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Abstract
Providing multiple meanings in a single piece of art has always been intriguing to both artists and observers. We present
Purkinje images, which have different interpretations depending on the luminance adaptation of the observer. Finding such
images is an optimization that minimizes the sum of the distance to one reference image in photopic conditions and the distance
to another reference image in scotopic conditions. To model the shift of image perception between day and night vision, we
decompose the input images into a Laplacian pyramid. Distances under different observation conditions in this representation
are independent between pyramid levels and pixel positions and become matrix multiplications. The optimal pixel colour can be
found by inverting a small, per-pixel linear system in real time on a GPU. Finally, two user studies analyze our results in terms
of the recognition performance and fidelity with respect to the reference images.
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1. Introduction

Visual experience is not a mechanical recording but rather involves
interpretation of scenes in a meaningful way [Arn04] . For one
image several percepts are possible , since the human visual sys-
tem (HVS) combines various cues which gain significance only
under certain viewing conditions [Wan95]. Artists such as S. Dali
and M. C. Escher have used these cues to attribute multiple visual
meanings to their works. In computer graphics, approaches such
as autostereograms [TC90], hybrid images [OTS06] or camouflage
images [CHM*10] combine multiple percepts into a single image.

In this work, we propose a novel type of images—Purkinje
images—that provide different percepts, depending on the ob-
server’s luminance adaptation. We optimize the output Purkinje
image, so that at a given luminance level the corresponding percept
is apparent, while the cross-talk with other percept, which should
be seen at different viewing conditions, is minimized. The separa-
tion between the percepts with respect to day and night viewing

conditions is achieved by accounting for colour and spatial vision
properties in the HVS. While our primary objective is recreation
and artistic explorations, our approach can serve in more practi-
cal applications such as designing novel test images for detecting
colour vision deficiencies based on natural images, e.g. for children.
Since many animals are dichromats our framework can help in fab-
ricating camouflage clothing with reduced visibility for animals and
improved visibility for colour-blind humans.

2. Background

Human vision operates in a wide range of luminance values (10−6 to
108 cd/m2) where rod photoreceptors are active in dark conditions
up to ∼3 cd/m2 while cone photoreceptors become sensitive for
luminance over 0.1 cd/m2. Purely rod- and cone-mediated vision
is called scotopic and photopic; the range of mixed cone and rod
activity is called mesopic.
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Figure 1: Our work combines two images A (a) and B (b) to produce a single image (c or d) that is perceived as image B in daylight (photopic
vision) and as image A at night (scotopic vision). We can adjust between a natural look (c) with a medium separation and a strong separation
with a stylized look (d). (Scotopic only visible in print when shown in dark lighting conditions below ∼0.01 cd/m2; Images (e and f) show
simulations based on [TSF02].) Photos: (a) Mauritshuis, www.mauritshuis.nl; (b) www.worth1000.com.
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Figure 2: Sensitivity of the HVS to spatial luminance frequency is
different for photopic (solid orange line) and scotopic (solid blue
line) vision as specified by their respective contrast sensitivity func-
tions (CSFs), which have been derived for 0.01 and 100 cd/m2 adap-
tation luminance [Bar89]. The luminous efficiency functions V (λ)
for photopic (dashed orange line) and V ′(λ) for scotopic (dashed
blue line) vision also demonstrate the shift of peak sensitivity as a
function of spectral wavelength λ [RKAJ08]. Note that all functions
shown in this graph are normalized to emphasize on the relative
positions of their respective sensitivity peaks, which we exploit in
this work.

In a vast majority of graphics techniques dealing with colour
and contrast information, photopic vision is tacitly assumed. For
example, the commonly used luminance Y is derived using the
photopic luminous efficiency function V (λ) [Wal45] (refer to
Figure 2), which is a weighted sum of the sensitivities of L, M and S-
type of cones for all visible light wavelengths λ. Three-dimensional
colour spaces such CIE XYZ, where Y denotes the photopic lumi-
nance, or more display device-oriented ones, such as RGB are used
to specify light intensity and colour as registered by cones (refer to
Reinhard et al. [RKAJ08, ch. 8] for more details on those and other
commonly used colour spaces as well as the corresponding con-
version matrices). In this work, we distinguish between photopic,
scotopic and mesopic vision as it is typically assumed in the high
dynamic range imaging (HDRI) [RWD*10] and colour appearance
[RKAJ08] literature. As modelling of scotopic and mesopic vision is

less common, we summarize recent developments that are relevant
for this work.

Scotopic Vision: is characterized by loss of colour vision, re-
duced visual acuity and temporal aspects of dark adaption, which
are less relevant for this work [DD00].

Since only one receptor type is active in scotopic vision, a 1D
function fully characterizes the rod response, and the scotopic lu-
minance Yscot (the counterpart of the photopic luminance Y ) is used
for this purpose. Yscot is derived from the scotopic luminous effi-
ciency function V ′(λ) (Figure 2), which shows a shift of sensitivity
(the so-called Purkinje shift) from longer λ (shades of red) towards
shorter λ (shades of blue).

The sensitivity to luminance patterns of varying spatial frequen-
cies can be characterized by the contrast sensitivity function (CSF)
as shown in Figure 2.When the CSFs for rod- and cone-mediated
vision are compared, over 10-fold reduction in the sensitivity in
dark conditions can be observed [Wan95, figure 7.21]. Also, the
peak of sensitivity shifts from 8 cpd in daylight vision to 1 cpd in
night conditions. In tone mapping, the visual acuity is typically
modelled by low-pass filtering of the original image [FPSG96,
WRP97, PFFG98, DD00, TSF02], where the cut-off frequency is a
function of adaptation luminance as measured by Shlaer [Shl37].

Mesopic Vision: combines characteristics of scotopic and
photopic vision as a function of adaptation luminance. A recent
International Commission on Illumination (CIE) recommendation
for standardization [CIE10], which is based on exhaustive visual
performance experiments, assumes mesopic luminance as a linear
combination of scotopic and photopic luminance. A linear com-
bination of, possibly differently derived, rod and cone responses
is typically used in image quality metrics [MKRH11], colour ap-
pearance models [RKAJ08] and tone mapping operators [FPSG96,
DD00, WRP97]. Remarkable realism of tone mapping for spectral
images has been shown by Kirk and O’Brien [KO11], who employed
a biologically inspired model that predicts the offset in the L, M and
S-cone channels due to rod response [CPSZ08]. An advanced colour
appearance and tone mapping approach in a single framework
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has been proposed by Pattanaik et al. [PFFG98], where different
contrast transducers are considered for cone- and rod-mediated
signals, prior to their combination into an achromatic signal.

3. Related Work

In this section, we discuss various approaches of combining multiple
percepts in one output image.

One Percept from Multiple Images: In image fusion and multi-
exposure high dynamic range techniques [RWD*10] differently ex-
posed photographs of the same, ideally static scene, are combined
to avoid under- and overexposure. Image photomontage typically
favours locally coherent image content coming from a single input
image, and focuses mostly on suppressing the visibility of bound-
aries between different input images [PGB03]. Digital image com-
positing mostly relies on linear interpolation [PD84], which leads
to contrast and sharpness reduction in the composite image due to
compression of the colour distribution around its mean. As a rem-
edy, Grundland et al. [GVWD06] employ linear stretching of each
colour channel around its mean, which leads to a better preservation
of average colour and contrast of the component images. Our goals
are different as we want to obtain the percept of two fully distinct
images, which are possibly reproduced at their full resolutions. Sim-
ilar to Grundland et al. [GVWD06] we optionally employ the image
saliency [IKN98] to favour the most informative regions from the
component images when the scotopic and photopic views cannot be
cleanly separated.

Multiple Percepts in One Image: As we discussed in Section 2,
the HVS exhibits variations in visual contrast sensitivity depending
on spatial frequency. Setlur and Gooch [SG04] use this fact to cre-
ate facial images with different emotional states regarding the CSF
separation between peripheral vision and central vision [Liv02, ch.
5]. Differently, Oliva et al. [OTS06] in their ‘hybrid images’ take
advantage of visual sensitivity as a function of viewing distance.
They decompose luminance of two images into frequency bands,
and depending on viewing distance they choose different frequency
bands for each image and combine them. In this manner, the result-
ing hybrid image has two different interpretations when it is viewed
at different distances. Their approach is achromatic and does not ac-
count for shifts in colour and frequency perception with luminance
adaptation. A similar procedure has been applied by Didyk et al.
[DRE*11] in the context of disparity sensitivity function (DSF) es-
timation, which led to two different depth percepts as a function of
viewing distance with respect to a stereo 3D display. Image mosaics
[Hau01, KP02] and collages [HZZ11, GTZM10] are stylizations, in
which icon-sized tile images are tightly packed into a larger con-
tainer image to appear similar to the large image when observed from
distance. Complete photographs or their arbitrary-shaped cutouts
(e.g. consistent with meaningful objects for the Arcimboldo-like ef-
fect) can be used as the tile images, whose details are readily visible
from short distances. Relief images [AM10] employ a height-field
surface, which through diffuse shading depicts two unique images
when illuminated from two directions. We also embed two differ-
ent percepts in one image, but our separation method is based on
luminance adaptation.

Hiding Percepts in the Dominant Image: In camouflage images,
features of the dominant image, especially its edges [TZHM11]

and texture [CHM*10], are used to depict selected elements of the
hidden image, whose recognition might require more effort due to
sketchy presentation. Mitra et al. [MCL*09] generate emergence
images of 3D objects, which locally appear as noise and become
meaningful to the human observer when viewed as a whole, while
remain difficult to interpret by machines. In steganography, a hidden
message in the dominant image can be revealed using a decoder tool
such as a Cardan Grille or a Magic Lens [PHN*12], where refractive
lenslet arrays are placed over seemingly unstructured images to
reveal a hidden image. Copyright protection by watermarking is
another example of hiding an (ideally imperceivable) image. Our
goal is different as we fully reveal one of the two images in one
specific lighting condition.

Concurrent Multiple Image Display: In stereo 3D systems,
specialized hardware (anaglyph or polarization glasses, time mul-
tiplexing) enables separation between the left and right eye views
which ideally do not suffer from any crosstalk [vBPJ*11]. Tech-
niques of crosstalk reduction used in such systems, have similar
goals to ours, but they affect only local image regions and typically
favour one image content over another [vBPJ*11]. Recently, Kim
et al. [KCZT12] demonstrated dual viewing for regular LCD dis-
plays. Their technique has a number of limitations as it works for
strictly selected and narrow view directions, smooth shading can be
achieved only through dithering and a pair of different images must
be shown through spatial or temporal multiplexing. In our approach,
each pixel is optimized to be meaningful in two different viewing
contexts, and smooth shading is easy to achieve.

Separation by Adaptation Luminance: Mantiuk et al.
[MRH09] show that by displaying long-wavelength light (red and
amber) cones might be adapted to much higher luminance levels
that ensures display legibility, while rods remain adapted to scotopic
conditions. Such rod–cone separation has important implications on
the design of displays in a vehicle cockpit, which should not affect
night vision nor cause dazzling glare. Here, the rod–cone separation
is considered for different gaze directions, while we want to achieve
such separation at the same spatial location by explicitly adapting
to different lighting levels.

Separation by Spectral Sensitivity: One of the earliest uses
of multiperceptual images is the Ishihara standard test for colour
blindness [Ish17]: Here, colour-blind observers perceive an arrange-
ment of isoluminant circles while subjects with normal colour vi-
sion experience coloured letters. Although there is a large body of
work on image ‘daltonization’, where the goal is to improve the
appearance of a single image for a specific colour vision deficiency
[KOF08], in this work we show how to optimize for simultaneous
viewing by people with normal and defective vision (Section 4.3).

Many mammal species such as dogs, cats or cows are dichro-
mats, i.e. have only two cone types [Jac93], which has similar con-
sequences as colour blindness of humans. Moreover, the spectral
sensitivity is often shifted towards short wavelengths, which im-
proves the dusk, dawn and night vision, but at the same the sensi-
tivity to red and orange is significantly reduced as it is the case for
deer [JDN*94, figure 6] (refer also to Section 4.3). This is exploited
in designing camouflage clothing for deer hunters [Bur07], and our
approach can be directly used for reducing visibility of clothing for
any case, where the spectral sensitivity of photoreceptors is known.

c© 2014 The Authors
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4. Approach

Overview: In this section, we introduce our framework for
creating a Purkinje image. Input is two images Ip and Is while
the output is a conventional image I , that is similar to Ip in
photopic conditions and similar to Is in scotopic conditions I =
argminÎ�p(Î , Ip) + �s(Î , Is), where �p is the perceived distance
of two images in photopic and �s in scotopic conditions. Note, how
this formulation includes enforcing the result I to be perceived as
the photopic image Ip in photopic conditions, without being dis-
torted by the scotopic one as this would increase the response of
�p. In the same way, result I tends to resemble the scotopic input Is

under scotopic conditions, without being affected by the photopic
one detected by an increase in �s.

Most methods combining multiple images assume them to be
aligned [Wol98]. This step was performed manually for our results
using the approach of Schaefer et al. [SMW06].

Optionally the user provides two saliency maps [IKN98]. Our
work addresses two challenges: first, choosing distance functions
�p and �s (Section 4.1), and secondly, efficiently optimizing for I ,
given Ip and Is (Section 4.2).

Viewing Conditions: A Purkinje image’s scotopic content is only
perceivable on printed paper sheets of sufficient size (A4) or colour-
ful ink screens in sufficiently dark conditions, where luminance is
less than ∼0.01 cd/m2. The black level of current computer displays
is still too bright and cone receptors are still effective even in a
fully dark environment. A practical test for dark adaptation, which
can take 5–30 min, is whether colour perception is still present: Its
absence indicates sufficient rod vision. In the following, we will
simulate night vision similarly to [TSF02], but encourage the reader
to dark-adapt and verify the results using sufficiently large (e.g.,
A4) paper prints.

4.1. Distances

Perception of images in photopic and scotopic conditions differs in
two main regards: colour vision and spatial frequency sensitivity
(see Section 2, in particular, Figure 2). We need a representation of
the input images Ip and Is, and the solution image I that enables the
manipulation on signals that independently represent colour com-
ponents as well as image patterns of different spatial frequencies.
This is achieved by a Laplacian decomposition of Ip and Is for each
colour channel. Effectively, at one pyramid level and one spatial lo-
cation, this decomposition denotes how strong the spatial frequency
of each colour component is present. Another important issue for
the optimization is the measure of distances �p and �s that must
be calibrated relative to each other. A fixed distance value must be
perceived as equal in both viewing conditions. A careful selection
of colour spaces for scotopic and photopic conditions, as well as
proper scaling of signals at pyramid levels allows to account for the
HVS sensitivity in both conditions and consequently, the Euclidean
distance can be used as �p and �s.

Colour Spaces: The differences in colour perception between
scotopic and photopic vision (Section 2) require adequate colour
spaces that provide meaningful distance measures leading to a bal-
anced, simultaneous minimization of both �p and �s. This requires

perceptual uniformity within each candidate colour space, so that
similar magnitude of colour change leads to similarly perceived
differences irrespectively of the initial pixel intensity. Furthermore,
perceptual uniformity should be maintained between scotopic and
photopic conditions.

Since our goal is not a high-fidelity reproduction of the scene ap-
pearance as in tone mapping [RWD*10], we refer to approximations
used in image compression and encoding literature. Similar to com-
pression we assume that in Ip and Is we deal with gamma corrected
R′G′B′ colour channels (the primed quantities denote non-linear
signals), which can be transformed into the luma Y ′ and chroma CB

and CR channels (we assume the ITU-R BT.709/sRGB primaries
[RKAJ08, ch. 8]):

⎛
⎝ Y ′

CB

CR

⎞
⎠ =

⎛
⎝ 0.22 0.71 0.07

−0.11α −0.38α 0.50α

0.50α −0.45α −0.46α

⎞
⎠

⎛
⎝ R′

G′

B′

⎞
⎠ . (1)

The parameter α controls chroma preservation. Chroma is preserved
when α is around 1, and not preserved when α is close to 0. A good
choice is α = 0.3 that is used in all our results unless noted otherwise
(e.g. α = 0.3 in Figure 1c and α = 0 in Figure 1d).

Note that luma Y ′ is an approximation of lightness used in colour
appearance, and that the same amount of luma distortion, e.g.
through lossy-compression, has a similar perceptual effect, irre-
spective of the absolute luma value. This way we can benefit, in our
optimization, from the error measure that is perceptually uniform,
and we avoid non-linearities in the visual distance measure.

One can observe that the weights used to derive Y ′ based on
R′G′B′ (the first row of the 3 × 3 matrix in Equation 1) are identi-
cal to those used to derive photopic luminance Y from linear RGB
components. Following this analogy, we introduce the scotopic luma
Y ′

scot based on weights derived in [PFFG98] for the scotopic lumi-
nance Yscot (here the weights are converted to the RGB colour space,
refer also to Section 2):

Y ′
scot = (0.16 0.62 0.52) · (R′ G′ B′)T. (2)

Since the derivation of Y ′CBCR and Y ′
scot from R′G′B′ is based on the

linear transformations, the formulation of the optimization problem,
which we discuss in Section 4.2, remains equally simple as it would
be the case for a linear colour space. Also, chroma CB and CR

contain mostly chromatic information, which is important to model
different CSFs for chromatic and achromatic channels.

Discussion of Colour Space Selection: While the CIELAB
or CIELUV colour space would be a better choice in terms of
perceptual uniformity, we aim a closed-form solution of our per-
pixel optimization problem (Section 4.2). It conveniently enables
interactive design of various image alignments with the real-time
result preview for the photopic condition (please refer to the Sup-
porting Information Video S1) . In the case of CIELAB of CIELUV,
the problem would be convex and the solution needs to be found
using a more costly non-linear solver such as gradient descent.

c© 2014 The Authors
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Achromatic and Chromatic CSFs: Two different aspects of
sensitivity to spatial image content in scotopic and photopic condi-
tions can be beneficial in the visual separation between the Ip and Is

content: the shift of sensitivity peaks in the CSFs for scotopic and
photopic luminance, and different cut-off frequencies, when signals
cannot be perceived (as discussed in Section 2). For the achromatic
CSF, we use the model of Barten [Bar89], which is parametrized by
spatial frequency ρ and adaptation luminance Y . We always normal-
ize the maximum gain in CSF to 1.0 both for scotopic and photopic
vision (Figure 2), as our goal is that both Ip and Is are equally well
visible when presented in their designated conditions. Note that our
goal is different from reproducing the relative loss of sensitivity in
scotopic with respect to photopic conditions for the same pattern
as measured by Wandel [Wan95, figure 7.21]. We assume also the
cut-off frequency of 8 cpd for both chroma channels CB and CR.

Discussion of CSF Filtering: While CSFs have originally been
measured for luminance and opponent colours, which strictly speak-
ing means that the relevant filtering should be performed in a linear
colour space [PFFG98], many HVS models, which are successfully
used in image processing (refer to a similar discussion by Bolin
and Meyer [BM95]), JPEG/MPEG compression, and image quality
metrics [Dal92] perform CSF filtering over non-linear functions of
luminance akin to lightness, or directly on luma and chroma as in
our work. For supra-threshold contrast signals, the sensitivity dif-
ferences for various spatial frequencies are reduced [GS75], but as
we show in the first user study (the relevant stimuli are shown in
Supporting Information) ignoring the CSFs leads to inferior visual
separation between Ip and Is. This indicates that low contrast signals
play an important role in our optimization.

4.2. Optimization

Cost Function: Input to the optimization are the Laplacian pyra-
mids of the reference images. The optimization is performed for all
spatial positions and all levels independently which are summed to
produce a single result image. In the following, we consider opti-
mizing a particular pixel at a particular level. For an R′G′B′ colour
x ∈ R

3 on level i, the cost

fi : R
3 → R fi(x) = ||sp

i C
p
i (x − yp

i )||2+
||ss

i C
s
i (x − ys

i )||2 (3)

is the sum of squares of the perceived distances between the choice
x and the photopic reference yp

i and the scotopic reference ys
i (yp

i ,
ys

i ∈ R), calculated using Equations (1) and (2), weighted by the
optional saliency scalars s

p
i and ss

i ∈ R. The matrices C
p
i ∈ R

3×3 and
Cs

i are used to transform input R′G′B′ at level i into Y ′CBCR and
Y ′

scot channels, and at the same time rescale the per-channel signal
by the CSFs of level i as follows: C

p
i is obtained by rescaling each

row in the transformation matrix from Equation (1) by respective
contrast sensitivity for the achromatic and chromatic channels with
the photopic adaptation luminance Y . Similarly, Cs

i is built from the
rescaled coefficients in Equation (2), where the achromatic CSF with
the scotopic adaptation luminance Yscot is considered. The contrast
sensitivity values used for such rescaling are derived for the central
spatial frequency ρi at level i, which is expressed in cycles per
degree and depends on the angular resolution of the input image

)(x=

f p(x)
yp

ys

f s(x)

, ,

Figure 3: Input Laplacian pyramids (left) that map a spatial lo-
cation (red and blue inset) to an RGB amplitude of all perceivable
frequencies, i.e. a point x in an 3n-dimensional colour-frequency
space. The photopic and scotopic cost functions f p and f s (right)
describe the cost of using a value x instead of the reference values
yp and ys.

nppd given in pixels per degree as ρi = nppd/2i . Note that Cs
i has a

rank of only 1 due to the insensitivity for chroma, while C
p
i has full

rank 3.

For regularization, we add a small constant 3 × 3 matrix having
value 0.01 for its each element to both C

p
i and Cs

i to prefer the
average of the references as the solution if multiple solutions are
equally good.

Minimization: The 3-variate cost function fi is the sum of two
non-uniformly scaled and rotated quadratic functions (Figure 3).
Dropping the dependency on the level i and assuming the saliency
was multiplied into the cost matrices Cp and Cs, the cost of colour
x equals

‖Cp(x − yp)‖2
2 + ‖Cs(x − ys)‖2

2 = (4)

(
Cp(x − yp)

)T

Cp(x − yp) +
(
Cs(x − ys)

)T

Cs(x − ys). (5)

Seeking to minimize this expression, we take its derivative and
set it to zero. As

d
(

(Mx)TMx
)
/dx = MTMx (6)

holds for all matrices M, we can write the derivative as

(
CpTCp + CsTCs

)
︸ ︷︷ ︸

A

x = CpTCpyp + CsTCsys

︸ ︷︷ ︸
b

. (7)

Consequently, the optimal colour is found by inverting the 3 × 3
matrix A of normal equations in a closed form and multiplied with
b for every pixel on each level.

The optimal value x, however, might not be reproducible by ev-
ery output device, e.g. a printer. Instead, we wish to restrict the
solution to a reproducible subset R ⊆ R

3. To this end, we per-
form a few iterations of gradient descent, where the gradient is
a known linear mapping A. In every step of size λ, we reproject
the new solution onto the subset of reproducible solutions, as in

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



S. Arpa et al. / Purkinje Images 121

Figure 4: Purkinje images of two inputs (left) for mesopic conditions of different adaptation luminance (right).

Figure 5: An image perceived more like a squirrel (left, bottom) for
subjects with normal vision (middle) and more like a bird (left, top)
to protanope daltonian vision (right).

x(i+1) = r(x(i) + λAx(i)), where r(x) ∈ R
3 → R maps a colour to

its closest reproducible colour, and typically λ = 0.1.

An (unoptimized) implementation of this solver computes the
result of a one-megapixel image (10 Laplacian levels) parallel over
all pixels and levels in 20 ms on a Nvidia Geforce Quadro 6000 GPU.

4.3. Variants

We now extend our approach to mesopic conditions and non-
standard observers.

Mesopic: To simulate mesopic vision, we replace the matrix Cs

in Equation (3) with a linear blend Cm(a) = (1 − a)Cp + aCs con-
trolled by a factor a ∈ (0, 1) that describes the luminance adaptation
(Figure 4). We compute a using a sigmoid that is 0 at 3 and 1 at
0.005 cd/m2 log-average luminance.

Daltonians: Daltonian human vision has only a single colour
dimension, i.e. a rank deficiency [MVB99]. Replacing the scotopic
matrix Cs in Equation (3) with the one reported by Mollon et al.
[MVB99], our approach creates images appearing different to ob-
servers with normal and daltonian vision. While most Purkinje im-
ages serve curiosity and recreation, this extends the standard test for
colour vision defects [Ish17] to arbitrary natural images. However,

Figure 6: Combining a cow (a) and deer (b) to be perceived as a
cow by a human (c) and as a deer by a deer (d, simulated).

the response difference between daltonian and normal vision is less
than the one of photopic and scotopic vision and consequently the
separation is more challenging to optimize (Figure 5).

Animals: Most animal colour vision suffers a rank deficiency
as well [JDN*94]. This can be used to design patterns that appear
different to humans and animals for camouflage purposes [Bur07].
The visual acuity of a deer is about 80% lower than humans, which is
due to the reduced number of cones. We use the spectral responses
of two types of cones for deers [JDN*94, figure 6] to create a
simple opponent colour space for deer to be used in our optimization
(Figure 6).

5. Study

In this section, we report the results of two perceptual studies which
quantify the recognition power and the resulting image fidelity. A
full description of the experiments, including detailed statistics is
presented in the Supporting Information.

5.1. Recognition study

All 12 participants (six M/six F, 22–27 years) were volunteers,
naı̈ve to the specific purpose of the experiments and had normal or
corrected-to-normal visual acuity. Stimuli were presented printed
on A4 matte paper in two rooms: typical office lighting conditions

c© 2014 The Authors
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Figure 7: Purkinje images are not symmetric. An input (a+d) leads
to (b) and (c), while the input (d+a) leads to (e) and (f). The input
is a ‘before/after-image’ and the couple looks older (younger) at
day (night) depending on the order. Photos: (a and d) Sander Koot,
www.sanderkoot.nl.

Figure 8: Combination of three images A, B and C (First column).
The bold letter indicates the dominant percept.

(100 cd/m2) and a dark room (0.01 cd/m2). Subjects were adapted to
the conditions of the respective room. Our goal was to test if subjects
indicate the correct dominant percept under a certain condition when
presenting them a test image and two reference images and asking
a 2AFC question: ‘Which of the two reference images is more
similar to the test image?’. The stimuli were 30 Purkinje images
(Figure 9; 30 ordered pairs from 15 combinations of six different
female faces) . We generated four alternatives for each Purkinje
image: Three versions of our optimization (Pixel, Laplacian, small
α = 0 and high α = 1 chroma weight) and trivial blending without
optimization. A single test image and reference pair was shown
to the subject in each trial all. The order of test images and the
arrangement of reference pairs were randomized. We performed
two sessions for each subject: one in the lit and one in the dark
room.

We would like to test, if the proportion of correct answers in
each category significantly differs from a random probability (all
statements in this paragraph are significant p < 0.01; pairwise bi-
nomial, unless noted otherwise). The results show that our optimiza-
tion improves the rate of correct answers averaged over all pairs and
conditions, from 53% (close to chance level) for linear blending to
96% (close to always-correct). Using the Laplacian decomposition

leads more correct answers (97%) than not using it (94.5%), which
effectively means that misclassification is almost halved from 5.5%
to 3%. We find that for the Laplacian solver answers are more cor-
rect for photopic (99%) than for scotopic (95%) but find the reverse
without (91% photopic vs. 98% scotopic). This effect of size 8%
might be explained by limitations of our metric that over- or un-
derestimates perceived error in one condition for each approach.
Of 28 combinations of faces, eight did not achieve a significant
improvement under scotopic conditions and nine did not achieve
a significant improvement under photopic conditions. Two of 28
images did not produce an improvement in both conditions. When
aggregating over all 14 combinations for each of the six images the
difference of all techniques is significant: again 53% for blending,
97% for Laplacian and 95% without it.

5.2. Fidelity study

Having shown that our method provides superior recognition rates,
we next tested if the fidelity is roughly equivalent as well, since it
is not expected that combining two images in one improves image
fidelity. To assess the result fidelity, the same image set was shown
to 12 other participants (five M/seven F, 22–27 years, experienced
in digital photography and colour imaging) who were asked to rate
each image under photopic conditions, on a 0–10 Likert scale with
regard to the following aspects: (i) overall fidelity, (ii) colour fidelity,
(iii) absence of pollution, such as ghosting and (iv) similarity to
the original image (Table 1). Note that after showing our method
provides superior recognition in Section 5.1, we would now like to
know if the fidelity is roughly equivalent as well. It is not expected
that combining two images in one improves image fidelity.

Overall Fidelity: All variants of our approach are significantly
preferred over linear blending (p < 0.01, paired t-test) with a
medium effect size for linear blending and Laplacian and a small
effect size for others (g = Hedge’s g). From a small or medium but
significant effect, we can conclude that our method is mostly equiv-
alent in terms of overall composition to an alternative which has
inferior recognition. We also see moderately significant differences
(p < 0.1) between the variants of our algorithm, where Laplacian
turns out best.

Colour Fidelity: The differences in colour fidelity are smaller
and not significant. This is expected since in all methods colours are
distorted. The scores are significantly different (p < 0.01) between
our chroma-enhanced and our Laplacian variant, however, effect
size for this difference is small.

Absence of Pollution: Laplacian Purkinje images have sig-
nificantly less visual pollution (p < 0.01) than linear blending
with a large effect size. We can also observe a significant differ-
ence between using Laplacian compositing or not. The effect size
is medium for both differences. This yields the conclusion that
pollution is equivalent between our approach and a baseline which
has inferior recognition.

Similarity: Both our Laplacian and chroma-enhanced variant
significantly outperform linear blending in terms of similarity
(p < 0.01). Enhancing chroma or not using Laplacian significantly
decreases the average scores of our method. We conclude that elim-
inating high frequencies from the scotopic image increases the
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Figure 9: The matrix of female faces used in the perceptual experiment. Photos: (a) Antonio Serebryakov; (b) Grigoriy Shipakov; (c) Alina
Troeva; (d) Grafik, www.grafikfoto.ru; (e) Dmitriy Ragin and (f) Lyudmila Vilchevskaya.
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Table 1: Preference scores (rate) and significance of the preference effect between different approaches.

Overall Colour Pollution Similarity

Bl. Pi. La. Ch. Bl. Pi. La. Ch. Bl. Pi. La. Ch. Bl. Pi. La. Ch.
Rate 3.7 3.8 4.8 4.3 4.3 4.1 4.8 4.6 3.8 3.5 4.7 4.4 3.3 3.6 5.5 4.5

Blend 0.31 0.01 0.01 0.13 0.25 0.16 0.57 0.01 0.02 0.02 0.01 0.01
Pixel 0.31 0.01 0.09 0.13 0.01 0.01 0.57 0.01 0.01 0.02 0.01 0.01
Lapl. 0.01 0.01 0.06 0.25 0.01 0.98 0.01 0.01 0.73 0.01 0.01 0.01
Chroma 0.01 0.09 0.06 0.16 0.01 0.98 0.02 0.01 0.73 0.01 0.01 0.01

fidelity of photopic image in terms of similarity to the original
image.

6. Discussion and Conclusion

Purkinje images are interesting as they challenge observers to dis-
cover multiple interpretations and meanings. We presented a frame-
work to create such ambiguity depending on luminance adaptation
conditions.

Our approach has several applications. First, we think it is simply
fun to discover hidden messages in images, which is a value on its
own. Artists like Dali or Escher have created images of multiple
meanings. Secondly, the ability to demonstrate the Purkinje shift on
arbitrary images is valuable for computer graphics and perceptual
computing education. For medical testing, artificial colour patches
are used while our approach allows for real images which are better
suited for infants, handicapped people and do not require verbaliza-
tion. Finally, our technical solution could be used to optimize for
images that appear similar under different conditions (traffic signs
in day and night, metro plans for colour blinds), for images that
undergo distortions in reproduction (gamut mappings), when fabri-
cating clothes that show different patterns under different conditions
or to different species (as already done for hunting camouflage).

Our main limitation is—similar to hybrid [OTS06] or emerging
images [CHM*10]—that many combinations of images cannot be
successfully combined without human intervention. Purkinje im-
ages are also not symmetric (Figure 7). In general, images have
to be aligned and must only differ in spatially and chromatically
small, but important details. This is possible for multiple images as
well (Figure 8). Users can additionally provide automatic or painted
saliency maps to guide the separation (not used in any result in
this paper). Video S1 shows, how the efficiency of the GPU solver
allows to both deform the input images and to paint saliency maps
with interactive feedback in the form of a Purkinje image and a
simulation for scotopic vision.

Selecting a good pair still depends on the user’s intervention. In
future work, a more sophisticated way of pair selection could be
explored to exclude user control including feedback on the solu-
tion quality and choice of images. Furthermore, we would like to
account for the temporal characteristics. Purkinje images are just
one instance from a large family of multi-perceptual images or
multi-perceptual content that should be treated in a unified multi-
perceptual framework.
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ment set-up, Krzysztof Templin for proofreading and the anonymous
reviewers for helpful comments.

References

[AM10] ALEXA M., MATUSIK W.: Reliefs as images. ACM Transac-
tions on Graphics 29, 4 (2010), 1–7.

[Arn04] ARNHEIM R.: Art and Visual Perception: A Psychology of
the Creative Eye/New Version. University of California Press,
Berkeley, CA, USA, 2004.

[Bar89] BARTEN P.: The square root integral (SQRI): A new metric
to describe the effect of various display parameters on perceived
image quality. In Proceedings of OE/LASE (Los Angeles, CA,
USA, 1989), pp. 73–82.

[BM95] BOLIN M., MEYER G.: A frequency based ray tracer. In
Proceedings of SIGGRAPH (New York, NY, USA, 1995), ACM,
pp. 409–418.

[Bur07] BURRELL J.: Multi-spectral imaging with differential
visualizability in discrete visualization domains. US patent
20090017267 A1. 2007.

[CHM*10] CHU H.-K., HSU W.-H., MITRA N. J., COHEN-OR D., WONG

T.-T., LEE T.-Y.: Camouflage images. Proceedings of SIGGRAPH
Asia, ACM Transactions on Graphics 29, 4 (2010), 51.

[CIE10] CIE: Recommended System for Mesopic Photometry Based
on Visual Performance, Vol. 192. IOS, Vienna, Austria, 2010.

[CPSZ08] CAO D., POKORNY J., SMITH V. C., ZELE A. J.: Rod con-
tributions to color perception: Linear with rod contrast. Vision
Research 48, 26 (2008), 2586–2592.

[Dal92] DALY S. J.: Visible differences predictor: An algorithm for
the assessment of image fidelity. In Proceedings of SPIE/IS&T
Electronic Imaging (Los Angeles, CA, USA, 1992), pp. 2–15.

[DD00] DURAND F., DORSEY J.: Interactive tone mapping. In Proceed-
ings of EGWR (Vienna, Austria, 2000), Durand, F., & Dorsey, J.
(Eds.), Springer, pp. 219–230.

c© 2014 The Authors
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



S. Arpa et al. / Purkinje Images 125

[DRE*11] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: A perceptual model for disparity. Proceedings of
SIGGRAPH, ACM Transactions on Graphics 30, 4 (2011).

[FPSG96] FERWERDA J. A., PATTANAIK S., SHIRLEY P., GREENBERG D.
P.: A model of visual adaptation for realistic image synthesis. In
Proceedings of SIGGRAPH (New Orleans, LA, USA, 1996), pp.
249–258.

[GS75] GEORGESON M., SULLIVAN G.: Contrast constancy: Deblurring
in human vision by spatial frequency channels. Journal of Physics
252 (1975), 627–656.

[GTZM10] GOFERMAN S., TAL A., ZELNIK-MANOR L.: Puzzle-like
collage. Computer Graphics Forum 29, 2 (2010), 459–468.

[GVWD06] GRUNDLAND M., VOHRA R., WILLIAMS G. P., DODGSON N.
A.: Cross dissolve without cross fade: Preserving contrast, color
and salience in image compositing. Proceedings of Eurographics,
Computer Graphics Forum 25, 3 (2006), 577–586.

[Hau01] HAUSNER A.: Simulating decorative mosaics. In Proceed-
ings of SIGGRAPH (Los Angeles, CA, USA, 2001), pp. 573–580.

[HZZ11] HUANG H., ZHANG L., ZHANG H.-C.: Arcimboldo-like col-
lage using internet images. Proceedings of SIGGRAPH Asia,
ACM Transactions on Graphics 30, 6 (2011), 155:1–155:8.

[IKN98] ITTI L., KOCH C., NIEBUR E.: A model of saliency-based
visual attention for rapid scene analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20, 11 (1998), 1254–
59.

[Ish17] ISHIHARA S.: Test for Colour-Blindness. Handaya Hongo
Harukicho, Tokyo, 1917.

[Jac93] JACOBS G. H.: The distribution and nature of colour vi-
sion among the mammals. Biological Reviews 68 (1993), 413–
471.

[JDN*94] JACOBS G., DEEGAN J., NEITZ J., MURPHY B., MILLER K.,
MARCHINTON R.: Electrophysiological measurements of spectral
mechanisms in the retinas of two cervids: White-tailed deer
(odocoileus virginianus) and fallow deer (dama dama). Journal
of Comparative Physiology A 174 (1994), 551–557.

[KCZT12] KIM S., CAO X., ZHANG H., TAN D.: Enabling concurrent
dual views on common LCD screens. In Proceedings of SIGCHI
(Austin, TX, USA, 2012), pp. 2175–2184.

[KO11] KIRK A. G., O’BRIEN J. F.: Perceptually based tone map-
ping for low-light conditions. Proceedings of SIGGRAPH, ACM
Transactions on Graphics 30, 4 (2011), 42:1–42:10.

[KOF08] KUHN G. R., OLIVEIRA M. M., FERNANDES L. A. F.:
An efficient naturalness-preserving image-recoloring method for
dichromats. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008), 1747–1754.

[KP02] KIM J., PELLACINI F.: Jigsaw image mosaics. ACM Transac-
tions on Graphics 21, 3 (2002), 657–664.

[Liv02] LIVINGSTONE M.: Vision and Art: The Biology of Seeing.
Harry N. Abrams, New York, USA, 2002.

[MCL*09] MITRA N. J., CHU H.-K., LEE T.-Y., WOLF L., YESHU-
RUN H., COHEN-OR D.: Emerging images. Proceedings of SIG-
GRAPH Asia, ACM Transactions on Graphics 28, 5 (2009),
163.

[MKRH11] MANTIUK R., KIM K. J., REMPEL A. G., HEIDRICH W.:
HDR-VDP-2: A calibrated visual metric for visibility and qual-
ity predictions in all luminance conditions. Proceedings of SIG-
GRAPH, ACM Transactions on Graphics 30, 4 (2011), 40:1–
40:14.

[MRH09] MANTIUK R., REMPEL A. G., HEIDRICH W.: Display consid-
erations for night and low-illumination viewing. In Proceedings
of APGV (Crete, Greece, 2009), pp. 53–58.
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