon degrees of freedom
by zero-phonon averaging,

H eff
el = 〈0|

˜̃H |0〉 =
Ep2

2
− Voe−r2/2R2

+
a2

2

∑
Eq

Eq| f Eq |
2

1/2

+

∑
Eq

(
1 − a Ep · Eq +

a2q2

2

)
| f Eq |

2
+

∑
Eq

[ξEqe−(1−a)Eq·Er f ∗

Eq + h.c.]. (87)

The LLPH variational energy is now given by

ELLPH = 〈Φ|H eff
el |Φ〉 =

1
2
〈Φ| Ep2

|Φ〉 − Vo〈Φ|e−r2/2R2
|Φ〉

+

∑
Eq

(
1 − a Eq · 〈Φ| Ep|Φ〉 +

a2q2

2

)
| f Eq |

2
+

a2

2

∑
Eq

Eq| f Eq |
2

1/2

+

∑
Eq

[ξEq〈Φ|e−(1−a)Eq·Er
|Φ〉 f ∗

Eq + c.c.]. (88)

Minimization of ELLPH with respect to f ∗

Eq yields

f ∗

Eq = −

ξEqρ∗

Eq

1 − a〈Φ| Ep|Φ〉 · Eq +
a2q2

2

, (89)

where

ρEq = 〈Φ|e−(1−a)Eq·Er
|Φ〉, (90)
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and we have stipulated the condition∑
Eq

Eq| f Eq |
2

= 0, (91)

which is a reasonable approximation for a symmetric dot. For a symmetric dot, we also have,
〈Φ| Ep|Φ〉 = 0 and so the Eqs. (89) and (88) reduce to

f Eq = −

ξEqρ∗

Eq

1 +
a2q2

2

, (92)

and

ELLPH =
1
2
〈Φ| Ep2

|Φ〉 − Vo〈Φ|e−r2/2R2
|Φ〉 +

∑
Eq

|ξEq |
2
|ρEq |

2

1 +
a2q2

2

. (93)

We would also like to study a few other properties of the polaron problem in the present case.
For example, the number of phonons in the phonon cloud around the polaron can be defined

as

Npol = 〈Ψ |

∑
Eq

bĎ
EqbEq |Ψ 〉, (94)

which on substituting (83), leads, after some calculation, to

N ND
pol =

∑
Eq

|ξEq |
2
|ρEq |

2(
1 +

a2q2

2

)2 . (95)

We next consider the polaron size. The polaron size can of course be defined in various ways. All
the definitions give qualitatively the similar behaviour and the same order of magnitudes. Here
we shall follow the simplest definition:

Rpol = 〈Ψ |r |Ψ 〉. (96)

Finally, we consider the polarization potential which can be defined as

Vpol(Er
′) = 〈Ψ |v(Er − Er ′)|Ψ 〉, (97)

where

v(Er) = −
1
e

∑
Eq

(ξEqe−i Eq·Er bĎ
Eq + h.c.). (98)

We obtain

−eVpol(Er) = −2
∑

Eq

|ξEq |
2
|ρEq |

2

1 +
a2q2

2

cos(Eq · Er). (99)

We have not yet specified the form of the electronic function. We are interested here in the ground
state of the problem for which we choose the electronic function Φ(Er) in the harmonic oscillator
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approximation in N -dimensions as

|ΦGS〉 =

(
δN

π N/2

)1/2

e−(δ2r2/2), (100)

where δ is a variational parameter. We then obtain

ρEq = e−
(1−a)2

4δ2 q2
. (101)

The GS energy now reads

END
LLPH =

N

4δ2 − Vo

[
1 +

β2

δ2

]−N/2

−
α
√

π

2

Γ
(

N−1
2

)
Γ
( N

2

) (1 + δt)et2
erfc(t), (102)

where we have defined a new variational parameter t instead of a, which is given by t =

(1 − a)a/δ. The other quantities then assume the following expressions:

N ND
pol,LLPH =

α
√

2π

Γ
(

N−1
2

)
Γ
( N

2

) ∫
∞

0
dq

e−
(1−a)2q2

2δ2(
1 +

a2q2

2

)2 , (103)

RND
pol,LLPH =

Γ
(

N−1
2

)
Γ
( N

2

) 1
δ
, (104)

−eV ND
pol,LLPH(Er) = −

2
N−1

2 Γ
(

N−1
2

)
√

π

( α

r

(
N
2 −1

)
)

×

∫
∞

0
dq

e−
(1−a)2q2

2δ2

q

(
N
2 −1

) (
1 +

a2q2

2

) × J N
2 −1(qr). (105)

Variation of (102) with respect to δ and t gives

δ4
−

α
√

π

2

Γ
(

N−1
2

)
Γ
( N

2

) tet2
erfc(t)

 δ3
− 2Voβ

2
(

1 +
β2

δ2

)−( N
2 +1)

= 0, (106)

and

2(1 + tδ) +
√

πet2
erfc(t)(δ + 2

√
π(1 + tδ)) = 0 (107)

which have to be solved numerically for N = 2 and N = 3. The numerical results will be
presented in Section 4 to which we turn now.

4. Numerical results and discussion

For numerical computations we have to specify the value of N . We are interested here in both
2D and 3D dots and therefore we perform numerical computation for N = 2 and N = 3. The
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Fig. 1. Polaron self-energy in Feynman units as a function of the range of the confining Gaussian potential, R for V0 = 20
and V0 = 30 for a parabolic quantum dot and also for a Gaussian quantum dot in both 2D and 3D. The solid line refers
to the Gaussian potential while the dashed line describes the parabolic confinement case.

polaron self-energies according to the RSPT approach then assume the following expressions:

−
∆ERSPT

α
=

√
ωh

Γ
(

1
ωh

+ 1
)

Γ
(

1
ωh

+
1
2

)
 , in 3D, (108)

and

−
∆ERSPT

α
=

π

2
√

ωh

Γ
(

1
ωh

+ 1
)

Γ
(

1
ωh

+
1
2

)
 , in 2D. (109)

First we make a comparative study of the Gaussian confinement vis-a-vis the parabolic
confinement for two values of V0, namely, V0 = 20 and V0 = 30 for both 2D and 3D systems.
For the case of a parabolic quantum dot, ωh is replaced by ω̃h . The results are shown in Fig. 1.
One can observe that there is a sizable difference between the results obtained from the two
potentials. It is clear that for larger confinement lengths, the parabolic potential underestimates
the polaronic corrections. The discrepancy apparently increases with increasing V0. For small
confinement lengths, on the other hand, we find, rather surprisingly, that the parabolic potential
overestimates the polaronic correction and in 2D, the discrepancy is ever larger. Thus there is a
crossing of energy curves at small values of R. This apparently intriguing behaviour can however
be understood from the limiting result (44) which says that in the strong-confinement limit, the
polaron self-energy is inversely proportional to l and we observe that in the same limit, l can be
larger for a Gaussian quantum dot than for a corresponding parabolic quantum dot leading to a
smaller polaron self-energy for a GQD than for a PQD. The difference in the l-value between
a GQD and a PQD is rather small in 3D, but in 2D it is quite large and therefore polaronic
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Fig. 2. Polaron self-energy, −∆E/α in Feynman units as a function of R for three values of the depth of the Gaussian
confinement potential, V0 = 10, 20, 30 in both 2D and 3D.

effect turns out to be much smaller in a 2D Gaussian dot as compared to that in a parabolic
dot as R becomes small. Thus we conclude that for a quantum dot, parabolic potential is only a
poor approximation of the more realistic Gaussian confining potential for the entire range of the
confinement length.

In Fig. 2, we study the polaronic correction to the GS energy obtained from RSPT as a
function of the range of the potential R for three values of the depth of the Gaussian potential,
V0, both for 2D and 3D systems. It is evident that the polaronic effect increases as the depth of
the potential increases. The polaronic correction being linear in α in RSPT, it is apparent that
the electron–phonon interaction and the confining potential work synergistically. Comparison
between the 2D and 3D curves shows that the qualitative behaviour in 2D is the same as that in
3D but the polaronic effect is much stronger in two dimensions. This is of course consistent with
the common notion that polaronic effect decreases with increasing dimensionality.

Next we would like to compare the results obtained from the three different methods. For the
Feynman–Haken results, we have to consider (79) with λ = 1. The GS Feynman–Haken energies
for 2D and 3D Gaussian quantum dots are given respectively by

E2D
FH =

1

2µ2 −
V0(

1 +
µ2

2R2

) −

(
απ

2µ

)
Γ (µ2

+ 1)

Γ
(
µ2 +

1
2

) , (110)

and

E3D
FH =

3

2µ2 −
V0(

1 +
µ2

2R2

)3/2 −

(
απ

2µ

)
Γ (µ2

+ 1)

Γ
(
µ2 +

1
2

) , (111)

where µ2
= 1/ω. Eqs. (110) and (111) are minimized with respect to µ both in the presence of

the electron–phonon interaction and also for α = 0. The polaron self-energies are then obtained
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Fig. 3. Polaron self-energy in Feynman units as a function of the range R for V0 = 10 and for three values of α,
α = 0.01, 0.02, 0.03 in 2D and 3D Gaussian quantum dots. The solid lines refer to the RSPT results, the dashed lines
give the FHPIM results and the dotted lines represent the LLPH data.

using Eq. (80) for N = 2 and N = 3. To obtain the LLPH results we write the LLPH GS energy
for two and three dimensions from (102):

E2D
LLPH =

1
2
δ2

−
V0(

1 +
1

2R2δ2

) −
απ

2
(1 + δt)et2

erfc(t) (112)

E3D
LLPH =

3
4
δ2

−
V0(

1 +
1

2R2δ2

)3/2 − α(1 + δt)et2
erfc(t). (113)

The above expressions are to be numerically minimized with respect to two variational
parameters δ and t to obtain the upper bound to the GS energy. V0 = 0 of course yields the
bulk polaron results. To obtain the polaronic corrections we then put α = 0 in (112) and (113)
and minimize the corresponding expressions and then subtract the resulting values respectively
from (112) and (113). In Fig. 3 we present the variation of the polaron self-energy as a function of
R for the weak-coupling range both for 2D and 3D quantum dots. It is of course evident from the
results of all the three methods that as R decreases, the polaronic effect becomes more and more
pronounced and as expected, the polaron self-energy also increases with the electron–phonon
coupling constant, α. On the other hand, as the range of the potential increases substantially, the
polaron self-energy saturates to a constant which is the bulk limit. One can again see that the
polaronic effect is much stronger in 2D than in 3D. These results are along the expected line. But
certain other issues are worth pointing out. For example, it is quite interesting to note that RSPT
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provides the lowest results, the LLPH results are much higher than expected and FHPIM yields
energy values that lie somewhere in between, to be more specific, a bit closer to the RSPT curves.
In the case of the parabolic quantum dot, it is well known that in the weak-coupling regime all
the three methods yield more or less the same results. In fact, for certain values of α, the LLPH
results may be even a little lower than those obtained from RSPT and FHPIM whose data fall
almost on the same curve in the weak-coupling regime. The inaccuracy of the LLPH results
in this work may not be difficult to trace. In fact it should not be considered as a shortcoming
of this method, but is actually a consequence of the use of a too simplistic trial wave function
for the electronic part. A better wave function incorporating the effect of anharmonicity of the
confining potential will certainly improve the situation. Regarding the efficacy of the RSPT, one
may of course argue that in view of the small values of the coupling constant considered, the
success of the RSPT is but natural, but the point is that the RSPT results are far too lower than
the FHPIM values which at the very first glance appears rather intriguing. However a careful
look seems to justify this rather unusual behaviour. We believe that this is precisely because of
the special partitioning of the Gaussian potential implemented in our perturbation theory and the
subsequent use of the mean-field treatment for the unperturbed part. We have assumed that we
can approximate the Gaussian potential

V (r) = −Voe−r2/2R2
(114)

by

V (r) = −Vo + 〈Φo(Er)|
Vo

r2 (1 − e−r2/2R2
)|Φo(Er)〉r2 (115)

which essentially means that we have neglected a contribution which is of the order of

∆V = 〈Φ′
o(Er)|

1

r2 (1 − e−r2/2R2
)r2

|Φ′
o(Er)〉 − 〈Φ′

o(Er)|
(1 − e−r2/2R2

)

r2 |Φ′
o(Er)〉

× 〈Φ′
o(Er)|r2

|Φ′
o(Er)〉, (116)

where Φ′
o(Er) is the GS wave function for the renormalized (effective) harmonic oscillator of

frequency ωh . Since, the right-hand side is always a positive quantity, the neglected quantity
in our case is a positive quantity. Thus what we have done is a Hartree–Fock-like mean-field
approximation and as a result we have obtained a lower energy for the Gaussian potential than
what would be obtained had we used the harmonic oscillator wave function corresponding to the
frequency ω̃h . Since the second-order RSPT correction due to the electron–phonon interaction
has been obtained using this renormalized basis corresponding to ωh , it is quite natural that our
RSPT result for the polaronic correction may lie lower than the conventional upper bound. It
may be pointed out here that normally for the bulk bound polaron problem and for the parabolic
quantum dot problem as well, the RSPT gives an upper bound to the GS polaron self-energy.
However in the present case it is not clear whether we really get a lower bound or still an upper
bound. All we can safely say is that the energy for the Gaussian potential obtained in the present
method is lower than what would have been obtained using the unperturbed harmonic oscillator
basis. However the partitioning of the Gaussian potential can be continued iteratively till we get
a self-consistent result.

Of course, for smaller values of α, the differences in the energies obtained from the three
different methods are not very significant, but even for reasonable values of α the differences
are too large to be ignored. In our subsequent discussion we shall consider the FH results as
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Fig. 4. Polaron self-energy, −∆E in Feynman units obtained from the LLPH method and FHPIM as a function of R for
two values of α, α = 1 and α = 2 and for V0 = 10 in both 2D and 3D.

the reference upper bound for comparison, keeping of course in mind that the LLPH values are
plagued with the problem rooted in the simplistic choice of the trial wave function.

In Fig. 4, we compare the Feynman–Haken energies with the LLPH values for the
intermediate-coupling range as functions of R for 3D and 2D quantum dots. Obviously the
Feynman–Haken results turn out to be superior to the LLPH energies, as expected, but again the
difference is much larger because of the reason mentioned in the preceding paragraph. In 3D the
difference is a little smaller and so is the case for smaller α values. Nevertheless, the LLPH results
give qualitatively the similar results and in the absolute scale their accuracy may be considered
fairly alright. Again the polaronic effects are observed to be stronger in 2D than in 3D. In all the
cases, however, for large R, the polaron self-energy saturates to some asymptotic value depending
on the value of α. These are the bulk limits. In Fig. 5, we next plot the strong-coupling results
obtained from FHPIM and the LLPH method. We have shown the results for α = 7. One can
see that the relative accuracy of the LLPH results for the strong-coupling case are much better.
Thus the LLPH results, though may not give very accurate results in different regimes, can still
be considered as an all-coupling method which is reasonably alright for the entire range of the
different parameter values. And of course the situation can be further improved by choosing a
better trial function. In Fig. 6, we compare the results obtained from all the three methods for
different values of V0 for a particular value of α, namely, α = 1. We again find that compared
to 2D, the LLPH method fares better in three dimensions and the accuracy becomes even better
as R increases. Again we may conclude that for the entire range of the coupling constant, the
LLPH results can be considered to be reasonably trustworthy. The reason we are vouching for
the LLPH method though it is not all that accurate is that it has certain advantages. As we have
already pointed out, being a Ritz variational method, in this method we have to prescribe the
wave function and therefore we can obtain several other polaronic properties using this method
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Fig. 5. Polaron self-energy, −∆E in Feynman units as a function of R for α = 7 and V0 = 10 both for 2D and 3D dots
obtained from FHPIM and the LLPH method.

Fig. 6. Polaron self-energy, −∆E in Feynman units as a function of R for α = 1 and for three values of V0 obtained
from LLPH, and FHPIM for both 2D and 3D quantum dots.

very easily, namely the quantities that require averaging with respect to the wave function of the
system.

In Section 3.3, we have already obtained the formal expressions for the number of phonons
in the polaron, the radius of the polaron and the polarization potential within the framework
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Fig. 7. Variation of the number of phonons in the polaron as a function of R for different values of α and for V0 = 10 in
3D. (a) refers to the weak-coupling regime, (b) describes the intermediate-coupling range, and (c) shows the behaviour
in the strong-coupling region.

of the LLPH method. We have to determine their numerical values using the optimized
values of the variational parameters δ and t . Now we shall turn to discuss these numerical
results.

Fig. 7 shows the behaviour of the number of phonons, Npol as a function of R. In Fig. 7(a) we
show the variation of Npol in the weak-coupling range and in 3D. In Fig. 7(b) we consider the
intermediate-coupling range, while the strong-coupling case is displayed in Fig. 7(c). In all these
figures we observe that the number of phonons increases with decreasing R. This implies that
for the same value of V0, as the range of the confining potential R decreases, the polaronic state
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Fig. 8. Variation of the number of phonons as a function of V0 for different values of R in 3D.

becomes more and more bound with a large number of virtual phonons in the polaron cloud. This
is a very interesting situation, because in this case the fluctuation in the number of phonons in
the polaron is small, but still it corresponds to a highly quantum domain in terms of the length
scale. We further observe that for very low values of α, the behaviour is approximately linear.
However, as α increases, the increase in the number of phonons with decreasing R becomes
more rapid. This is clearly visible in Fig. 7(c). This behaviour is of course consistent with the
self-energy behaviour. We have not shown the behaviour in 2D for the paucity of space, but the
qualitative behaviour is the same, the difference being that the effects are stronger in 2D. From
now on we consider only the 3D case to save space. In Fig. 8 we display the variation of the
number of phonons as a function V0 for three values of R. The number of phonons is found to
increase with increasing V0 and decrease with increasing R. The variation of Npol is essentially
linear in V0. As the potential, V0 becomes deeper and deeper, the polaron state forms at lower and
lower energy leading to a self-trapped state. In Fig. 9 we plot the number of phonons, Npol as a
function of the electron–phonon coupling constant, α for a few values of R. Again, Npol is found
to be an increasing function of α. For small values of α, we find that the curves look more or
less linear which is of course an expected behaviour at least for small V0. For large V0, however,
Npol becomes a rapidly increasing function of α, because the polarization potential which is a
function of α and the confining potential act in this case synergistically. For large values of α,
Npol of course increases very rapidly even for reasonable values of V0 and R. In Fig. 10 we
study the nature of the polaron size, Rpol as a function of the range R in three dimensions. We
study the behaviour for the weak, intermediate and strong-coupling regimes. Fig. 10(a) shows
the behaviour for α = 0.01 and 0.02. The polaron radius increases with increasing R and α-
dependence is almost negligible in the weak-coupling limit. In Fig. 10(b) we investigate the
nature of the variation for the intermediate-coupling region, namely for α = 2, 3 and 5. Here we
find an interesting behaviour. For small R, the behaviour is almost linear, but as R increases, for
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Fig. 9. Variation of the number of phonons as a function of α for different values of R.

α = 2 and 3, the increase in the polaron size becomes a little more rapid than the linearity, while
for α = 5, it appears that the polaron radius tends to saturate to some smaller value. This may
be indicative of the onset of the strong-confinement regime. Thus α = 5 appears to belong to the
strong-coupling region in the present situation because of the seemingly qualitative difference in
the polaronic behaviour in this case. In Fig. 10(c) we plot the polaron radius for strong-coupling
values namely, α = 8, 9, 10. It is now quite clear that the polaron size saturates with R. The
limiting polaron size is of course smaller for larger values of α. In Fig. 11 we study the behaviour
of the effective polaron radius, Rpol as a function of the depth of the confining potential, V0 for
a few values of R. As the depth, V0 increases, the polaron size becomes smaller and smaller
monotonically. The decrease is almost linear. However, for smaller R values, the decrease is
much faster, albeit linear. This is of course understandable, because as the confining potential
becomes deeper and deeper with the range R remaining the same, the polaron sinks more and
more towards the bottom of the potential producing a GS at a lower energy and consequently
the size of the polaron decreases. With a lower value of R, there would be a combined
effect of R and V0 leading to a rapid fall in the polaron size. This is the strong-confinement
regime.

Fig. 12 shows the dependence of the polaron size, Rpol on α for a few values of R. One can
observe that at small α, the polaron size is relatively larger, but it decreases monotonically as α

increases, apparently saturating to some common value independent of R. This behaviour may
be explained in the following way. At large α, the polaron goes into a self-trapped localized
state and consequently, its size becomes very small and in the limiting case, Rpol saturates
to around one lattice spacing. In this limit, the range of the potential becomes irrelevant
and the polaron size becomes independent of R. This is the strong-coupling limit. This is in
principle different from the strong-confinement case discussed above, although in both cases
the polaron is described by a strongly localized state. Nevertheless, apparently, both large
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Fig. 10. Variation of the polaron size in 3D. a, b, c show the behaviour as a function of R for different values of α.

α and small R essentially produce a quantitatively similar behaviour, because both lead to
localization.

We next study the behaviour of the polarization potential, −eV (r) as a function of r . In Fig. 13
we show the variation of the polarization potential as a function of r for a few values of the depth
of the potential V0. We observe that as the confining potential becomes deeper and deeper, the
polarization potential also deepens, more so at smaller r , to accommodate more and more bound
states. In Fig. 14, we show the spatial variation of the polarization potential for a few values of
α. Again the polarization potential becomes deeper with increasing α to make a more favourable
situation for self-trapping. Finally in Fig. 15, we study the behaviour of −eV (r) for a few values
of R. Here we find that as R increases, the polarization potential becomes more and more shallow
as is commonly expected.
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Fig. 11. Variation of the polaron size as a function of V0 for different values of R.

Fig. 12. Variation of the polaron size as a function of α for different values of R. The inset shows the behaviour in 2D.
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Fig. 13. Variation of the polarization potential as function of r for a few values of V0 in 3D.

Fig. 14. Variation of the polarization potential as function of r for a few values of α in 3D.

5. Conclusion

We have studied the problem of an electron interacting with the LO phonons in a quantum
dot with a symmetric confinement by a Gaussian potential. We have considered both 2D and
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Fig. 15. Variation of the polarization potential as function of r for a few values of R in 3D.

3D systems and applied the perturbation theory, the LLPH method and the Feynman–Haken
path-integral technique to find out the ground state energy of the system and hence the polaron
self-energy for the entire range of the electron–phonon coupling and for arbitrary confinement.
Since the Gaussian potential is not exactly soluble, we performed an approximate second-order
perturbative calculation using a mean-field kind of treatment. We have shown that the Gaussian
confining potential provides a stronger polaronic binding for a larger range of the potential as
compared to the parabolic potential, while for smaller values of R the parabolic potential gives
a much stronger binding. The qualitative behaviour is same in both 2D and 3D dots, but the
discrepancy between the results for the Gaussian potential and the parabolic potential is more
in two dimensions than in three dimensions. Thus we have shown that the parabolic potential
is a poor approximation of the more realistic Gaussian potential for the entire range of R. We
have shown that the polaronic effects become stronger as V0 increases and again the effect is
much stronger in 2D than in 3D. We have compared the polaron self-energy results obtained
from the perturbation theory, FHPIM and LLPH methods. In the weak-coupling regime, RSPT
results give the strongest polaronic binding and the LLPH method suggests the weakest binding.
The results from FHPIM lie somewhere in the middle, or more precisely, a little closer to the
RSPT results than to the LLPH curves. We have ascribed the success of RSPT to our mean-
field approximation. The ‘not so great success’ of the LLPH method may be attributed to the
poor choice of the trial electronic function which does not include the effect of anharmonicity
present in the Gaussian confinement. However all the methods show qualitatively the same
behaviour, namely that the polaronic effects increase with decreasing R, increase with increasing
α and are larger in 2D than in 3D. In the intermediate- and strong-coupling regimes, again the
FHPIM provides better results than the LLPH method for the same reason as mentioned above.
Because of the simplicity of the LLPH method, we have used this method to find out the number
of phonons in the cloud around the polaron, the polaron size and the polarization potential.
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We have shown that the number of phonons increases with increasing α, decreases with
increasing R, and increases with increasing V0. In the weak-coupling region, the decrease in
Npol is almost linear in α, but in the strong-coupling range, Npol tends to saturate to a constant
depending on the value of α. The behaviour of Npol with V0 is also almost linear, while as a
function of α, Npol looks more or less like a concave function showing a rapid increase in the
number of phonons at large α. The polaron size also shows some interesting behaviour. In the
weak-coupling region it increases linearly with R, but seems to be essentially independent of α.
This is reminiscent of the delocalized large polaron scenario. In the intermediate-coupling range,
Rpol shows a small bending upwards at large R, while for strong coupling, the polaron size
above some value of R tends to saturate to some constants which depend on the value of α. As
a function of V0, we have shown that, Rpol decreases almost linearly leading to localization, the
decrease being more rapid for smaller R values. Rpol also decreases with increasing α, tending to
saturate to some constant value independent of R. On the other hand, below some value of α, the
polaron size increases very rapidly with decreasing α, more so for larger R, again leading to the
delocalized large polaron. Of course the polaron size is always limited by the quantum dot size
or in other words by the range of the confining potential. We have determined the shape of the
polarization potential using the LLPH method. There is clear indication of a minimum structure
at the centre of the dot. The minimum becomes deeper and deeper with increasing V0 and α and
decreasing R. At large r , however, the polarization potential does not depend on the range or
depth of the potential. All these behaviour are also expected to show up in a 2D quantum dot, but
of course with a stronger effect. Finally, we should mention that for a very small dot, tunnelling
becomes important and in that case, interaction with interface phonons will play an important
role. We have however neglected this interaction for the sake of simplicity but we believe that
the essential qualitative features of the problem will remain more or less the same even after the
inclusion of the interface phonons.
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